明月丶夜灬
概率论与数理统计硕士毕业论文新课改背景下的师专“概率论与数理统计”教学研究 基于概率论及数理统计对间歇式能源功率平滑输出的研究 信息技术与本科概率统计课程整合的实验研究 本科概率论试验课程设计初探基于随机模拟试验的稳健优化设计方法研究 随机变量序列部分和乘积的几乎处处中心极限定理 AQSI序列的强极限定理几类相依混合随机变量列的大数律和L~r收敛性 现代经济计量学建立简史 任意随机变量序列的相关定理新建电气化铁路电能质量影响预测研究 鞅差与相依随机变量序列部分和精确渐近性 ND序列若干收敛性质的研究证券组合投资决策的均匀试验设计优化研究 相依随机变量序列部分和收敛速度行为两两NQD随机变量阵列加权和的收敛性 数值计算的统计确认研究与初步应用 基于证据理论的足球比赛结果预测方法 城市工业用地集约利用评价与潜力挖掘 节理化岩体边坡稳定性研究 随机变分不等式及其应用基于模糊综合评价的靶场实时光测数据质量评估基于路径的加权地域通信网可靠性研究 LNQD样本近邻估计的大样本性质 20CrMoH齿轮弯曲疲劳强度研究我国股票市场与宏观经济之间的协整分析 一类Copula函数及其相关问题研究 乐透型彩票N选M中奖号码的概率分析 协整理论在汽车发动机系统故障诊断中的应用 2010年上海世博会会展中断风险分析和保险建议 贝儿康有限公司激励设计研究 云模型在系统可靠性中的应用研究离散更新模型破产概率及赤字的上下界估计 输电线微风振动与疲劳寿命电器产品模糊可靠性分析中模糊可靠度的研究 变分不等式及变分包含解的存在性与算法 隧道测量误差控制方案的研究 塔式起重机臂架可靠性分析软件开发分布式认证跳表及其在P2P分布式存储系统中的应用 房地产行业企业所得税纳税评估实证研究 具有预测能力的呼叫中心系统的设计与实现 PVAR模型在研究经济增长与能源消费关系中的应用 基于有限元的深基坑组合型围护结构可靠度分析 一些带有偏序结构的完全码
海天浪涛
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
小盆友2鸣儿
高中关于概率论教学探究论文摘要:将数学史引入课堂、在教学中广泛应用案例、积极开展随机试验以及引导学生主动探索等,有助于改进概率论教学方法,解决教学实践问题,提高教学质量.教学手段的多样化以及丰富的教学内容可以加深学生对客观随机现象的理解与认识,并激发学生自主学习和主动探索的精神.关键词:概率论;教学;思维方法在数学的历史发展过程中出现了3 次重大的飞跃.第一次飞跃是从算数过渡到代数,第二次飞跃是常量数学到变量数学,第三次飞跃就是从确定数学到随机数学.现实世界的随机本质使得各个领域从确定性理论转向随机理论成为自然;而且随机数学的工具、结论与方法为解决确定性数学中的问题开辟了新的途径.因此可以说,随机数学必将成为未来主流数学中的亮点之一.概率论作为随机数学中最基础的部分,已经成为高校中很多专业的学生所必修的一门基础课.但是教学过程中存在的一个主要问题是:学生们往往已经习惯了确定数学的学习思维方式,认为概率中的基本概念抽象难以理解,思维受限难以展开.这些都使得学生对这门课望而却步,因此如何在概率论的教学过程中培养学生学习随机数学的思维方法就显得十分重要.本文拟介绍我们在该课程教学中的改革尝试,当作引玉之砖.1 将数学史融入教学课堂在概率论教学过程当中,介绍相关的数学史可以帮助学生更好地认识到概率论不仅是“ 阳春白雪” ,而且还是一门应用背景很强的学科.比如说概率论中最重要的分布——正态分布,就是在18 世纪,为解决天文观测误差而提出的.在17、18 世纪,由于不完善的仪器以及观测人员缺乏经验等原因,天文观测误差是一个重要的问题,有许多科学家都进行过研究.1809年,正态分布概念是由德国的数学家和天文学家德莫弗(DeMoivre)于1733 年首次提出的,德国数学家高斯(Gauss)率先将正态分布应用于天文学研究,指出正态分布可以很好地“ 拟合” 误差分布,故正态分布又叫高斯分布.如今,正态分布是最重要的一种概率分布,也是应用最广泛的一种连续型分布.在1844 年法国征兵时,有许多符合应征年龄的人称自己的身高低于征兵的最低身高要求,因而可以免服兵役,这里面一定有人为了躲避兵役而说谎.果然,比利时数学家凯特勒(A. Quetlet,1796—1874)就是利用身高服从正态分布的法则,把应征人的身高的分布与一般男子的身高分布相比较,找出了法国2000 个为躲避征兵而假称低于最低身高要求的人[1].在大学阶段,我们不仅希望通过数学史在教学课堂中的呈现来引起学生学习概率论这门课程的兴趣,更应侧重让学生通过兴趣去深入挖掘数学史,感受随机数学的思想方法[2].我们知道概率论中的古典概型要求样本空间有限,而几何概型恰好可以消除这一条件,这两种概型学生理解起来都很容易.但是继而出现的概率公理化定义,学生们总认为抽象、不易接受.尤其是概率公理化定义里出现的σ 代数[3]这一概念:设Ω 为样本空间,若Ω 的一些子集所组成的集合? 满足下列条件:(1)Ω∈? ;(2)若A∈ ? ,则A∈ ? ;(3)若∈ n A ? ,n =1, 2,??,则∈∞=nnA ∪1? ,则我们称 ? 为Ω 的一个σ 代数.为了使学生更好的理解这一概念,我们可以引入几何概型的一点历史来介绍为什么要建立概率的公理化定义,为什么需要σ 代数.几何概型是19 世纪末新发展起来的一种概率的计算方法,是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.1899 年,法国学者贝特朗提出了所谓“ 贝特朗悖论” [3],矛头直指几何概率概念本身.这个悖论是:给定一个半径为1 的圆,随机取它的一条弦,问:弦长不小于3 的概率为多大?对于这个问题,如果我们假定端点在圆周上均匀分布,所求概率等于1/3;若假定弦的中点在直径上均匀分布,所求概率为1/2;又若假定弦的中点在圆内均匀分布,则所求概率又等于1/4.同一个问题竟然会有3 种不同的答案,原因在于取弦时采用了不同的等可能性假定!这3 种答案针对的是3 种不同的随机试验,对于各自的随机试验而言,它们都是正确的.因此在使用“ 随机” 、“ 等可能”、“ 均匀分布” 等术语时,应明确指明其含义,而这又因试验而异.也就是说我们在假定端点在圆周上均匀分布时,就不能考虑弦的中点在直径上均匀分布或弦的中点在圆内均匀分布所对应的事件.换句话讲,我们在假定端点在圆周上均匀分布时,只把端点在圆周上均匀分布所对应的元素看成为事件.现在再来理解σ -代数的概念:对同一个样本空间Ω ,?1 ={?, Ω}为它的一个σ 代数;设A为Ω 的一子集,则 ?2 ={?, A, A, Ω}也为Ω 的一个σ 代数;设B 为Ω 中不同于A的另一子集,则?3 = {?, A,B, A,B, AB, AB,BA,AB,Ω}也为Ω 的一个σ 代数;Ω 的所有子集所组成的集合同样能构成Ω 的一个σ 代数.当我们考虑?2 时,就只把元素?2 的元素? , A , A , Ω 当作事件,而B 或AB 就不在考虑范围之内.由此σ 代数的定义就较易理解了.2 广泛运用案例教学法案例与一般例题不同,它有产生问题的实际背景,并能够为学生所理解.案例教学法是将案例作为一种教学工具,把学生引导到实际问题中去,通过分析和讨论,提出解决问题的基本方法和途径的一种教学方法.我们可以从直观性、趣味性和易于理解的角度把概率论基础知识加以介绍.我们在讲条件概率一节时可以先介绍一个有趣的案例——“ 玛丽莲问题” :十多年前,美国的“ 玛利亚幸运抢答”电台公布了这样一道题:在三扇门的背后(比如说1 号、2号及3 号)藏了两只羊与一辆小汽车,如果你猜对了藏汽车的门,则汽车就是你的.现在先让你选择,比方说你选择了1 号门,然后主持人打开了剩余两扇门中的一个,让你看清楚这扇门背后是只羊,接着问你是否应该重新选择,以增大猜对汽车的概率?由于这个问题与当前电视上一些娱乐竞猜节目很相似,学生们就很积极地参与到这个问题的讨论中来.讨论的结果是这个问题的答案与主持人是否知道所有门背后的东西有关,这样就可以很自然的引出条件概率来.在这样热烈的气氛里学习新的概念,一方面使得学生的积极性高涨,另一方面让学生意识到所学的概率论知识与我们的日常生活是息息相关的,可以帮助我们解决很多实际的问题.因此在介绍概率论基础知识时,引进有关经典的案例会取得很好的效果.例如分赌本问题、库存与收益问题、隐私问题的调查、概率与密码问题、17 世纪中美洲巫术问题、调查敏感问题、血液检验问题、1992 年美国佛蒙特州州务卿竞选的概率决策问题,以及当前流行的福利彩票中奖问题,等等[4].概率论不仅可以为上述问题提供解决方法,还可以对一些随机现象做出理论上的解释,正因为这样,概率论就成为我们认识客观世界的有效工具.比如说我们知道某个特定的人要成为伟人,可能性是极小的.之所以如此,一个原因是由于某人的诞生是一系列随机事件的复合:父母、祖父母、外祖父母……的结合、异性的两个生殖细胞的相遇,而这两个细胞又必须含有某些产生天才的因素.另一个原因是婴儿出生以后,各种偶然遭遇在整体上必须有利于他的成功,他所处的时代、他所受的教育、他的各项活动、他所接触的人与事以及物,都须为他提供很好的机会.虽然如此,各时代仍然伟人辈出.一个人成功的概率虽然极小,但是几十亿人中总有佼佼者,这就是所谓的“ 必然寓于偶然转自之中” 的一种含义.如何用概率论的知识解释说明这个问题呢?设某试验中事件A出现的概率为ε ,0 <ε <1,不管ε 如何小,如果把这试验不断独立重复做任意多次,那么A 迟早会出现1次,从而也必然会出现任意多次.这是因为,第一次试验A不出现的概率为(1?ε )n ,前n 次A 都不出现的概率为1? (1?ε )n,当n 趋于无穷大时,此概率趋于1,这表示A迟早出现1 次的概率为1.出现A 以后,把下次试验当作第一次,重复上述推理,可见A 必然再出现,如此继续,可知A必然出现任意多次.因此,一个人成为伟人的概率固然非常小,但是千百万人中至少有一个伟人就几乎是必然的了[5].3 积极开展随机试验随机试验是指具有下面3 个特点的试验:(1)可以在相同的条件下重复进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在讲授随机试验的定义时,我们往往把上面3 个特点一一罗列以后,再举几个简单的例子说明一下就结束了,但是在看过一期国外的科普短片以后,我们很受启发.节目内容是想验证一下:当一面涂有黄油,一面什么都没有涂的面包从桌上掉下去的时候,到底会哪一面朝上?令我们没有想到的是,为了让试验结果更具说服力,实验人员专门制作了给面包涂黄油的机器,以及面包投掷机,然后才开始做试验.且不论这个问题的结论是什么,我们观察到的是他们为了保证随机试验是在相同的条件下重复进行的,相当严谨地进行了试验设计.我们把此科普短片引入到课堂教学中,结合实例进行分析,并提出随机试验的3 个特点,学生接受起来十分自然,整个教学过程也变得轻松愉快.因此,我们在教学中可以利用简单的工具进行实验操作,尽可能使理论知识直观化.比如全概率公式的应用演示、几何概率的图示、随机变量函数的分布、数学期望的统计意义、二维正态分布、高尔顿钉板实验等,把抽象理论以直观的形式给出,加深学生对理论的理解.但是我们不可能在有限的课堂时间内去实现每一个随机试验,因此为了有效地刺激学生的形象思维,我们采用了多媒体辅助理论课教学的手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,建立一个图文并茂、声像结合、数形结合的生动直观的教学环境,从而拓宽学生的思路,有利于概率论基本理论的掌握.与此同时,让学生在接受理论知识的过程中还能够体会到现代化教学的魅力,达到了传统教学无法实现的教学效果[6].4 引导学生主动探索传统的教学方式往往是教师在课堂上满堂灌,方法单一,只重视学生知识的积累.教师是教学的主体,侧重于教的过程,而忽视了教学是教与学互动的过程.相比较而言,现代教学方法更侧重于挖掘学生的学习潜能,以最大限度地发挥及发展学生的聪明才智为追求目标.例如,在给出条件概率的定义以后,我们知道当P(A) > 0时,P(B | A)未必等于P(B).但是一旦P(B | A) =P(B),也就说明事件A的发生不影响事件B的发生.同样当P(B) > 0时,若P(A| B) = P(A),就称事件B的发生不影响事件A 的发生.因此若P(A) > 0 , P(B) > 0 ,且P(B | A) = P(B)与P(A| B) = P(A)两个等式都成立,就意味着这两个事件的发生与否彼此之间没有影响.我们可以让学生主动思考是否能够如下定义两个事件的独立性:定义1:设A,B 是两个随机事件,若P(A) > 0 ,P(B) > 0,我们有P(B | A) = P(B)且P(A| B) = P(A),则称事件A 与事件B 相互独立.接下来,我们可以继续引导学生仔细考察定义1 中的条件P(A) > 0 与P(B) > 0 是否为本质要求?事实上,如果P(A) > 0,P(B) > 0,我们可以得到:P(B | A) = P(B) ? P(AB) = P(A)P(B) ? P(A| B) = P(A).但是当P(A) = 0,P(B) = 0时会是什么情况呢?由事件间的关系及概率的性质,我们知道AB ? A, AB ? B,因此P(AB) = 0 = P(A)P(B),等式仍然成立.所以我们可以舍去定义1中的条件P(A) > 0,P(B) > 0,即如下定义事件的独立性:定义2 : 设A , B 为两随机事件, 如果等式P(AB) = P(A)P(B)成立,则称A,B为相互独立的事件,又称A,B 相互独立.很显然,定义2 比定义1 更加简洁.在这个定义的寻找过程中,我们不仅能够鼓励学生积极思考,而且可以很好地培养和锻炼学生提出问题、分析问题以及解决问题的能力,从而体会数学思想,感受数学的美.5 结 束 语通过实践我们发现,将数学史引入课堂既能让学生深入了解随机数学的形成与发展过程,又切实感受到随机数学的思想方法;把案例应用到教学当中以及在课堂上开展随机试验可以将概率论基础知识直观化,增加课程的趣味性,易于学生的理解与掌握;引导学生主动探索可以强化教与学的互动过程,激发学生用数学思想来解决概率论中遇到的问题.总之,在概率论的教学中,应当注重培养学生建立学习随机数学的思维方法,通过教学手段的多样化以及丰富的教学内容加深学生对客观随机现象的理解与认识.另外,要以人才培养为本,实现以教师为主导,学生为主体的主客体结合的教学思想,将培养学生实践能力、创新意识与创新能力的思想落到实处,以期达到学生受益最大化的目标,为学生将来从事经济、金融、管理、教育、心理、通信等学科的研究打下良好的基础.[参 考 文 献][1] C·R·劳.统计与真理[M].北京:科学出版社,2004.[2] 朱哲,宋乃庆.数学史融入数学课程[J].数学教育学报,2008,17(4):11–14.[3] 王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,2007.[4] 张奠宙.大千世界的随机现象[M].南宁:广西教育出版社,1999.[5] 王梓坤.随机过程与今日数学[M].北京:北京师范大学出版社,2006.[6] 邓华玲,傅丽芳,任永泰.概率论与数理统计实验课的探讨与实践[J].大学数学,2008,24(2):11–14.建立数学创造性意识的学习氛围论文论文关键词:创造性思维;培养;协同培养 论文摘要:本文论述了创造性思维研究的现状,简单梳理了创造性思维研究的几种观点,并鉴于实践中对于创造性思维研究的成果的应用,列举了五种较为流传的创造……剖析高中平面向量授课方式研究论文【摘要】本文通过对高中第五章平面向量的研究,从运算的角度,教学内容、要求、重难点,本章的特点三个方面进行了总结,得出了五个方面的教学体会。 【关键词】平面向量;数形结合;向量法;教学体会……培养学生数学时刻使用意识研究论文[摘要]培养数学应用意识,促进知识内化,达到发展学生智慧的目的,是当前小学数学教学中人们关注的一个热点问题。本文从培养学生数学应用意识的理论依据及探索实践这两个方面对如何发展学生智慧问题进行探讨。……高中关于概率论教学探究论文摘要:将数学史引入课堂、在教学中广泛应用案例、积极开展随机试验以及引导学生主动探索等,有助于改进概率论教学方法,解决教学实践问题,提高教学质量.教学手段的多样化以及丰富的教学内容可以加深学生对客观……
本科毕业论文抽检是指为了保证学术诚信和质量,对一定比例的毕业论文进行随机抽样检查的过程。下面将详细介绍本科毕业论文抽检办法。 一、抽样比例 根据教育部规定,本科
条件概率: 条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B) 条件概率计算公式: 当P(A)>0,P(B|A)=P(AB)/P(A
毕业设计是教学过程的最后阶段采用的一种总结性的实践教学环节。通过毕业设计,能使学生综合应用所学的各种理论知识和技能,进行全面、系统、严格的技术及基本能力的练习。
本科毕业论文通过率都在95%以上。本科毕业论文是本科生在学校的最后一项学业任务,有一定的学分,学院会给每位学生配备指导老师,在指导老师的指导下,学生选题并撰写开
大学生毕业论文抽检被抽到的概率大小取决于具体的抽检方案和抽检规定。不同学校和不同院系的抽检规定可能会有所不同,有些学校可能会对所有毕业论文进行抽检,而有些学校可