• 回答数

    2

  • 浏览数

    158

约翰尼德斌
首页 > 毕业论文 > 个性化影片推荐系统毕业论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

略过剧情

已采纳

个性化推荐系统具有良好的发展和应用前景,目前,几乎所有的大型电子商务系统,如Amazon、eBay等不同程度地使用了推荐系统。同时,知名购物网站麦包包、凡客诚品、红孩子等都率先选择了本土最先进的百分点推荐引擎系统构建个性化推荐服务系统,为客户推荐商品。把这一技术应用到选择电影的平台,就能形成个性化电影推荐系统,不仅可以使用户完成个性化选择电影的过程以满足个性化需求,同时也促进电影经济的发展,是一个重要的应用领域。

92 评论

李晓锦Baby

综述类: 1、Towards the  Next Generation of Recommender Systems: A Survey of the State-of-the-Art and  Possible Extensions。最经典的推荐算法综述 2、Collaborative Filtering Recommender Systems. JB Schafer 关于协同过滤最经典的综述 3、Hybrid Recommender Systems: Survey and Experiments 4、项亮的博士论文《动态推荐系统关键技术研究》 5、个性化推荐系统的研究进展.周涛等 6、Recommender systems L Lü, M Medo, CH Yeung, YC Zhang, ZK Zhang, T Zhou Physics Reports 519 (1), 1-49 ( ) 个性化推荐系统评价方法综述.周涛等 协同过滤: factorization techniques for recommender systems. Y Koren collaborative filtering to weave an information Tapestry. David Goldberg (协同过滤第一次被提出) Collaborative Filtering Recommendation Algorithms. Badrul Sarwar , George Karypis, Joseph Konstan .etl of Dimensionality Reduction in Recommender System – A Case Study. Badrul M. Sarwar, George Karypis, Joseph A. Konstan etl Memory-Based Collaborative Filtering. Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu,and Hans-Peter Kriegel systems:a probabilistic analysis. Ravi Kumar Prabhakar recommendations: item-to-item collaborative filtering. Greg Linden, Brent Smith, and Jeremy York of Item-Based Top- N Recommendation Algorithms. George Karypis Matrix Factorization. Ruslan Salakhutdinov Decompositions,Alternating Least Squares and other Tales. Pierre Comon, Xavier Luciani, André De Almeida 基于内容的推荐:   Recommendation Systems. Michael J. Pazzani and Daniel Billsus 基于标签的推荐:   Recommender Systems: A State-of-the-Art Survey. Zi-Ke Zhang(张子柯), Tao Zhou(周 涛), and Yi-Cheng Zhang(张翼成) 推荐评估指标:   1、推荐系统评价指标综述. 朱郁筱,吕琳媛 2、Accurate is not always good:How Accuacy Metrics have hurt Recommender Systems 3、Evaluating Recommendation Systems. Guy Shani and Asela Gunawardana 4、Evaluating Collaborative Filtering Recommender Systems. JL Herlocker 推荐多样性和新颖性:   1. Improving recommendation lists through topic diversification. Cai-Nicolas Ziegler Sean M. McNee, Joseph Lausen Fusion-based Recommender System for Improving Serendipity Maximizing Aggregate Recommendation Diversity:A Graph-Theoretic Approach The Oblivion Problem:Exploiting forgotten items to improve Recommendation diversity A Framework for Recommending Collections Improving Recommendation Diversity. Keith Bradley and Barry Smyth 推荐系统中的隐私性保护:   1、Collaborative Filtering with Privacy. John Canny 2、Do You Trust Your Recommendations? An Exploration Of Security and Privacy Issues in Recommender Systems. Shyong K “Tony” Lam, Dan Frankowski, and John Ried. 3、Privacy-Enhanced Personalization. Alfred 4、Differentially Private Recommender Systems:Building Privacy into the  Netflix Prize Contenders. Frank McSherry and Ilya Mironov Microsoft Research,  Silicon Valley Campus 5、When being Weak is Brave: Privacy Issues in Recommender Systems. Naren Ramakrishnan, Benjamin J. Keller,and Batul J. Mirza 推荐冷启动问题:   Boltzmann Machines for Cold Start Recommendations. Asela Preference Regression for Cold-start Recommendation. Seung-Taek Park, Wei Chu Cold-Start Problem in Recommendation Systems. Xuan Nhat and Metrics for Cold-Start Recommendations. Andrew I. Schein, Alexandrin P opescul, Lyle H. U ngar bandit(老虎机算法,可缓解冷启动问题):  1、Bandits and Recommender Systems. Jeremie Mary, Romaric Gaudel, Philippe Preux 2、Multi-Armed Bandit Algorithms and Empirical Evaluation 基于社交网络的推荐:   1. Social Recommender Systems. Ido Guy and David Carmel A Social Networ k-Based Recommender System(SNRS). Jianming He and Wesley W. Chu Measurement and Analysis of Online Social Networks. Referral Web:combining social networks and collaborative filtering 基于知识的推荐:   1、Knowledge-based recommender systems. Robin Burke 2、Case-Based Recommendation. Barry Smyth 3、Constraint-based Recommender Systems: Technologies and Research Issues. A. Felfernig. R. Burke 其他:   Trust-aware Recommender Systems. Paolo Massa and Paolo Avesani

272 评论

相关问答

  • 毕业论文系统手册推荐

    运用对比,必须对所要表达的事物的矛盾本质有深刻的认识。对比的两种事物或同一事物的两个方面,应该有互相对立的关系,否则是不能构成对比的。

    橙橙小狐狸 3人参与回答 2023-12-10
  • 旅游推荐系统毕业论文

    小事问百度,大事问谷歌

    小乐乐9 6人参与回答 2023-12-08
  • 电商推荐系统毕业论文

    随着现代信息技术和 网络技术 的飞速发展,电子商务也在全球市场中迅速发展起来。下面是我为大家整理的电子商务 毕业 论文,供大家参考。

    猪猪爱吃草 5人参与回答 2023-12-07
  • 推荐系统毕业论文好写吗

    是真的,前期要收集很多资料,看一些文献,然后整理。

    smile筱123 9人参与回答 2023-12-10
  • 推荐系统博士毕业论文

    毕业论文是高等教育自学考试本科专业应考者完成本科阶段学业的最后一个环节,它是应考者的总结性独立作业,目的在于总结学习专业的成果,培养综合运用所学知识解决实际问题

    yingyingwp 5人参与回答 2023-12-10