中暑山庄产橘子
【关键词】 靶向给药;药剂学;药物载体0引言常规剂型的药物经静脉、口服或局部注射后,药物分布于全身,真正到达治疗靶区的药物量仅为给药量的小部分,而大部分药物在非靶区的分布不仅无治疗作用,还会带来毒副作用. 因此,药物新剂型的开发已成为现代药剂学发展的一个方向,其中靶向给药系统(Targeted drug delivery system, TDDS)的研究已经成为药剂学研究热点〔1〕. TDDS指一类能使药物浓集定位于病变组织、器官、细胞或细胞内的新型给药系统. 靶向制剂具有疗效高、药物用量少. 毒副作用小等优点. 理想的TDDS应在靶器官或作用部位释药,同时全身摄取很少,这样,既可提高疗效,又可降低药物的毒副作用. TDDS要求药物能到达靶器官、靶细胞,甚至细胞内的结构,并要求有一定浓度的药物停留相当长的时间,以便发挥药效. 成功的TDDS应具备3个要素:定位蓄积、控制释药、无毒可生物降解. 靶向制剂包括被动靶向制剂、主动靶向制剂和物理化学靶向制剂3大类. 目前,实现靶向给药的主要方法有载体介导、受体介导、前药、化学传递系统等. 现就靶向给药方法研究进展作一介绍.1载体介导的靶向给药常用的靶向给药载体是各种微粒. 微粒给药系统具有被动靶向的性能. 有机药物经微粒化可提高其生物利用度及制剂的均匀性、分散性和吸收性,改变其体内分布. 微粒给药系统包括脂质体(LS),纳米粒(NP)或纳米囊(NC),微球(MS)或微囊(MC),细胞和乳剂等. 微粒靶向于各器官的机制在于网状内皮系统(RES)具有丰富的吞噬细胞,可将一定大小的微粒( μm)作为异物摄取于肝、脾;较大的微粒(7~30 μm)不能滤过毛细血管床,被机械截留于肺部;而小于50 nm的微粒可通过毛细血管末梢进入骨髓.肝癌、肝炎等肝脏疾病是常见病和多发病,但目前药物治疗效果很不理想,其原因除药物本身药理作用尚不够理想外,不能将药物有效地输送至肝脏的病变部位也是一重要原因. 将一些抗肿瘤、抗肝炎药物制备成微粒,给药后可增加药物的肝靶向性. 米托蒽醌白蛋白微球(DHAQ BSA MS)的体内分布研究发现,给药20 min时,DHAQ BSA MS和米托蒽醌(DHAQ)在小鼠体内分布有显著差异,DHAQ BSA MS约有80%的药物集中在肝脏,而以上的DHAQ存在于血液中〔2〕. 张莉等〔3〕考察去甲斑蝥素(NCTD)微乳的形态、粒径分布及生物安全性,研究NCTD微乳及其注射液在小鼠体内的组织分布,结果表明,NCTD微乳较NCTD注射液增强了药物的肝靶向性,降低了肾脏分布,在一定程度上延长药物在小鼠体内的循环时间. 纳米粒和纳米囊肝靶向制剂的研究报道较多,如氟尿嘧啶、阿霉素、羟基喜树碱、狼毒乙素、环孢素等抗癌药物都被制成了纳米靶向制剂〔4〕. 王剑红等〔5〕采用二步法制备米托蒽醌明胶微球,粒径在 μm范围的占总数,体外释药与原药相比延长了4倍. 经小鼠体内分布试验表明具有明显的肺靶向性,靶向效率增加了3~35倍,肺中药代动力学行为可用一室开放模型描述,平均滞留时间延长10 h. 在纳米粒表面上包封亲水性表面活性剂,或通过化学方法连接上聚乙二醇或其衍生物,可以减少与网状内皮细胞膜的亲和性,从而避免网状内皮细胞的吞噬,提高毫微粒对脑组织的靶向性. Gulyaev等〔6〕以生物降解材料聚氰基丙烯酸丁酯为载体,以吐温80为包封材料制备了阿霉素毫微粒,研究结果表明脑中阿霉素浓度是对照组的60倍. 一些易于分解的多肽或不能通过血脑屏障的药物(如达拉根、洛哌丁胺、筒箭毒碱)通过制成包有吐温80的生物降解毫微粒在动物身上已取得一定的靶向治疗效果〔7〕. 研究表明粒径是影响微粒进入骨髓的关键因素,粒径越小越容易进入骨髓. 彭应旭等〔8〕制得不同粒径的柔红霉素聚氰基丙烯酸正丁酯毫微粒,小鼠尾静脉给药,小粒径组(70±24) nm骨髓内柔红霉素浓度是大粒径组(425±75) nm的倍. 骨髓会因肿瘤浸润、化疗药物或严重感染受到抑制. 研究表明,多种生长因子,如人粒细胞集落刺激因子(GCSF),粒细胞巨噬细胞集落刺激因子(GMCSF)可促使骨髓细胞自我更新、分裂增殖,并提高其活性. 利用骨髓靶向载体可提高药物在骨髓内分布,并避免血象中的不良反应. Gibaud等〔9〕以聚氰基丙烯酸异丁酯、异己酯毫微粒为载体携带GCSF,提高了其在骨髓内的分布.基因治疗是一种专一性的靶向治疗. 基因治疗就是利用基因转移技术将外源重组基因或核酸导入人体靶细胞内,以纠正基因缺陷或其表达异常. 纳米颗粒作为基因载体具有一些显著的优点. 纳米颗粒能包裹、浓缩、保护核苷酸,使其免遭核酸酶的降解;比表面积大,具有生物亲和性,易于在其表面耦联特异性的靶向分子,实现基因治疗的特异性;在循环系统中的循环时间较普通颗粒明显延长,在一定时间内不会像普通颗粒那样迅速地被吞噬细胞清除;让核苷酸缓慢释放,有效地延长作用时间,并维持有效的产物浓度,提高转染效率和转染产物的生物利用度;代谢产物少,副作用小,无免疫排斥反应等.2受体介导的靶向给药利用细胞表面的受体设计靶向给药系统是最常见的主动靶向给药系统. 去唾液酸糖蛋白受体(ASGPR)是一种跨膜糖蛋白,它存在于哺乳动物的肝实质细胞上. 其主要功能是去除唾液酸糖蛋白和凋亡细胞、清除脂蛋白. 研究发现,ASGPR能特异性地识别N乙酰氨基半乳糖、半乳糖和乳糖,利用这些特性可以将一些外源的功能性物质经过半乳糖等修饰后,定向地转入到肝细胞中发挥作用. Lee等合成了三分枝N乙酰氨基半乳糖糖簇YEE,它与肝细胞的结合能力为乙酰氨基半乳糖单糖的1万倍. 我们考察了半乳糖苷修饰的十六酸拉米夫定酯固体脂质纳米粒(LAPGSLN)的肝靶向性,其靶向效率为,比未修饰纳米粒的靶向效率高倍〔10〕. 药物通过与大分子载体连接,再对载体进行半乳糖化,可以产生较好的肝靶向效果. 若能使药物直接半乳糖化,则可以简化耦联环节,提高靶向效率. 这一思路对蛋白类药物而言,较易实现. 蛋白质或多肽(分子质量在一定范围)在连接上半乳糖后,都有可能成为受体结合的肝靶向性物质. 小分子物质经类似途径能否靶向于肝,取决于糖和药物密度、分子质量、摄取屏障等多方面因素. 小分子药物共价连接乳糖或半乳糖,初步揭示其靶向性并不好,有关机制和可行性尚待进一步探讨.半乳糖基化壳聚糖(GC)与质粒pEGFPN1混和制备成纳米微囊复合物,体外转染SMMC7721细胞. 将含1 mg质粒的纳米微囊经肝动脉和门静脉注射入犬体内,实验结果表明半乳糖基化壳聚糖在体外有较高的转染率,在犬体内有肝靶向性,可用作肝靶向基因治疗的载体〔11〕. 大多数肿瘤细胞表面的叶酸受体数目和活性明显高于正常细胞. 以叶酸作为导向淋巴系统或肿瘤细胞的放射性核素的载体,同时将叶酸作为靶向肿瘤细胞的抗肿瘤药物的载体已做了广泛的研究〔12〕.表皮生长因子受体(EGFR)是一种跨膜糖蛋白,由原癌基因cerbB1所编码,是erbB受体家族之一,在多种肿瘤中观察到EGFR高水平的表达,如神经胶质细胞瘤、前列腺癌、乳腺癌、胃癌、结直肠癌、卵巢癌和胸腺上皮癌等. 针对富集EGFR的恶性肿瘤,方华圣等〔13〕成功地建立了EGFR富集的恶性肿瘤的靶向基因治疗方法.3抗体介导的靶向给药mAb是药物良好的靶向性载体, 将其通过共价交联或吸附到药物载体(如脂质体、毫微粒、微球、磁性载体等)或药物具有自身抗体(如红细胞)或抗体与细胞毒分子形成结合物,避免其对正常组织毒性,选择性发挥抗肿瘤作用. 徐凤华等〔14〕利用己二酰肼制备腙键连接的聚谷氨酸表阿霉素,然后使其与单抗交联制得偶合物. 偶合物较好地保留了抗体活性,体外细胞毒性较游离药物略有下降,但表现出单抗介导的靶细胞选择性杀伤作用,为其进一步制备细胞靶向的肿瘤化疗药物奠定了基础.用于治疗白血病的CMA676是由一种人源化的mAb hp 与新型的抗肿瘤抗生素calicheamicin的N乙酰γ衍生物偶联而成的〔15〕,当CMA676与CD33抗原相结合,抗原抗体复合物迅速内在化,进入胞内后,calicheamicin衍生物被水解释放,通过序列特异性方式与DNA双螺旋的小沟结合,使脱氧核糖环中的氢原子发生转移,从而使DNA双链断裂,诱导细胞死亡〔16〕. EGFR mAb可直接作用于EGFR的细胞外配体结合区,阻滞配体的结合,如IMCC225, ABXEGFR和EMD55900等,能抑制细胞生长和存活率,诱导细胞凋亡和抑制血管生成,曲妥珠单抗(Trasruzumab)作用于erbB2的细胞外区域,该药已获美国FDA批准用于转移性的乳腺癌的治疗〔17〕. IMCC225具有增强细胞毒性药物和放射治疗效应的作用,IMCC225与拓扑特肯(TPT)的联合用于荷有人类结肠癌移植体的裸鼠,能提高其生存率〔18〕. 由第四军医大学和成都华神集团股份有限公司联合研制的治疗肝癌新药碘〔13lI〕美妥昔单抗注射液,日前获得国家食品药品监督管理局颁发的生产文号,即将上市. 这是全球第一个专门用于治疗原发性肝癌的单抗导向同位素药物.4制成前体药物一些药物与适当的载体反应制备成前体药物,给药后药物就会在特定部位释放,达到靶向给药的目的. 脑是人高级神经活动的指挥中枢,也是神经系统最复杂的部分. 但由于血脑屏障(bloodbrain barrier, BBB)的存在,使得大部分治疗药物不能有效透过BBB. 含OH, NH2, COOH结构的脂溶性差的药物可通过酯化、酰胺化、氨甲基化、醚化、环化等化学反应制成脂溶性大的前体药物,进入CNS后,其亲脂性基团通过生物转化而释放出活性药物. 张志荣等〔19〕合成了3′, 5′二辛酰基氟苷,并制备了其药质体,给小鼠静脉注射后用HPLC法测定药物在体内各组织的分布,结果表明,氟苷酯化后的前体药物的药质体有良好的脑靶向性.结肠内有大量的细菌,能产生许多独特的酶系,许多高分子材料在结肠被这些酶所降解,而这些高分子材料作为药物载体在胃、小肠由于相应酶的缺乏不能被降解,这就保证药物在胃和小肠不释放. 如多糖、果胶、瓜耳胶、偶氮类聚合物和α, β, γ环糊精均可成为结肠给药体系的载体材料. 常利用结肠内厌氧环境,使偶氮键还原的特点制成偶氮前体药物. 柳氮磺胺吡啶是由5氨基水杨酸(5ASA)与磺胺吡啶用偶氮键连接而成. 口服后在结肠释药,发挥5ASA治疗溃疡性结肠炎的作用,减少其胃肠吸收产生的全身不良反应. 5ASA也与非生理活性的高分子聚合物通过偶氮双键制成前体药物〔20〕. 糖皮质激素共价连接于多糖〔21〕,环糊精〔22〕制成的前药,口服后在结肠部位可释放出药物,可用于结肠炎的治疗. 我们〔23,24〕合成了果胶酮洛芬(PTKP)前药,进行了体内外评价. 结果表明,此前药在不同pH环境下结构稳定,只能被结肠果胶酶特异性降解,释放出KP,发挥治疗作用. 也可以利用结肠pH差异和时滞效应设计结肠靶向给药系统〔25〕.5化学传递系统化学传递系统(chemical delivery system, CDS)是一种输送药物透过生理屏障到达靶部位,再经生物转化释放药物的药物传递系统. CDS通常是将含OH, NH2, COOH结构的药物共价连接于二氢吡啶载体(Q),药物(D)与靶向剂二氢吡啶结合为DQ结合物,建立了二氢吡啶―二氢吡啶钅翁盐氧化还原脑内定向转释递药系统. Chen等〔26〕设计了Tyr Lys的脑靶向CDS,并评价它的药效. Lys的C末端接亲脂性胆甾烯酯,N末端通过一种L氨基酸桥接靶向剂1,4二氢葫芦巴碱(含吡啶结构)制成Tyr Lys CDS,全身给药后,通过被动扩散机制透过BBB,且经酶催化1,4二氢葫芦巴碱变为季铵盐型使其存留于脑内. 通过小鼠甩尾间隔期实验证明,Tyr Lys CDS作用时间明显延长. Mahmoud等〔27〕将吸电子羧甲基连接到氮原子构建了一种新的二氢吡啶载体介导的脑定向转释系统(N羧甲基1,4二氢吡啶3,5二酰胺),该载体稳定,具有良好的脑定向转释能力.靶向给药的研究还面临许多实质性的挑战. 提高药物在靶组织的生物利用度;提高TDDS对靶组织、靶细胞作用的特异性;使生物大分子更有效地在作用靶点释放,并进入靶细胞内;体内代谢动力学模型;质量评价项目和标准,体内生理作用等问题都是研究的重点. 随着靶向给药系统研究的深入,新的靶向给药途径、新的载药方法将会不断出现,遇到的问题会逐步解决. 靶向给药的研究不仅具有理论意义,而且会产生明显的经济和社会效益.【参考文献】〔1〕 Theresa MA, Pieter RC. Drug delivery systems: Entering the mainstream 〔J〕. Science, 2004;303(5665):1818-1822.〔2〕 张志荣,钱文. 肝靶向米托蒽醌白蛋白微球的研究〔J〕. 药学学报,1997;32(1): ZR, Qian WJ. Study on mitoxantrone albumin microspheres for liver targeting 〔J〕. Acta Pharm Sin, 1997;32(1):72-78.〔3〕 张莉,向东,洪诤,等. 肝靶向去甲斑蝥素微乳的研究〔J〕. 药学学报,2004;39(8): L, Xiang D, Hong Z, et al. Studies on the liver targeting of norcantharindin microemulsion 〔J〕. Acta Pharm Sin, 2004;39(8):650-655.〔4〕 韩勇,易以木. 纳米粒肝靶向作用机制的研究进展〔J〕. 中国药师,2002;5(12): Y, Yi YM. Studies on the liver targeting mechanism of nanoparticles 〔J〕. Chin Pharm, 2002;5(12):751-752.〔5〕 王剑红,陆彬,胥佩菱,等. 肺靶向米托蒽醌明胶微球的研究〔J〕. 药学学报,1995;30(7): JH, Lu B, Xu PL, et al. Studies on lung targeting gelatin microspheres of mitoxantrone 〔J〕. Acta Pharm Sin, 1995;30(7):549-555.〔6〕 Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 8Ocoated nanoparticles 〔J〕. Pharm Res, 1999;16(10):1564-1569.〔7〕 Ramge P, Unger RE, Oltrogge JB, et al. Polysor bate 80coating enhances uptake of polybutylcyanoacrylate(PBCA)nanoparticles by human and bovine primary brain capillary endothelial cells 〔J〕. Eur J Neurosci,2000;12(6):1931-1940.
草本Jing樺
原文链接: Huilin Shao, Hyungsoon Im, Cesar M. Castro, Xandra Breakefield, Ralph Weissleder and Hakho Lee. New Technologies for Analysis of Extracellular Vesicles. Chem Rev. 2018 Feb 28;118(4):1917-1950. doi: .
该综述发表在Chemical Reviews杂志上,影响因子高达分,对细胞外囊泡的研究方法总结非常全面,基本上目前EVs研究中用到的研究方法,这篇综述都有介绍,十分详尽!通讯作者是哈佛大学的Hakho Lee教授。
Extracellular Vesicles (EVs) 细胞外囊泡是由细胞主动释放的多样的纳米级膜囊泡。类似大小的囊泡可根据其生物发生、大小和生物物理性质进一步分类(如外泌体、微囊泡)。虽然EVs最初被认为是细胞碎片,因此未被重视,但现在EVs越来越多地被认为是细胞间通信和疾病诊断和预后的循环生物标志物的重要载体。
该综述的内容包含:
生物流体(Biofluids)中含有大量的EVs,这些EVs可以从Parental Cells转移不同的分子去其他细胞,包括:蛋白,mRNA/miRNA,DNA等。
EV的形成决定了其膜组成。 微小囊泡的膜组成最能反映其Parental Cells(母细胞)的质膜。 相反,外泌体中已经鉴定出特异性的内体蛋白分子,这反映出外泌体形成的机制。内体分选复合物(ESCRT)已被广泛认为用于调节和引导特定分子进入MVB的腔内囊泡。ESCRT及其四个主要复合物(ESCRT 0,I,II和III)负责传递泛素化蛋白,用于溶酶体降解和蛋白回收。最近的研究表明,特定的ESCRT家族蛋白的耗竭可以改变外泌体的蛋白质含量和细胞释放外泌体的速率。更有趣的是,发现外泌体富含ESCRT系统的成分(例如TSG101和Alix),可用作外泌体识别的标记。 ESCRT不是介导外泌体形成的唯一机制。其他不依赖ESCRT的过程似乎也能以相互交织的方式参与其形成和分泌。外泌体也富含ESCRT非依赖性的分子。例如,四跨膜蛋白CD9,CD63和CD81已被证明参与内体小泡运输。小GTP酶的Rab家族参与小泡运输和与质膜融合表明这些蛋白在释放外泌体中的作用。另外,外泌体中神经酰胺水平升高,抑制鞘磷脂会引起的外泌体释放减少,表明鞘磷脂酶与囊泡释放有关。 外泌体和微囊泡都包含核酸,包括miRNA,mRNA,DNA和其他非编码RNA。自从最初发现EV含有RNA,人们一直非常关注EV RNA用作诊断生物标志物。在开创性的工作中,Skog等人发现胶质母细胞瘤患者的血清外泌体含有特征性的突变mRNA(EGFRvIII mRNA)和miRNA,可用于提供诊断信息。这些核酸的发现导致了这样的假设,即EVs可以在细胞之间转移遗传信息。确实,瓦拉迪等人和Skog等表明,EV含有转移进入宿主细胞后仍然可以翻译的mRNA。EV中也有逆转座子和其他非编码RNA的表达。逆转录转座子序列和miRNA以及可翻译的mRNA都通过EV进行转移,这些成果突出了EVs作为遗传信息的载体和传播者的重要性。
虽然传统的光学显微镜的衍射极限接近EV的大小,但是不能产生清晰的图像。高分辨率EV图像需要通过电子显微镜(EM)或原子力显微镜(AFM)得到。然而,这些方法的通量有限,因为需要专门的染色方案和设备。
(a)扫描电子显微镜(SEM)提供三维的表面拓扑信息。
(b)透射电子显微镜(TEM)具有出色的图像分辨率,可结合免疫金标记一起使用来提供分子表征。
(c)冷冻电镜(cryo-EM)无需大量处理即可分析EV形态。
动态光散射 (DLS),也称作 光子相关光谱 或 准弹性光散射 ,是一种物理表征手段,用来测量 溶液 或 悬浮液 中的 粒径分布 ,也可以用来测量如高分子浓溶液等复杂 流体 的行为。当光射到远小于其波长的小颗粒上时,光会向各方向散射( 瑞利散射 )。如果光源是 激光 ,在某一方向上,我们可以观察到散射光的强度随时间而波动,这是因为溶液中的微小颗粒在做 布朗运动 ,且每个发生散射的颗粒之间的距离一直随时间变化。来自不同颗粒的散射光因相位不同产生建设性或破坏性干涉。所得到的强度随时间波动的曲线带有引起散射的颗粒随时间移动的资讯。动态光散射实验易受灰尘或杂质影响,故样品的 过滤 和 离心 十分重要。 动态光散射用于表征蛋白质、高分子、胶束、糖和纳米颗粒的尺寸。如果系统是单分散的,颗粒的平均有效直径可以求出来,这一测量取决于颗粒的心,表面结构,颗粒的浓度和介质中的离子种类。DLS也可以用于稳定性研究,通过测量不同时间的粒径分布,可以展现颗粒随时间聚沉的趋势。随着微粒的聚沉,具有较大粒径的颗粒变多。同样,DLS也可以用来分析温度对稳定性的影响。 动态光散射是收集溶液中做布朗运动的颗粒散射光强度起伏的变化,通过相关器将光强的波动转化为相关曲线,从而得到光强波动的速度,计算出粒子的扩散速度信息和粒子的粒径。 小颗粒样品的布朗运动速度快,光强波动较快,相关曲线衰减较快,大颗粒反之。 在外泌体研究中,动态光散射测量敏感度较高,测量下限为10纳米。相对于SEM技术来说,样品制备简单,只需要简单的过滤,测量速度较快。但是动态光散射技术由于是测量光强的波动数据,所以大颗粒的光强波动信号会掩盖较小颗粒的光强波动信号,所以动态光散射不适合大小不一的复杂外泌体样本的测量,只适合通过色谱法制备的大小均一的外泌体的尺寸测量,并且无法测量样品中外泌体的浓度。
纳米粒子跟踪分析(NTA) 是一种光学粒子跟踪方法,用于确定粒子的浓度和大小分布。用光束照射样品中的粒子。当粒子散射光并经历布朗运动时,摄像机记录下每个粒子的路径以确定平均速度和扩散率。与DLS的体散射测量不同,NTA跟踪单个粒子的散射。 然后,此信息将用于数学计算浓度(即视野中的粒子数量)和尺寸分布(即通过Strokes-Einstein方程的流体动力学直径,图5b)。 为了准确定量异质囊泡的浓度和大小,NTA程序需要精确优化摄像头和分析设置。 可能需要使用不同设置进行单独测量,以获取异质混合物中EV子集的准确读数。
EVs在大小、起源和分子组成上都是异质性的;除此之外,它们还存在于不同的复杂的生物流体中,包括血、胸腔积液、腹水、乳汁、唾液、脑脊液和尿液。这些流体中还含有大量的非囊泡大分子结构,可能会干扰EV的分析。所以EV的分离和富集显得尤为重要。
超速离心法(80%)和密度梯度离心法(20%)是最常见的两种高通量混合分离法。根据它们分离机制,这些方法可以分为三大类:密度、亲和和大小。
用不同的离心力将颗粒分离:以较低的离心力(300g)去除细胞碎片,而以较高的离心力(100000g)对EV进行沉淀和浓缩。尽管该方法是应用最广泛的金标准,但它也有许多缺点,如体积大、仪器昂贵、处理时间长、过程繁琐、被聚集的蛋白质和核蛋白颗粒污染以及需要大量的样品。
蔗糖梯度离心法是一种更为严格的超速离心法,它有助于进一步分离不同密度的囊泡,通常用于分离外泌体(悬浮密度为至 g/mL)。在这种方法中,一个包含不同大小囊泡和大分子的样品在一个密度从上到下递增的梯度表面上被分层。在离心过程中,不同的分子以不同的速率通过梯度沉积。由于其分辨率更高,该方法被认为可以分离更高纯度的EVs(特别是外泌体);然而,它面临着许多与超速离心法相关的限制。更加新的等渗梯度(如碘黄醇梯度)法被认为效果更好。
最近,基于聚合物共沉淀法的商业试剂盒(例如,ExoQuick, Exo-Spin)已被开发用于EV富集。这些试剂采用降低EV的水合作用(从而降低溶解度)导致沉淀,然后在低离心力的情况下,沉淀的EV产物可以很容易地、重复性地分离出来,从而避免了长时间的超速离心法操作。然而,这些试剂盒对于大规模使用来说是昂贵的,而且对于EV来说缺乏特异性。该方法还容易产生非均相聚合物颗粒。由于这些试剂均降低了EV和蛋白质的溶解度,因此该方法还可共沉淀脂蛋白和Ago-2 RNA复合物。因此,共沉淀法作为EV分离方法受到了限制。
大小排阻色谱法根据它们的分子大小通过凝胶过滤来分离囊泡和其他分子。这种凝胶由含有特定大小分布孔隙的球形珠组成。当样品进入凝胶时,小分子扩散到孔隙中,而大分子则直接洗脱。因此,大分子比小分子更早地离开色谱柱,这使得分子的停留时间与色谱柱的大小相关联成为可能。近年来,该分离方法已被应用于从复杂的生物媒介中分离纯化囊泡。Sepharose, GE Healthcare; qEV, iZon等商业公司也正在开发商业的产品以简化EV富集,这些产品的排除柱都大约是75纳米孔径的树脂。蛋白质和其他较小的污染分子被滞留在孔径中,而较大的囊泡(>75 nm)可以迅速通过并在空隙中被洗脱。大小排阻法可将EV与可溶性蛋白分离;为提高分离的效率和分辨率,需要考虑多种因素,包括介质类型、孔径、EV与介质之间的相互作用、柱的尺寸、柱的填充以及流速等。
为了提高复杂生物流体的EV分离效率和特异性,人们开发了多种新的EV富集方法。然而,与传统方法相比,这些新方法中的大多数具有较低的吞吐率,应加以解决使之变得实用。
基于分子大小的分离是一种很有潜力的方法,可以将EV与大型细胞碎片分离开来。各种微流体过滤系统已经被开发出来,用于从大的细胞碎片和蛋白质聚集物中分离EV,这些系统大部分是基于分子大小差异。例如,Rho等人构建了一种微流控设备,该设备使用膜过滤器对未处理的血液样本进行筛选,来分离EV。膜过滤器的大小∼1μm。在膜的下方插入一个毛细管,用于引导过滤后的EV进入收集通道。膜过滤器和毛细管导向器夹在两个环形磁铁之间;这种设置在进行大量的样品处理时可以方便地更换过滤器集。
Lee等人最近使用声波以无接触方式对EV进行细分。这种分离利用超声波驻波,根据囊泡的大小和密度对其施加不同的声交互作用力。该装置由一对相互交错的换能器(IDT)电极组成,用以产生跨流动通道的驻波表面声波。
EV蛋白主要来源于胞质膜、胞质醇,而非其他胞内细胞器(如高尔基体、内质网、细胞核等)。EV蛋白质的构成提示了囊泡的生物发生和cargo sorting(这个翻译有点怪)。因此国际细胞外囊泡组织建议应该仔细鉴定EV蛋白,特别是跨膜蛋白和胞质蛋白。
在哺乳动物中,跨膜蛋白和脂质结合的细胞外蛋白(如内贴蛋白)都与微囊泡和外泌体有关。外泌体的跨膜蛋白富含四聚体蛋白(如CD9、CD63和CD81)一个具有四个跨膜结构域的蛋白质超家族。四聚体蛋白参与细胞膜的转运和生物合成的成熟,在外泌体中高表达,这一特性使得四聚体蛋白被用于外泌体的定量和表征。然而,需要注意的是,四聚体蛋白并不只在外泌体中唯一表达。另一方面,微囊泡富含整合素、选择素和CD40配体,表明它们来自于细胞的质膜,EV富含特异的跨膜蛋白受体(如表皮生长因子受体/ EGFRs)和黏附蛋白(如上皮细胞黏附分子/EpCAM)。由于许多跨膜蛋白参与了正常生理和疾病的发病机制,它们被用作重要的病理生理学EV生物标志物。
EV相关的囊内蛋白具有多种功能。它们包括具有膜或受体结合能力的参与囊泡运输的胞质蛋白,如TSG101、ALIX、annexin和Rabs。EV还富含细胞骨架蛋白(如:内酯、肌凝蛋白和小管蛋白)、分子伴侣蛋白(如:热休克蛋白/HSPs)、代谢酶(如:烯醇化酶、甘油醛3-磷酸脱氢酶/GAPDH和核糖体蛋白)。有趣的是,最近的研究发现EV蛋白可以被受体细胞有效地运输和接收,从而在体内和体外引起强烈的细胞反应。这带来了EV作为治疗和药物载体的新机遇。
EV蛋白的定量和特征鉴定不仅对阐明EV的生物发生和cargo sorting有重要意义,而且对鉴别生理和病理标志物也有重要意义。然而,传统的蛋白质分析,包括Western blotting和酶联免疫吸附试验(ELISA),通常需要大样本量、大量处理和/或庞大的专门仪器,因而不太适合临床应用。
在EV蛋白评估时,Western blotting可能是最常用的技术,用于提示与EV相关的靶蛋白的存在。在这个过程中,纯化的囊泡制剂(通常通过现行的梯度超离心法金标准制备)可以用含有变性剂和蛋白酶抑制剂的缓冲裂解液进行处理。然后用十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS−PAGE)分离蛋白裂解物,然后转移到膜上,对特定的蛋白target进行免疫印迹。虽然这种方法有很长的准备和处理时间(> 10h),但是Western blotting可以提供关于蛋白质分子大小的有用信息。
不像Western blotting,ELISA只能在相对较小的范围内对目标蛋白进行定量,质谱分析可实现高通量肽谱分析。纯化的EV制剂经过酶消化和肽分离,然后用质谱仪电离分析。在这个复杂的过程中,多个步骤严重影响EV蛋白组学分析。除了有效的EV纯化,质谱分析之前的肽分馏被认为是鉴定囊泡蛋白的一个重要前提。通常通过三种主要方法实现:(1)SDS−PAGE,(2)二维液相色谱和(3)基于等电聚焦的分馏。 值得注意的是,既然质谱分析可以鉴定消化后的肽片段,那么适当的蛋白质鉴定、定量和验证是必要的。已经有两种用于定量的技术方法:基于标签的和无标签的。在基于标签的定量分析中,标签(等压或同位素)被用于比较分析。无标签的定量分析中,色谱强度的谱计数被应用。识别出的候选蛋白可以使用其他传统的蛋白质技术如Western blotting进行验证。在检测灵敏度方面,质谱法通常不如基于抗体的技术敏感。 虽然质谱分析需要大量的准备和处理时间(数天),但它可以提供高通量、定量和EV比较蛋白质组分析。到目前为止,已有成千上万的囊泡蛋白被系统分类,蛋白质-蛋白质相互作用分析。基于质谱的哺乳动物和细菌EV的蛋白质组学分析的详细讨论已经在一些综述中被强调。这些网络和相互作用的研究有助于阐明EV载体的功能活动及其在细胞间远距离通信中的重要作用。
为了解决EV蛋白质定量相关的技术挑战,新一代生物传感器正在开发中。与传统的蛋白质检测方法相比,这些生物传感器利用独特的传感机制,可以检测各种大小和分子含量的EV。这些技术中的许多只需要更小的样本量和更少的样本处理过程,因此非常适合于医疗应用。
流式细胞术是一种基于光散射和荧光激活来分选单个大颗粒(如细胞或微米大小的实体)的强大的技术,然而,传统的流式细胞术对检测直径小于500 nm的小颗粒的灵敏度和分辨率有限。此外,它还受到高光学背景的影响,由于鞘层流体中存在小颗粒(约200 nm)。用传统流式细胞术量化EV时,大量的小EV可能被忽略或者计数偏低:可能同时有多个小的囊泡被照亮被计数成一个单独的事件,这种现象被称为“群体理论”。 为了解决传统流式细胞术的弊端,微米大小的乳胶珠被用来绑定多个囊泡。然后用荧光抗体对结合的EV进行染色,并对其蛋白标记物进行鉴定。然而,这种方法缺乏分析单个囊泡的能力,并且不能区分不同的囊泡亚群,这可能会导致特征的丢失。
该技术主要基于磁性纳米粒子(MNPs)。由于大多数生物物质天然缺乏铁磁背景,这种传感几乎不受同系统中其他生物样品的干扰。因此,即使光学上浑浊的样品对磁场也是透明的;当靶分子被特定的MNPs靶向时,它们与自然的生物背景形成了强烈的对比。在基于核磁共振(NMR)的磁检测中,MNPs置于NMR磁场中,产生局部磁场,改变周围水分子的横向弛豫率,放大分析信号。因此,核磁共振减少了样本处理过程,提高了检测灵敏度,已经被开发用于多个医疗点应用(例如,直接从血液样本中检测循环肿瘤细胞和细菌)。 但是将这种技术运用在EV检测上却遇到了挑战,因为EV明显比肿瘤细胞小1到2个数量级。Shao等人开发了一种专门用于EV检测和蛋白质分析的新分析技术。此方法采用两步生物正交点击化学方法来标记EV,这种小分子(<200 Da)标记策略并没有显著增加抗体或MNP的大小,从而提高了从非结合抗体和MNPs中保留目标囊泡的效率。使用微流控芯片上微核磁共振(μNMR)直接测量EV来确定EV生物标志物的丰度。 相比传统的蛋白技术,μNMR系统表现出更好的检测灵敏度:比WB和ELASA灵敏10 3 倍。Shao等人利用这种集成技术可研究在培养皿中生长的多形性胶质母细胞瘤(GBM)细胞系中的EV。比较蛋白分析证实,EV确实反映了其亲代细胞的蛋白概况,组合GBM的四种标志物(EGFR、EGFRvIII、PDPN和IDH1) R132H)可用于区分癌症来源的EVs与宿主细胞来源的EVs。
鉴于EV的尺寸小,一种新的快速无标签EVs检测方案:表面等离子体共振(SPR)被提出。SPR是指在入射光照射下,金属介电界面上传导电子的集体振荡。不同于其他基于时敏荧光和化学发光探针的光学检测方法,SPR传感检测金属-介电介面附近生物分子结合相关的局部折射率变化,应用于无标签和实时检测。
RNA是EV携带的主要核酸。与细胞中的RNA相比,eEV运输的RNA通常更短(通常<200个核苷酸,但也有长达5 kb的)。它们主要是非编码rna,包括microRNA(miRNA)、tRNA (tRNA)、长链非编码RNA (lnRNA)和片段化的mRNA。编码mRNA (mRNA)已在长度为200~1000个核苷酸的转录组中被识别。mRNA可以翻译成蛋白质,而miRNA可以调节受体细胞中靶mRNA的翻译。EV中RNA的数量和性质可以根据其来源的细胞类型而变化。 由于它们在受体细胞中保留了功能,研究人员提出了有趣的假设,即可能存在专门的机制将不同的RNA分配给EV运输到特定的受体细胞,或可能利用这些机制运送治疗性RNA到特定的部位。这是一个活跃的研究领域,已经有一些综述对其进行阐述。
近年来的研究发现,EV中含有相当比例的母细胞的mRNA,其中许多是细胞特异性的mRNA。这些mRNA分子通常以片段的形式存在于EV中,保护其不被RNA酶降解,使它们成为强有力的循环生物标志物。 此外,已在多个研究中得到证实:EV中一些<2 kb的mRNA分子能够编码支持蛋白质合成的多肽(即,蛋白质翻译的功能)。这些研究强调了EV作为特定的细胞信使在影响受体细胞和促进细胞间通讯等多方面的作用。
miRNA是一类小的非编码rna(一般为17 - 24个核苷酸),通常通过靶向mRNA的3’非翻译区介导转录后基因沉默。通过抑制蛋白质的翻译,EV miRNAs在许多生物过程中都是强有力的调控因子。不同于EV中的循环mRNA,miRNA可以以多种稳定形式存在于体液中。除了被包裹在EV中,循环miRNA还可以被加载到高密度脂蛋白或结合到囊泡外的AGO2蛋白上。目前的证据表明,虽然大多数循环miRNA都与RNA结合蛋白相结合,但在EV中也能发现少量的miRNA。然而,miRNAs在EV中的分布仍不清楚。与mRNA的情况一样,EVs中的miRNA表达反映了其细胞来源,但与亲代细胞略有不同。一些miRNA已被发现优先表达在EV中,并在受体细胞中保持功能以调节蛋白翻译。最近的研究还发现,在哺乳动物细胞培养中常用的胎牛血清可能在体外EV制备过程中导致miRNA伪影。
通过NGS,我们还发现有其他类型的RNA存在EV中。这些RNA包括tRNA,rRNA,小核RNA(snRNA)、小核仁RNA (snoRNA)以及长链非编码RNA (lncRNA)。参见上表。
最近的研究表明某些EV可能含有DNA片段。这些DNA是双链片段,范围从100个碱基对(bp)到 k bp,EV外部还有一些与之相关的> bp的DNA片段。这些片段代表整个基因组DNA,可用于鉴定亲代肿瘤细胞中存在的突变。虽然有可信的证据表明在EV中存在DNA,但其功能尚未确定。
EV核酸作为一种潜在的循环生物标志物和受体细胞间的调节因子已被广泛研究。传统的核酸提取和分析工具已经成功地为我们理解EV核酸奠定了重要的基础。由于EVs中核酸的含量较低,开发高效的提取方法和灵敏的检测策略是非常重要的,特别是在小样本中对稀有目标分子进行检测。
随着人们对利用EV核酸作为微创诊断标记的兴趣日益浓厚,新的生物传感器技术已被开发出来,使提取和分析变得更加高效、快速。这些新平台中有许多提供了对目标核酸标记的敏感定量,并且能够在复杂的生物学背景下识别疾病标记,甚至包括单核苷酸点突变。这为个性化临床医疗开辟了许多新的机会。
虽然传统PCR是检测基因/转录突变的强大技术(例如,EGFRvIII缺失突变),但其敏感性有限,其在检测单核苷酸突变方面存在很多不足。这个问题与EVs特别相关,因为在野生型转录本的大背景中,突变转录本的比例很低。Chen等人最近采用了一种液滴数字PCR (ddPCR)技术来检测EV中的罕见突变。
Shao等人最近开发了一种综合微流控平台,用于现场EV核酸分析,该平台集成了三个功能模块:靶向富集EVs,芯片上RNA分离,实时RNA分析。这个平台被称为免疫磁性外泌体RNA(iMER)分析平台:利用抗体功能化的磁珠从宿主来源的囊泡中分离癌症特异性EVs,然后在芯片上裂解免疫磁珠吸附的囊泡。当EV裂解液通过玻璃珠过滤器时,选择性吸附EV RNA并从过滤器中洗脱,用于反转录和qPCR分析。为了简化分析过程,所有关键部件都集成到一个芯片盒中。 随着该系统的发展,作者研究了核蛋白的两个mRNA靶标,MGMT(6-甲基鸟嘌呤)
肿瘤是一种复杂的结构,包括恶性细胞和周围的基质细胞,如内皮细胞、成纤维细胞和免疫细胞。最近的研究表明,EVs在肿瘤微环境中促进细胞间通讯,从而调节疾病的发生、发展,并且在治疗反应方面发挥重要作用。
这一大块儿的其他内容大家感兴趣的话可以阅读原文献。
在大多数神经退行性疾病(如阿尔茨海默病、帕金森病、额颞叶痴呆)中存在类似的疾病进展模型,其中错误折叠的蛋白质自结合形成有序的聚合体并在细胞中聚集。阿尔茨海默病(AD)中,淀粉样蛋白的Abeta肽的形成可能是这些蛋白聚合体中最著名的。帕金森疾病(PD)中,另一种类型的聚合体在细胞内形成,主要由alpha-synuclein(突触核蛋白)组成,称为路易小体。最近的研究表明,许多神经退行性疾病中涉及的错误折叠蛋白出现在EV中。因此,这些囊泡为检测和监测神经退行性疾病带来了新的希望。 AD是一种迟发性神经系统疾病:由于神经变性而导致记忆和认知能力的逐渐丧失。虽然AD的确切病因仍是一个有争议的话题,但很明显,与Aβ肽相关的斑块沉积和与tau蛋白相关的神经纤维缠结对疾病的进展是非常重要的。这些淀粉样肽来源于淀粉样前体蛋白(APP)的蛋白水解过程。这一
毕业论文对之后找工作有很大的帮助,而且一般情况下毕业论文是对自己学习四年的总结,对个人能力的表现很重要。
乳清蛋白质粉的功效与作用: 1、提供身体构造新组织所需的氨基酸,延缓人体衰老。 2、在体内制造酶,改善肠胃功能。 3、为免疫系统制造对抗细菌和感染的抗体。 4、
工具/原料 word 电脑 方法/步骤 1、首先、打开需要编辑的word表格。 2、点击表格左侧的图标,将word表格全部选中。 3、鼠标右击表格,弹出选项
本科生毕业论文盲审是指在学校规定的截止日期前,学生将自己的毕业论文提交到学院或教务处进行初审后,再由学院或教务处将符合要求的论文分发给评审专家进行评审的一种流程
原理:不同蛋白质具有不同的等电点,当蛋白质混合物调到其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来。将待提纯蛋白质放在透析袋中放在蒸馏水中,利用磁力