帅气小王子…
1.因子分析学术论文中常用的数据分析方法中因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析常见的作用(1)在回归分析中,解决共线性问题:如果回归分析中存在共线性问题,那么可以对有共线性问题的多个变量提取出一个有代表性的公因子,利用提取出的这个公因子替代原有的有共线性问题的多个变量,参与建模,可解决回归分析中的共线性问题。(2)变量精简:一般来说,纳入模型的变量越少越好,如果存在很多变量,我们可以先使用因子分析的方法,通过提取公因子的方式对变量进行精简,这样纳入模型的变量信息不仅没有大幅度衰减,还降低了模型的复杂程度。(3)问卷中的效度分析:对于问卷中的量表题,希望通过因子分析来进行问卷结构的发现,检验问卷的结构效度,将量表题目根据因子分析分成不同的评分维度。3.回归分析学术论文中常用的数据分析方法中研究一个随机变量Y对另一个(X)或一组(X1,X2,„,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。回归分析分类(1)一元线性回归分析只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。(2)多元线性回归分析多元线性回归分析的使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。(3)Logistic回归分析线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况。(4)其他回归方法非线性回归、有序回归、Probit回归、加权回归等。由于回归分析的类型较多,在选择回归方法时,要根据数据的维数以及数据的其它基本特征来选择具体的回归类型,这对于接下来的数据分析是非常重要的。4.方差分析用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。
元信上成客服1
论文的变量是自己在写论文的时候确定的变量参数一般是实证分析的时候要使用到的,也就是自己在写论文的时候是已经确定了要研究哪些数量或者指标之间的关系,所以在具体分析的时候就应该根据实际情况去控制相应的变量。
火辣小白羊
模型中的变量有两类,一类为预测量,另一类为自变量。
(一)预测变量
本模型的预测量为土壤的入渗能力。土壤的累积入渗量是衡量其入渗能力大小的指标之一,它具有随入渗时间的变化而变化的特点。大量的田间土壤入渗试验表明:无论何种土壤质地、结构及含水率条件,入渗开始后50~60 min的入渗都已进入相对稳定入渗阶段。此时,不同土壤的入渗能力差异已经非常明显。为安全起见,选择90 min的累积入渗量作为衡量土壤入渗能力的指标。因此,以90 min的累积入渗量作为本预报模型的预测变量。
(二)自变量
影响土壤入渗能力的因素很多,在非冻结土壤条件下以土壤质地、结构,和含水率为主要因素。冻结土壤条件下除了以上影响因素外还有土壤温度、灌溉水水温、地下水埋深、冻层厚度、冻层层数和冻层层位等。若把诸多影响因素都作为预测模型的变量,势必给模型参数的确定和模型的应用带来不便。为此,在模型自变量的选择中,考虑若干主要影响变量,其他非主要因素的影响都包含在β0中。由试验结果的分析认为,冻结土壤条件下,影响土壤入渗能力的主要因素有土壤质地、结构、含水率和土壤温度。各主要影响因素的物理量指标选择如下。
1.土壤质地
土壤质地通过对土壤水势和水力传导度两方面对土壤入渗能力产生影响。用来表征土壤质地的数量指标为土壤颗粒分布,本模型选择小于某粒径土粒含量占总土重的比值作为反映土壤质地的指标。经对三种试验土壤入渗能力与其粘粒含量之间关系的分析,认为土壤入渗能力与其粘粒含量间关系不甚密切,如平遥北长寿土壤的粘粒含量与平遥宁固土壤相近(均为13%左右),但两者的入渗能力相差较大。因此不能选择土壤粘粒含量作为反映质地差异的指标。同时分析认为,土壤入渗能力与物理性粘粒含量的关系较密切,因此选择土壤的物理性粘粒含量作为反映土壤质地的物理量。三种试验土壤的物理性粘粒含量见表5-1。
表5-1 试验土壤物理性粘粒含量表
2.土壤结构
土壤结构反映了土壤疏散和板结程度。土壤结构越疏散,其孔隙率越大,土壤入渗能力越强。实际工作中,多数人一般用土壤干密度作为反映土壤结构的物理量。本模型中土壤结构对土壤入渗能力的影响用土壤干密度来反映。由于水分入渗是水分通过地表进入土壤的过程,地表作为土壤入渗的上界面,大多数情况下对土壤入渗能力起控制作用。因此,选择地表面以下10 cm范围内的平均土壤容重作为模型中的土壤结构变量。
3.土壤含水率
土壤含水率是影响土壤入渗能力的主要因素之一。非冻结土壤条件下,含水率主要通过对土水势梯度的影响对土壤入渗能力产生影响;在冻结土壤条件下,由于含水率作为负温作用下土壤相变的物质基础,对土壤入渗能力的影响更大。由于地表为土壤水分入渗的控制界面,且冻结土壤条件下水分入渗深度小,选择地表以下10 cm范围内的土壤含水率作为反映土壤含水率的指标。
4.土壤温度
如前所述,在非冻结土壤条件下,土壤温度对土壤入渗能力的影响并不明显,但是在冻结土壤条件下,土壤温度是土壤发生相变的两大条件之一。土壤含水率作为土壤相变的物质基础,而土壤温度则是土壤水分发生相变的起因。在一定的土壤含水率条件下。土壤温度的高低决定着土壤相变的多寡。而土壤相变量的多少又决定着同条件下土壤入渗能力的大小。因此,土壤温度是影响冻结土壤入渗能力大小的一个主要因素。第四章的分析表明:土壤入渗能力及其入渗模型参数与地中5 cm深度处的温度具有较好的相关性。此模型中以地表或地下5 cm处的温度作为反映地温对土壤入渗能力影响的变量。为满足模型参数估计、假设检验等计算中的变量非零和非负要求,地温变量以负温的绝对值表示之。
5.其他因素
土壤冻结层的厚度从表面上看是影响土壤入渗能力的因素之一,但由于它与土壤负温绝对值之间有较好的相关性,土壤负温对入渗能力的影响已包含了冻层厚度的影响。因此,冻层厚度不作为一个独立变量来考虑。
试验结果表明地下水埋深对冻融土壤的入渗能力也有较大的影响,但分析认为,地下水埋深对土壤入渗能力的影响是通过其对地表土层的含水率实现的,地下水埋深不作为一个独立的变量对土壤入渗能力产生影响。因此,模型不把地下水埋深作为一个独立变量考虑。
第四章的分析认为,入渗水的温度对土壤入渗能力也有一定影响。模型设计中把试验时的水温也作为独立变量之一。但经过模型参数的显著性检验,水温变量的影响与其他变量相比不显著,因而在后续的模型计算中不把水温作为独立变量考虑。
土壤入渗能力的日变化特性是由土壤温度的日变化引起的,模型中土壤温度的影响已包括了温度日变化的影响。因此,模型中不单独考虑温度日变化的影响。
其他诸如冻层层位、层数的影响,由于问题的复杂性,全部在模型常数项中综合考虑。
综上所述,预报模型中,对于同质地的土壤,其自变量按土壤结构、含水率和地温(模型设计中还考虑了水温)考虑;对于不同质地的土壤按土壤质地、结构、含水率和地温四个自变量考虑。
模型有三个层次: 第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。 第二个层次,描述性统计,分析数据分布特征。 第三个层次,计
毕业论文课题来源需要根据具体来源来进行填写,如果是学校或者导师提供的课题,可以写:学校课题,如果是查阅资料后,根据自己专业与导师的研究方向确定的品题,可以写:自
定性方法是根据社会现象或事物所具有的属性和在运动中的矛盾变化,从事物的内在规定性来研究事物的一种方法或角度。它以普遍承认的公理、一套演绎逻辑和大量的历史事实为分
大众调查。调查问卷的样本量就是样本中所包含的单位的个数,也就是抽样个体的数量。通常样本量在题目的5~10倍左右为宜,一份标准点的问卷题目数普遍在30题以上,所以
好像不可以,只写两个,字数也太少了,