Lydia胖胖
圆可能是自然界中最常见的图形了,人们很早就注意到,圆的周长与直径之比是个常数,这个常数就是圆周率,现在通常记为π,它是最重要的数学常数之一。
关于π最早的文字记载来自公元前2000年前后的古巴比伦人,它们认为π=,而古埃及人使用π=。中国古籍里记载有“圆径一而周三”,即π=3,这也是《圣经》旧约中所记载的π值。在古印度耆那教的经典中,可以找到π≈的说法。这些早期的π值大体都是通过测量圆周长,再测量圆的直径,相除得到的估计值。由于在当时,圆周长无法准确测量出来,想要通过估算法得到精确的π值当然也不可能。
我爱欧文
圆周率是用圆的周长除以它的直径计算出来的。“圆周率”即圆的周长与其直径之间的比率。1、圆周率是一个超越数,它不但是无理数,而且比无理数还要无理。无理数有一个特点,就是小数部分是无限的,而且是不循环的。比如的循环小数,这个虽然无限,但是重复的。而圆周率则是无限,而且数字不会重复,因此圆周率看起来非常长的一串数字。2、阿基米德是最早得出圆周率大约等于的人。传说在他临死时被罗马士兵逼到一个海滩,还在海滩上计算圆周率,并且对士兵说:“你先不要杀我,我不能给后世留下一个不完善的几何问题。”阿基米德计算圆周率的方法是双侧逼近:使用圆的内接正多边形和外切正多边形的周长来近似圆的周长。正多边形的边数越多,多边形周长就越接近圆的边长。3、以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有,就是为了兴趣。
fantienan002
周率是数学上常用到的一个值....,约等于.
(一) 公元前利用正多边形计算
公元前1650年,埃及人著的兰德纸草书中提出=(4/3) 3=。但是对的第一次科学的尝试应归功于阿基米德。 阿基米德计算值是采用内接和外切正多边形的方法。数学上一般把它称为计算机的古典方法。
在公元前3世纪,古希腊的数学非常发达,为了使得数学计算简便,人们选一个以长度为直径的圆。这样圆的周长在任何内接正多边形的周长和任何外切正多边形的周长之间。这样就容易得到的上下界,因为计算内接和外切正多边形的财长比较简单。阿基米德也掌握了这一原理,他从内接和外切严六边形开始,按照这个方法逐次进行下去,就得出12、24、38、96边的内拉和外切正多边形的财长,他利用这一方法最后得到值在223/71,22/7之间,取值为。这一方法和数值发表在他的论文集《圆的量度》中。
我国古代第一个把求圆周率近似值的方法提高到理论高度上来认识的是刘微。他独立地创造了" 割圆术" ,并系统而严密地用内接正多边形来求得圆周率的近似值,他从内接正六边形算起,计算到圆内接正192边形的面积,从而得出<<这一值,后来他沿着这一思路继续前进,一直算到圆内接正3072边形时,得到了=3927/1250,的值为
。这是当时得到的最精确的取值。 南北朝时期,我国的大数学家祖冲之采用刘徽的割圆术,一直算到圆内接正24576边形,从而推得: << 这一成果记载在他的著作《缀术》中。可惜的是,这本书已经失传。为了应用方便,祖冲之对圆周率还给出了两个分数值355/113和22/7,前者称之为" 密率" ,后者称之为" 给率" 。其中" 密率"355/133是一个很有趣的数字,分母分子恰好是三个最小奇数的重复,既整齐美观、又便于记忆。355/113=3+4 2/(7 2+8 2) 也是很巧妙的组合。它与的实际值相对误差只有 。
(二)连分数计算
用连分数计算的人不多,要多次展开。首创连分数的是一个叫盖托蒂的数学家。布朗开罗(1620-1684)得到的表达式为
这个式子源于下式
在一定范围内计算上式,先采用繁分数形式。
再计算
再由
可得
因为在展开式中取的项数有限,所以值没有超过3。
由上可见,计算量很大,是古人对计算感兴趣吗?对现在的年轻人来讲,这是枯燥无味的,古人也许因为娱乐或兴趣而高兴这么干下去。
(三)一些计算圆周率的经典的常用公式
1、1593年,韦达给出
这一不寻常的公式是的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它表明仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出 值。
2、沃利斯1650年给出:
3、Machin 公式
这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin 公式每计算一项可以得到14位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。
还有很多类似于Machin 公式的反正切公式。在所有这些公式中,Machin 公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,Machin 公式就力不从心了。
4、Ramanujan 公式
下面介绍的算法,在PC 机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform) 算法。FFT 可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。
1914年,印度数学家Srinivasa Ramanujan在他的论文里发表了一系列共14条圆周率的计算公式,这是其中之一。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper 用这个公式计算到了圆周率的17,500,000位。
嫣雨飘零
数学小论文:圆周率“π”的由来很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今. π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法. 公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π 会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值. 公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到<π<.可惜,祖冲之的计算方法后来失传了.人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜. 15世纪,伊斯兰的数学家阿尔.卡西通过分别计算圆内接和外接正3 2 边形周长,把 π 值推到小数点后16位,打破了祖冲之保持了上千年的记录. 1579年法国韦达发现了关系式 ...首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式. 1650年瓦里斯把π表示成元穷乘积的形式 稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式. 1671年,苏格兰数学家格列哥里发现了 1706年,英国数学麦欣首先发现 其计算速度远远超过方典算法. 1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到 的过似值.假定在平面上画一组距离为 的平行线,向此平面任意投一长度为 的针,若投针次数为 ,针马平行线中任意一条相交的次数为 ,则有 ,很多人做过实验,1901年,有人投针3408次得出π,如果取 ,则该式化简为 1794年勒让德证明了π是无理数,即不可能用两个整数的比表示. 1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根. 本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破.目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字. 人们试图从统计上获悉π的各位数字是否有某种规律.竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休…
蒲寫未來”
另一种推测是:使用连分数法。 由于求二自然数的最大公约数的更相减损术远在《九章算术》成书时代已流行,所以借助这一工具求近似分数应该是比较自然的。于是有人提出祖冲之可能是在求得盈 二数之后,再使用这个工具,将表示成连分数,得到其渐近分数:3,22/7,333/106,355/113,102573/32650… 最后,取精确度很高但分子分母都较小的355/113作为圆周率的近似值。至于上面圆周率渐近分数的具体求法,这里略掉了。你不妨利用我们前面介绍的方法自己求求看。英国李约瑟博士持这一观点。他在《中国科学技术史》卷三第19章几何编中论祖冲之的密率说:“密率的分数是一个连分数渐近数,因此是一个非凡的成就。” 我国再回过头来看一下国外所取得的成果。 1150年,印度数学家婆什迦罗第二计算出 π= 3927/1250 = 。1424年,中亚细亚地区的天文学家、数学家卡西著《圆周论》,计算了3×228=805,306,368边内接与外切正多边形的周长,求出 π值,他的结果是: π= 有十七位准确数字。这是国外第一次打破祖冲之的记录。 16世纪的法国数学家韦达利用阿基米德的方法计算 π 近似值,用 6×216正边形,推算出精确到9位小数的 π值。他所采用的仍然是阿基米德的方法,但韦达却拥有比阿基米德更先进的工具:十进位置制。17世纪初,德国人鲁道夫用了几乎一生的时间钻研这个问题。他也将新的十进制与早的阿基米德方法结合起来,但他不是从正六边形开始并将其边数翻番的,他是从正方形开始的,一直推导出了有262条边的正多边形,约4,610,000,000,000,000,000边形!这样,算出小数35位。为了记念他的这一非凡成果,在德国圆周率 π 被称为“鲁道夫数”。但是,用几何方法求其值,计算量很大,这样算下去,穷数学家一生也改进不了多少。到鲁道夫可以说已经登峰造极,古典方法已引导数学家们走得很远,再向前推进,必须在方法上有所突破。 17世纪出现了数学分析,这锐利的工具使得许多初等数学束手无策的问题迎刃而解。 π 的计算历史也随之进入了一个新的阶段。 分析法时期 这一时期人们开始摆脱求多边形周长的繁难计算,利用无穷级数或无穷连乘积来算 π。 1593年,韦达给出这一不寻常的公式是 π 的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它表明仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出 π值。 接着有多种表达式出现。如沃利斯1650年给出: 1706年,梅钦建立了一个重要的公式,现以他的名字命名: 再利用分析中的级数展开,他算到小数后100位。 这样的方法远比可怜的鲁道夫用大半生时间才抠出的35位小数的方法简便得多。显然,级数方法宣告了古典方法的过时。此后,对于圆周率的计算像马拉松式竞赛,纪录一个接着一个: 1844年,达塞利用公式: 算到200位。 19世纪以后,类似的公式不断涌现, π 的位数也迅速增长。1873年,谢克斯利用梅钦的一系列方法,级数公式将 π 算到小数后707位。为了得到这项空前的纪录,他花费了二十年的时间。他死后,人们将这凝聚着他毕生心血的数值,铭刻在他的墓碑上,以颂扬他顽强的意志和坚韧不拔的毅力。于是在他的墓碑上留下了他一生心血的结晶: π 的小数点后707位数值。这一惊人的结果成为此后74年的标准。此后半个世纪,人们对他的计算结果深信不疑,或者说即便怀疑也没有办法来检查它是否正确。以致于在1937年巴黎博览会发现馆的天井里,依然显赫地刻着他求出的 π值。 又过了若干年,数学家弗格森对他的计算结果产生了怀疑,其疑问基于如下猜想:在π 的数值中,尽管各数字排列没有规律可循,但是各数码出现的机会应该相同。当他对谢克斯的结果进行统计时,发现各数字出现次数过于参差不齐。于是怀疑有误。他使用了当时所能找到的最先进的计算工具,从1944年5月到1945年5月,算了整整一年。1946年,弗格森发现第528位是错的(应为4,误为5)。谢克斯的值中足足有一百多位全都报了销,这把可怜的谢克斯和他的十五年浪费了的光阴全部一笔勾销了。 对此,有人曾嘲笑他说:数学史在记录了诸如阿基米德、费马等人的著作之余,也将会挤出那么一、二行的篇幅来记述1873年前谢克斯曾把 π 计算到小数707位这件事。这样,他也许会觉得自己的生命没有虚度。如果确实是这样的话,他的目的达到了。 人们对这些在地球的各个角落里作出不懈努力的人感到不可理解,这可能是正常的。但是,对此做出的嘲笑却是过于残忍了。人的能力是不同的,我们无法要求每个人都成为费马、高斯那样的人物。但成为不了伟大的数学家,并不意味着我们就不能为这个社会做出自己有限的贡献。人各有其长,作为一个精力充沛的计算者,谢克斯愿意献出一生的大部分时光从事这项工作而别无报酬,并最终为世上的知识宝库添了一小块砖加了一个块瓦。对此我们不应为他的不懈努力而感染并从中得到一些启发与教育吗? 1948年1月弗格森和伦奇两人共同发表有808位正确小数的 π 。这是人工计算 π 的最高记录。 计算机时期 1946年,世界第一台计算机ENIAC制造成功,标志着人类历史迈入了电脑时代。电脑的出现导致了计算方面的根本革命。1949年,ENIAC根据梅钦公式计算到2035(一说是2037)位小数,包括准备和整理时间在内仅用了70小时。计算机的发展一日千里,其记录也就被频频打破。 ENIAC:一个时代的开始 1973年,有人就把圆周率算到了小数点后100万位,并将结果印成一本二百页厚的书,可谓世界上最枯燥无味的书了。1989年突破10亿大关,1995年10月超过64亿位。1999年9月30日,《文摘报》报道,日本东京大学教授金田康正已求到亿位的小数值。如果将这些数字打印在A4大小的复印纸上,令每页印2万位数字,那么,这些纸摞起来将高达五六百米。来自最新的报道:金田康正利用一台超级计算机,计算出圆周率小数点后一兆二千四百一十一亿位数,改写了他本人两年前创造的纪录。据悉,金田教授与日立制作所的员工合作,利用目前计算能力居世界第二十六位的超级计算机,使用新的计算方法,耗时四百多个小时,才计算出新的数位,比他一九九九年九月计算出的小数点后二千六百一十一位提高了六倍。圆周率小数点后第一兆位数是二,第一兆二千四百一十一亿位数为五。如果一秒钟读一位数,大约四万年后才能读完。 不过,现在打破记录,不管推进到多少位,也不会令人感到特别的惊奇了。实际上,把π 的数值算得过分精确,应用意义并不大。现代科技领域使用的 π值,有十几位已经足够。如果用鲁道夫的35位小数的 π 值计算一个能把太阳系包围起来的圆的周长,误差还不到质子直径的百万分之一。我们还可以引美国天文学家西蒙·纽克姆的话来说明这种计算的实用价值: “十位小数就足以使地球周界准确到一英寸以内,三十位小数便能使整个可见宇宙的四周准确到连最强大的显微镜都不能分辨的一个量。” 那么为什么数学家们还象登山运动员那样,奋力向上攀登,一直求下去而不是停止对 π 的探索呢?为什么其小数值有如此的魅力呢? 这其中大概免不了有人类的好奇心与领先于人的心态作怪,但除此之外,还有许多其它原因。
我们都知道,无论您是硕士,医生还是学士,如果要成功毕业并获得学位证书,都需要通过学校的论文检查。早期检测编辑器看到许多学生抱怨检测系统不够智能。本文的参考文献和
条件概率: 条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B) 条件概率计算公式: 当P(A)>0,P(B|A)=P(AB)/P(A
论文重复率=论文重复字数/论文总字数* 100%,是计算论文重复率的公式。注意是公式,不是算法!那么内容重复是由查重系统根据算法,通过与数据库中的内容进行比对决
这是很正常的,高圆圆长得非常漂亮,但是不符合这个人物角色的设定,所以才会被网友嘲不好看。
何为转化率,收率和选择率,如何计算选择性S%=(目的产物的产率/转化率)*100%转化率CA%=反应物A转化掉的量/流经催化床层进料中反应物A的总量产率=选择性