爱吃奶糖的鱼
凯美瑞的THS系统在驾驶体验上颇为不错,其与本田雅阁混动系统的最大区别是,丰田THS可以使燃油机和电机同时介入为整车驱动。不论是城市内低速通勤还是高速上的巡航表现,凯美瑞都能够达到令人满意的水平。
楼兰芥末姑娘
汽油机电控燃油喷射系统的点火控制(上)XXX(XX汽车电器研究所 )摘要:在发动机控制系统中,电控点火装置对发动机的点火控制包括点火提前角控制、通电时间控制和爆震控制3个方面。分别介绍了它们的控制原理、控制方式、控制方法、控制电路。在发动机的集中电控系统中, ECU (电子控制器)是一种电子综合控制装置。它不仅用来控制燃油喷射系统,同时还具有点火控制、怠速控制、排放控制、进气控制、增压控制、自诊断、失效保护和备用控制等多项控制功能。其中的点火控制是重要功能之一。在发动机控制系统中,电控点火装置(Electronic Spark Advance,简称ESA)对发动机的点火控制包括点火提前角控制、通电时间控制和爆震控制3个方面。1发动机点火控制的发展在传统的化油器式汽油机中,点火控制系统经过了传统式(触点式)向无触点式发展的过程。在这一过程中,系统中的分电器仍一直采用机械式离心和真空提前机构来控制发动机的点火提前角。燃油喷射控制系统经历了机械控制(K系统)、机电混合式控制(K-E系统)到电子控制(EFI系统)的过程。随着EFI系统的出现和发展,点火控制系统开始采用电控点火装置(ESA)。EFI系统的点火控制随着电子工业的发展也经历了普通(传统)式到电控式的过程。在K系统或带普通分电器式的EFI系统中,由于仍采用机械式离心和真空提前机构,不能实现对影响发动机工况的多种因素的多元及非线性控制,这类EFI系统被称为普通EFI系统。而采用电控点火装置(ESA)的EFI系统中,去掉了分电器的机械式离心和真空提前机构,甚至去掉了分电器,其功能完全由ESA来承担,它可以使发动机在任何工况下均处于最佳点火提前状态,并实现3方面的功能:点火提前角控制、通电时间控制和爆震控制。2ESA的点火提前角控制在ECU中,预先存储记忆发动机在各种工况及运行条件下最理想的点火提前角。发动机运转时, ECU根据发动机的转速和负荷信号,确定基本点火提前角,并根据其他有关信号进行修正,最后确定点火提前角,并向点火电子组件输出点火指示信号,以控制点火系统的工作。2·1最佳点火提前角通常把发动机发出功率最大和油耗最小时的点火提前角称为最佳点火提前角。对现代汽车而言,最佳的点火提前角不仅应保证发动机的动力性和燃油经济性都达到最佳,还必须保证排放污染最小。2·2影响点火提前角的因素2·2·1发动机转速当发动机转速升高时,点火提前角相应增大(但非线性关系),在普通式的EFI系统中,由于采用的是机械式离心提前调节器,所以调节曲线与理想点火调节曲线相差较大。当采用ESA时,可以使发动机的实际点火提前角接近于理想的点火提前角。2·2·2进气歧管绝对压力(负荷)当进气歧管压力高(真空度小、负荷大)时,要求点火提前角小;当进气歧管压力低(真空度高、负荷小)时,要求点火提前角大。但它们也非线性关系。在普通式的EFI系统中,由于采用的是机械式真空提前调节器,所以调节曲线与理想点火调节曲线相差较大。当采用ESA时,可以使发动机的实际点火提前角接近于理想的点火提前角。2·2·3汽油的辛烷值发动机在一定条件下,会出现爆震现象。爆震使发动机动力下降、油耗增加、发动机过热,对发动机极为有害。发动机的爆震与汽油品质有密切关系,常用辛烷值来表示汽油的抗爆性能。汽油的辛烷值越高,抗爆性越好,点火提前角可增大;辛烷值越低,抗爆性越差,点火提前角则应减小。在无电控的普通点火系统中,是靠人工对分电器初始位置进行调节来实现的。在EFI中,为了适应不同辛烷值的汽油的需要,在ECU中存储了2张点火正时图,在实际使用中,可根据不同的汽油品种进行选择。在出厂时,一般开关设定在无铅优质汽油的位置上。2·2·4其它因素最佳点火提前角还与发动机燃烧室的形状、燃烧室内温度、空燃比、大气压力、冷却水温度等因素有关。在普通EFI系统中,当上述因素变化时,系统无法对点火提前角进行调整。当采用ESA时,发动机在各种工况和运行条件下,都能提供理想的点火提前角,因此发动机的动力性、经济性和排放都可以达到最佳。2·3点火提前角控制系统的组成及功用(表1)表1点火提前角控制系统的组成及功用名称功用传感器空气流量计(用于L型EFI)进气歧管绝对压力传感器(用于D型EFI)检测进气量分电器曲轴位置传感器(NE信号)检测曲轴角度(转速)凸轮轴位置传感器(G1、G2信号)检测凸轮轴(曲轴)角度基准位置节气门位置传感器向ECU输入点火提前角修正用信号水温传感器检测发动机冷却水温度,向ECU输入点火提前角修正用信号起动开关(起动信号)向ECU输入发动机正在起动中的信号空调开关A/C向ECU输入空调的工作状态(ON、OFF)信号车速传感器检测车速,向ECU输入车速信号空档起动开关检测换档手柄置于N档或P档爆震传感器检测发动机爆震信号点火电子组件(点火模块)根据ECU输出的点火控制信号,控制点火线圈初级电流的通断,产生次级高压。同时,向ECU反馈点火确认信号ECU根据各传感器输入的信号,计算出最佳点火提前角,并将点火控制信号输送给点火电子组件2·4点火提前角的控制方式2·4·1点火正时控制在ESA中,点火提前角的控制包括发动机起动期间和起动后的2种基本情况。a·起动期间点火时间控制(图1a)当发动机在起动期间时,转速较低(通常在500 r/min以下),由于进气歧管压力信号或进气量信号不稳定,因此常将点火时间固定在初始点火提前角(其大小随发动机而异)。此时点火时刻与发动机工况无关,故不经ECU计算,直接由传感器信号控制一个固定的初始点火提前角。当发动机转速超过一定值时,自动转换为由ECU的点火正时信号IGT控制。b·起动后点火时间控制(图1b)根据有关传感器送来的信号, ECU计算出最佳点火时刻,输出点火正时信号IGT,控制点火电子组件点火。此时,点火时间由进气歧管压力信号(或进气量信号)和发动机转速确定的基本点火提前角和修正量决定。修正项目随发动机而异,并根据发动机各自图1点火时间控制(a)起动期间点火时间控制(b)起动后点火时间控制的特性曲线进行修正。以上2种情况可归纳如下:
vera911213
一、我国面临的挑战和机遇1、交通能源与环境问题是21世纪全球面临的重大挑战,对我国尤为严峻目前世界汽车保有量约8亿辆,预计到2020年全球汽车保有量将达到12亿辆,主要增量来自发展中国家。国际能源机构(IEA)的统计数据表明,2001年全球57%的石油消费在交通领域(其中美国达到67%)。预计到2020年交通用油占全球石油总消耗的62%以上。美国能源部预测,2020年以后,全球石油需求与常规石油供给之间将出现净缺口,2050年的供需缺口几乎相当于2000年世界石油总产量的两倍。与此同时,交通能源消耗也是造成局部环境污染和全球温室气体排放的主要来源之一。为此,全球已达成共识:交通能源转型势在必行。近年来,我国汽车业迅猛发展。2005年,我国汽车产、销量均超过570万辆,分别居世界第三位和第二位,自主品牌轿车和汽车出口均出现大幅增长。预计2020年前我国将成为世界上最大的汽车制造国和主要的汽车出口国之一。我国目前的汽车人均保有量还很低,2003年每千人汽车保有量仅为美国的(19辆),大约相当于美国90年前的水平,是世界上汽车市场潜力最大的国家,预计2020年汽车保有量将达到~亿辆。但是,当我国刚刚到达汽车社会门槛,车用石油消费在石油总消费中的比例(1/3以下)还大大低于世界平均水平时(1/2以上),我们已经感受到了石油供应的日益紧张。同时,车用石油消耗所产生的空气污染和CO2排放也正在变成愈来愈严重的问题,我国已经成为世界上第二大CO2排放国,由此产生的国际政治和经济争端将会愈演愈烈。这充分表明,我国所面临的石油安全与交通能源问题将来势更猛、影响更大、挑战更加严峻。按传统交通能源动力系统发展下去,不可持续,实现我国交通能源动力系统转型是大势所趋。2、未来20年是我国交通能源动力系统转型的战略机遇期历史上,交通能源动力系统变革一直处于技术革命和经济转型的核心位置。十九世纪,煤和蒸汽机火车引发了欧洲的工业革命,开创了人类的工业经济和工业文明;二十世纪,石油和内燃机汽车促成了美国的经济腾飞,把人类带入了基于石油的经济体系与物质繁荣,也带来了能源环境的巨大挑战。进入二十一世纪,以替代燃料和混合动力为代表的各种新型汽车能源动力技术迅猛发展,相互竞争,引发了一场新的技术变革,预示着人类将要进入后石油时代过渡期和能源动力技术创新突破的机遇期。这场能源动力系统变革的主要趋势是汽车能源多元化、汽车动力电气化和汽车排放洁净化:基于可再生能源的生物燃料对于各种车辆具有良好的适用性,成为各国共同推广的新型燃料;混合动力作为新型汽车能源动力技术共性平台,继承了先进内燃机技术,结合高效洁净的电力驱动方式,既充分利用现有燃料基础设施,又能包容各种新型燃料,现已成为新型动力汽车产业化的里程碑;燃料电池作为一种新兴能量转换装置,尽管目前还存在很多需要克服的技术障碍,但其作为新一代汽车能源动力系统的远期解决方案仍然被全球所看好。汽车能源动力技术的变革是一个比较漫长的过程。混合动力有望在近中期逐步普及;燃料电池汽车的规模商业化大约在2020年以后。面向中长期的汽车技术发展,我国汽车所处的这一技术变革时期为我国交通能源动力系统变革提供了历史机遇。机遇之一:中国的资源和能源状况适合发展新能源交通动力系统。中国缺油、少气、多煤,这一结构特点给交通能源可持续发展带来了严峻的挑战。基于各种资源特点的多种替代燃料可以充分发挥我国地域辽阔和资源多样性的优势,因地制宜发展基于煤炭的燃料工业、基于生物质的农业能源和基于天然气的各种气体燃料技术,从而实现交通能源来源的多样化。同时,从我国城乡布局看,城市模式以大城市群为主要特点,汽车燃料基础设施比较集中,有利于燃料清洁化管理和监督。我国广大农村,随地区不同,其一次能源资源特点也不同,这比较适合发展一次能源来源多元化、燃料制取和消费当地化的燃料供应体系。机遇之二:我国具有实现交通能源动力系统变革的后发优势。从我国汽车发展阶段看,具有后发优势。尽管发达国家政府均大力推动各种代用燃料汽车的应用和向氢能燃料电池汽车动力系统的转型,但是其传统汽车产业庞大,石油基础设施完善,消费习惯难以转变,实施转型社会成本高昂,转型难度很大。而我国汽车工业刚刚发展起来,汽车普及率低,因而在汽车动力系统发展战略选择上,有更大的自由度。相对常规汽车而言,我国在新能源汽车研发和产业化方面具有比较优势。如果政策得当,可以在世界上率先实现转型。机遇之三:实施汽车动力系统变革,是多年来我国发展清洁汽车和电动汽车成功实践的战略总结和发展的必然要求。基于对我国能源安全、环境保护和实现我国汽车工业跨越发展的战略考虑,“九五”期间,科技部会同有关部委组织实施了“清洁汽车行动”,取得了重大阶段性成果。目前,全国已有燃气汽车22万辆,加气站700余座,年替代石油150万吨。而且天然气汽车呈现快速增长势头,预计今后几年将进入大规模推广应用阶段。“十五”期间,科技部组织实施了“电动汽车重大科技专项”,国家投入亿元,是最大的科技专项之一。全国200余家单位、2000多名骨干科技人员直接参与实施,初步形成了官、产、学、研合作机制。目前,小型纯电动车辆已经开始小规模产业化,混合动力汽车已有多个车型通过国家认证成为产品,燃料电池汽车已进入示范考核运行阶段。自主开发的燃料电池、动力蓄电池、驱动电机和电子控制系统具备批量化生产能力。这为我国汽车动力转型战略的实施,奠定了坚实的技术、人才和实践基础。二、我国交通能源动力系统发展的战略选择基于我国汽车能源动力系统面临的挑战与机遇,我国汽车能源动力系统发展目标应当是立足转型、尽快转型。但是,新型汽车能源动力系统与现有汽车能源动力系统存在着千丝万缕的联系。同时,我国当前汽车产业发展和节能环保问题还要靠现有汽车能源动力技术解决。为此,应当选择一种“过渡”和“转型”并行互动、协调发展的战略。一方面,发展节能汽车解决紧迫的能源安全问题,另一方面,开展新能源汽车研究,瞄准未来汽车竞争制高点和实现汽车能源动力系统的可持续发展。1、节能汽车优化现有以石油和内燃机为基础的车用能源动力系统,发展节能汽车,重点发展直喷式内燃机及其混合动力系统。利用现有液体燃料基础设施,实施汽柴油清洁化战略,逐步与国际燃油规范接轨;大力发展各种合成燃料,尤其是符合中国国情的煤基合成燃料,并与汽柴油混合,形成新型清洁燃料。2000年以来,我国汽车(包括农用汽车)汽柴油年消费约占全国汽柴油消费总量的一半,石油消费的1/3左右。这一数据说明三个问题:1)车用汽柴油消费总量与石油消费总量同步快速增长。考虑到汽车市场的持续升温,石油安全风险很大。2)与国际平均水平相比,我国汽柴油消费占石油总消费的比例较低。通过石油消费结构调整优化,可实施汽车燃料的间接替代。主要是通过置换方式将替代难度较小的工业燃料等用非石油产品先行替代,将其原先使用的石油燃料用于汽车。则在相同石油消费总量下,车用燃料消费总量大约具有20%以上的上升空间。3)我国目前车用燃油消费总量与汽车保有量之比偏高,也即汽车油耗量偏大,节能的潜力巨大。2002年,我国计入农用车和摩托车后的等效平均单车年耗油量约为吨,接近美国2000年的平均单车年耗油量,而大大高于2000年的法国(吨)和日本(1吨)。平均单车年耗油量取决于车辆技术、车型结构和行驶里程以及运行工况等因素,中长期均有较大的改善潜力。根据国家中长期科技规划能源领域战略研究结果,建议2020年我国汽车节能目标为:在汽车保有量调节在亿辆以内的前提下,平均单车年油耗量控制在1吨左右。与目前相比,节约1/3左右,节油潜力7000万吨左右。汽车燃油消耗总量控制在~2亿吨。为了达到这一目标,关键的节能汽车能源动力技术如下:(1)高效柴油发动机技术轿车柴油机节能效果与汽油混合动力不相上下。据国务院发展研究中心分析预测,如果2020年我国柴油轿车发展到乘用车的20%,则当年可节约燃料1880万吨。为此应当在我国发展先进的柴油轿车,但是必须解决好排放控制关键技术问题。主要包括:柴油机电控技术,排气后处理技术和清洁柴油与代用柴油技术;柴油机电控高压燃油喷射系统和智能化发动机电子管理系统,是绿色高效柴油机核心关键技术,应当大力发展;柴油机排放控制可采取如下应对策略:EGR(废气再循环)技术成熟,效果显著,应尽快推广使用;DPF(微粒捕捉器)技术2010年前将会在欧洲柴油轿车普及,我国需加快应用速度;NOx(氮氧化物)催化转换器技术路线需要慎重选择,SCR在商用车中的应用应当引起重视;发展合成柴油和生物柴油对解决柴油的数量和质量都具有重大意义,要大力发展代用柴油技术,力争在2020年,将生产能力提高到1000万吨以上。根据2002年统计,我国农用车所消耗的柴油总量与常规柴油车的柴油消耗总量不相上下。开发节能、经济的新型农用车并逐步采用农业能源作为燃料对于汽车节能和发展农村经济具有重大战略意义。(2)节能汽油发动机技术当前,我国的轿车基本上是汽油轿车,目前采用的轿车汽油发动机还有20%以上的节能潜力。汽油发动机节能技术的发展呈如下趋势:缸内直喷技术、电辅助增压、电动气门、可变压缩比、停缸控制技术等将在今后五年规模产业化。世界各国正在对直喷汽油发动机技术开展深入研究。以日本为代表的非均质直喷技术面临燃烧稳定性和后处理等问题,以欧洲为代表的均质直喷技术正在兴起。电动气门与无凸轮发动机技术也在突破之中。电动气门具有与电控喷射同等重要的意义,它将给发动机空气系统控制和循环过程管理带来一系列节能技术变革,如取消节气门,可变压缩比、部分停缸等。目前我国轿车主要集中在大城市。在中小城市和农村,摩托车和三轮摩托车是主要个人交通工具,保有量已达亿辆以上,其节能环保水平急待提高,其升级换代趋势值得关注。有针对性的开发具有中国特色的超微型节能汽油车具有重要的节能意义和市场前景。(3)先进的混合内燃机技术先进内燃机的发展呈现多重混合化趋势。燃料供应的混合:常规汽柴油与代用燃料混合。以常规汽柴油为主,将各种代用燃料,包括醇醚燃料与汽柴油掺混并进行适当设计将会成为主流燃料技术。燃烧方式的混合:汽油机均质充气与柴油机压燃点燃混合。以燃料混合技术和控制技术为基础,综合汽油机和柴油机两种燃烧方式优点的均质压燃HCCI内燃机技术正在兴起。输出功率的混合:内燃机与电机功率的混合。新型集成化大功率启动电机/发电机一体化装置ISG与新型电源系统技术既是内燃机电控技术的扩展和深化,也是复杂混合动力传动系统的基础模块技术。内燃机的混合化是联结现有汽车节能环保技术与新能源汽车技术之间的桥梁。2、新能源汽车开发新一代车用能源动力系统,发展新能源汽车。重点发展各种液体代用燃料发动机及其混合动力汽车,逐步过渡到采用生物燃料的混合动力和可充电的混合动力;进一步发展以天然气为主体的气体燃料基础设施,分步建设长期可持续利用的气体燃料供应网络;以天然气发动机为基础,发展各种燃气动力,尤其是天然气/氢气内燃机及其混合动力;发展新一代燃料电池发动机及其混合动力,到2020年,达到规模商业化水平;大力推进动力电池的技术进步,发展适合中国国情的纯电动车尤其是微型纯电动车。以城市公交车辆为重点,以点带面,稳步推进新能源汽车的示范与商业化。(1)车用能源转型的方向和重点车用能源转型的方向将从石油、天然气/煤层气、煤基燃料向生物质燃料和化石能、核能及可再生能源制氢和发电过渡。从资源来源看,中长期车用石油替代燃料的主体将来自三方面:煤基燃料、生物燃料、天然气燃料。到2020年,总量将可达到3000万吨以上,占车用燃料总消费的15%~20%,与欧盟的预期目标基本相同。从车辆应用角度看,车用代用燃料主要有三类:含氧燃料(醇/醚/酯)、合成油(BTL/CTL/GTL)、气体燃料(甲烷气/合成气/氢气)。含氧燃料技术成熟,是近期推广应用的重点,一般以掺混使用为宜。合成油与现有车辆技术体系和基础设施完全兼容,而且是一种优质的环保燃料。其技术也还有较大的改进余地。从中长期看,将成为一种主体代用燃料。气体燃料中,甲烷气是近中期的重点,以天然气为例, 2020年,我国天然气供应量可达到1200亿m3以上,如拿出10%左右用于汽车就可替代1000万吨左右汽柴油;合成气是各种一次能源通过气化工艺制成的富氢气体,是各种汽车新型燃料的原料气,也可直接用作车用燃料,在车用能源转型中发挥着关键作用;氢气是一种原料来源广泛、尾气排放为零的环保燃料,是车用能源转型的战略目标之一。根据国家中长期科技发展规划纲要,我国将从基础科学研究、前沿技术创新、工程应用开发等多个层面实施对氢能技术的重点突破。(2)汽车动力转型与混合动力汽车动力系统是一个完整的体系,包括燃料、发动机、动力传动系统三个主要层次。根据生命周期循环分析,从油井到车轮的效率来看,源于石油的最佳组合是:汽油/柴油—内燃机—混合动力;源于天然气、煤的氢燃料电池及其混合动力可与合成燃料内燃机及其混合动力竞争。近年来,汽车动力系统最大的突破是混合动力技术,它为汽车动力系统的转型奠定了基础平台。当前,内燃机混合动力轿车产业化是动力转型的里程碑。采用混联式汽油混合动力系统的轿车城市工况可节油40%左右。混合动力还为汽车排放控制尤其是城市工况条件下的排放控制提供了有效的新途径。鉴于我国私人轿车主要集中在大中城市,混合动力轿车非常适合在我国推广使用。同时,我国是一个公交车大国,在公交车中推广使用混合动力车辆也具有重要的节能环保意义。要借鉴我国汽车产业在发动机电控喷射等技术变革中所积累的开发经验和商业模式,并通过税收优惠等激励政策,大力开发和推广混合动力。今后,发展我国混合动力有两条技术路线值得重视:一是轿车混合动力的模块化。通过功能模块的发展与组合逐步推进汽车动力的电气化。从只具备自动启停、怠速关机功能的“微混合(micro-hybrid)”、以并联式混合动力发动机为主体的“轻混合(mild-hybrid)”和以混联式为特征的“全混合(full-hybrid)”,随着电功率的比例逐步提高,最终过渡到串联式“可充电混合(plug-in-hybrid)”。二是城市客车混合动力系统的平台化。发电机组+驱动电机+储能装置构成了混合动力系统的基本技术平台。通过换用不同的辅助动力总成(APU)适应从汽、柴油内燃机到氢能燃料电池各种不同的能源动力转化装置,形成油—电、气—电、电—电各种不同混合动力,促进动力系统的平稳过渡与转型。(3)汽车能源动力转型的关键与瓶颈:动力蓄电池和氢能燃料电池目前,新型动力电池尚不能很好满足汽车使用要求,即使对于已经产业化的国外混合动力轿车用动力电池也还存在初始成本高,使用寿命短等问题。动力蓄电池同时涉及混合动力、纯电动和燃料电池三种电动汽车,因此动力系统的转型将强烈依赖电池技术的突破。尽管混合动力的产业化会大大促进动力电池尤其是高功率型动力电池的技术进步,但是近三十年来车用动力电池研发的经验表明其技术进步过程将呈现出长期、稳步和渐变的特征。氢燃料电池系统是最具效率潜力的车用发动机,并能带来全新的汽车设计概念。据IEA2004年统计,全球能源科技研发公共资金投入中约12%投向了氢能燃料电池。近年来,燃料电池汽车技术得到了快速的发展,例如电堆大规模生产成本已降低到接近100美元/千瓦。但是,车用燃料电池商业化还面临一系列重大挑战:寿命仍需提高两倍以上,还有储氢、氢源基础设施等重大问题有待解决。以低温膜和碳极板为标志的车用质子交换膜燃料电池技术研发和投资的第一高潮已经过去。以复合增强高温膜、低铂催化剂和金属双极板为标志的新一代技术正在兴起。美国能源部2005年8月发布最新技术路线图,美国国会批准继续加大氢能燃料电池投入,全球正在为燃料电池产业化而继续努力,我国在氢能燃料电池技术竞争中处于除日本、加拿大、美国之后的第二行列。总体上讲,燃料电池是车用动力系统的一个长远解决方案。其中,燃料电池城市大客车可望率先实现商业化。美国正在实施国家计划,目标是到2015年使燃料电池城市客车占到新增城市公交车的10%。相比而言,城市公交在我国更具战略地位,我国大客车产业更具国际竞争力。应当把燃料电池大客车作为燃料电池汽车商业化的突破口。(4)我国新型能源动力汽车发展趋势与进程展望综合国外各种研究预测和各大国际汽车公司与能源公司的技术发展路线图,结合我国具体国情和发展现状,可初步展望我国汽车能源动力系统的转型趋势:1)2010年左右,随着石油价格的上涨和燃油税的征收以及排放法规与国际接轨,我国汽车能源动力系统技术转型的转折点将会出现。以混合动力和混合燃料为主体的新能源动力系统车辆产业化高潮将会到来。2)2020年左右,随着常规石油供需缺口的出现和CO2政策法规的实施以及燃料电池、动力电池等新型能源动力技术的进步,我国汽车能源动力系统技术转型将取得进一步突破,燃料电池轿车产业化可望兴起。3)21世纪上半叶,基于各种液体燃料及其基础设施的先进内燃机与混合动力车、基于各种气体燃料及其基础设施的燃气与燃料电池车、基于电燃料及其基础设施的纯电动车在将会长期并存。其中先进内燃机与混合动力车将占主导地位。燃气与燃料电池车以及纯电动车之和在21世纪中叶前后可望达到汽车销量的1/3~1/2。我国新型汽车能源动力系统的发展进程路线将是沿着中国特色之路逐步走向世界前沿。◎内燃机及其混合动力车将会出现适合我国城市工况的轻度混合动力小型车、适合地区特点的超微型汽油车等特色车型,其所用燃料近中期将以汽柴油为主,掺混少量替代燃料。中远期,各种替代燃料的比例将会逐步加大逐步发展出基于生物燃料的充电式(plug-in)内燃混合动力车;◎燃气与燃料电池车将从目前世界上最大的天然气公交车队、燃料电池混合动力公交车队,逐步发展出规模产业化的氢能燃料电池轿车;◎纯电动车将从目前世界上最大的电动自行车生产国(年产1000万辆),发展出装备先进动力电池的微型电动车并广泛推广使用。考虑到新技术研发与应用推广中的各种风险和不确定性,上述预测是一种比较初步和粗略的估计,需要根据新的进展加以修正。但这一展望可以作为我们努力争取的目标。三、我国应采取的科技对策基于节能与新能源汽车“过渡”与“转型”的双重发展战略,我国汽车能源动力系统的科技对策可遵循三条基本技术路线。三管齐下,并行互动:(1)开发和推广先进内燃机与混合动力汽车,解决紧迫的节能与环保问题并促进自主品牌汽车发展,推进动力系统技术转型。(2)研发和应用气体燃料、煤基燃料和生物燃料等汽车代用燃料,促进交通能源来源多元化,同时有步骤的推动基础设施的扩展和转型。(3)开展燃料电池汽车和纯电动车的研发、示范和产业化,促进新能源电动汽车技术创新与重点跨越。近年来,国家攻关计划、清洁汽车行动、电动汽车重大科技专项的实施,极大地推动了我国节能和新能源汽车的技术变革。根据国家中长期科技发展规划,今后将进一步加大力度,推进我国汽车能源动力科技创新与产业化。为此建议:1)以2020年节约和替代车用燃料总量达到1亿吨(节约7000万吨,替代3000万吨)为目标,推进节能与新能源汽车并行互动与协调发展战略。在市场方面,要以节能汽车为主体,大力发展小型化和微型化的节能环保国民车,尽快实施燃油税,加大油耗法规推进力度。在研发方面,要以新能源汽车为战略重点,紧紧抓住未来二十年汽车能源动力系统技术变革的战略机遇期,官产学研联合攻关,实现中国汽车产业由产量大国到技术强国的跨越发展。2)采用“置换”(间接替代)、“掺混”(部分替代)、“代替”(全部替代)三管齐下,先易后难、稳步发展汽车替代能源;大力发展煤基、生物质基、天然气基石油替代燃料,促进交通能源多元化;继续发展燃油、燃气、电三种燃料/能源的基础设施,实现交通能源载体尽可能的兼容性和一体化;3)开发醇/醚/酯含氧燃料、BTL/CTL/GTL合成油、天然气/合成气/氢气气体燃料三大类代用燃料技术及其车辆应用技术,推进汽车燃料因时、因地、有序、有限的多元化;液体代用燃料宜以掺混应用为主,通过合理的燃料设计、优化的整车匹配和规范的油品管理,逐步替代石油基汽柴油;全力推进车用燃料技术创新尤其是合成气技术、氢储运技术等,建立代用燃料的基础技术平台,以适应交通能源转型过程中代用燃料品种的变化与过渡;4)以先进内燃机及其混合动力系统、燃料电池发动机及其混合动力系统和动力电池/超级电容及其电力驱动系统为核心,深入开展新型动力系统关键技术攻关,掌握成套知识产权,建立相关产业体系;以轻度混合动力轿车产业化为先导,带动各种混合动力轿车的研发与规模商业化,实现自主品牌轿车的跨越式发展;以我国在世界上独一无二的年产销量超过1000万辆的电动自行车产业为基础,改变传统的汽车文化习惯并修订相关的标准法规,以微型车为主体,发展适合我国国情、具有我国特色的纯电动车辆;5)以城市车辆为重点,加大各种新能源电动汽车市场开发力度。以混合动力为统一平台,通过平台化、系列化实现规模化,通过规模化推动高端技术——燃料电池汽车商业化;以政策标准法规为导向,促进轿车小型化、公交优先化,推动交通理念和消费观念的全面进步,为符合中国国情的自主创新技术创造市场环境。(作者为清华大学教授、博士生导师、清华大学汽车工程系主任、汽车安全与节能国家重点实验室主任)(转自《清华人》)
这种情况目的和意义具体如下:意义:准确的控制燃料供给系统供给的燃料,充分提高可燃混合气的浓度比使燃料充分燃烧,提高了汽车的燃料经济性。同时在排放系统中采用先进的
汽车发动机怠速抖动现象的愿因及排查方法探讨 摘要;本文主要阐述了汽车发动机怠速抖动机理,分析了导致发动机产生怠速抖动现象的故障原因,提出了发动机怠速抖动故障的
提供一些内燃机车专业毕业论文的题目,供参考。1、机车主电路接地判断与查找 2、机车无流无压的分析与处理3、机车动轮擦伤原因分
答辩教师的提问安排在答辩人自述之后,是答辩中相对灵活的环节,有问有答,是一个相互交流的过程。一般为3个问题,采用由浅入深的顺序提问,采取答辩人当场作答的方式。那
混合动力汽车技术现状与发展前景分析 摘要:社会对环境和节能的重视有力地促进了混合动力车辆的发展。本 文分析了国内外混合动力汽车的研究现状,介绍了混合动力汽车的主