品尝滋味real
拉格朗日插值的优缺点如下:
两者都是通过给定n+1个互异的插值节点,求一条n次代数曲线近似地表示待插值的函曲线,这就叫做代数插值;Lagrange插值代数和Newton法插值都属于代数插值的范畴。Lagrange插值和Newton法插值的结果和余项都是一致的,因为都是利用n次多项式插值,所以一致。
Lagrange插值法是通过构造n+1个n次基本多项式,线性组合而得到的。而Newton法插值是通过求各阶差商,递推得到的一个f(x)=f(x0)+(x-x0)f[x0,x1]+(x-x0)(x-x1)f[x0,x1,x2]+(x-x0)(x-x(n-1))f[x0,x1,xn]这样的公式,代进去就可以得到。
假设已知n+1n+1个点相对多项式函数ff的值为:(x0,f(x0)),(x1,f(x1)),(x2,f(x2)),(xn,f(xn)),求此多项式函数f。LAGRANGE适用于理论应用,HERMITE多用于计算,牛顿插值两者皆可。
雾夜狂奔
拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日(插值)多项式。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现[1],不久后(1783年)由莱昂哈德·欧拉再次发现。1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起拉格朗日插值是一种多项式插值方法。是利用最小次数的多项式来构建一条光滑的曲线,使曲线通过所有的已知点。例如,已知如下3点的坐标:(x1,y1),(x2,y2),(x3,y3).那么结果是:y=y1L1+y2L2+y3L3,L1=(x-x2)(x-x3)/((x1-x2)(x1-x3)),L2=(x-x1)(x-x3)/((x2-x1)(x2-x3)),L3=(x-x1)(x-x2)/((x3-x1)(x3-x2)). 分段线性Lagrange插值 % 命令格式:y=lagrange1(x0,y0,x) % x0为节点向量,y0为对应的函数值向量, % x为插值点向量,返回值y为x处的函数近似值向量。插值法是:利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作函数f (x)的近似值,这种方法称为插值法。其目的便就是估算出其他点上的函数值。而拉格朗日插值法就是一种插值法。要说用来干什么……在金融里面要算内部收益率(IRR)就会用到插值法。
水乡的风光
基函数就是一个函数的固定形式,也就是函数只会在这个函数的基础上变化而不会丢掉的函数。例给定n+1个控制顶点Pi(i=0~n) ,则Bezier曲线定义为: P(t)=∑Bi,n(t)Pi u∈[0,1] 其中:Bi,n(t)称为基函数。拉格朗日插值公式指的是在节点上给出节点基函数,然后做基函数的线性组合,组合系数为节点函数值的一种插值多项式。线性插值也叫两点插值,已知函数y = f (x)在给定互异点x0, x1上的值为y0= f (x0),y1=f (x1)线性插值就是构造一个一次多项式P1(x) = ax + b使它满足条件P1 (x0) = y0 P1 (x1) = y1其几何解释就是一条直线,通过已知点A (x0, y0),B(x1, y1)。线性插值计算方便、应用很广,但由于它是用直线去代替曲线,因而一般要求[x0, x1]比较小,且f(x)在[x0, x1]上变化比较平稳,否则线性插值的误差可能很大。为了克服这一缺点,有时用简单的曲线去近似地代替复杂的曲线,最简单的曲线是二次曲线,用二次曲线去逼近复杂曲线的情形。简单地说,就是用一些易于计算处理的函数替代原来的函数求取差值。目的当然是求得不能精确确定的中间值,但为了减少误差、工作量及复杂性,这些函数通常都用一次曲线(直线)或二次曲线替代、组合。这样,即可获得一定的准确性,亦能在精确与便利之间平衡,一句话:又好又省。
【作品提要】 波丽娅·维赫罗娃中学毕业后来到莫斯科求学。她此行还有另一个目的——了解父亲的为人。她的父亲维赫罗夫是莫斯科林学院的知名教授,由于与妻女长期分居以及
毕业论文采用的研究方法有哪些 毕业论文采用的研究方法有哪些,在写论文的时候需要用到研究方法,研究的方法有很多种,不同的研究方法使用的方式也是不一样的,以下就是我
看的。中小样本的拟合优度检验--优秀毕业论文样本,检验,拟合,拟合优,拟合优度,样本的,拟合样本,拟合优度高,单样本检验 。
拉格朗日插值的优缺点如下: 两者都是通过给定n+1个互异的插值节点,求一条n次代数曲线近似地表示待插值的函曲线,这就叫做代数插值;Lagrange插值代数和Ne
俄罗斯因为与乌克兰的战争一直备受国际的关注,而近日俄罗斯的一位俄航空学院前校长阿纳托利·格拉申科 突然坠落身亡。而此次坠楼身亡引起许多人的注意并提出疑问,究竟是