• 回答数

    6

  • 浏览数

    283

草菜一家
首页 > 毕业论文 > 高次韦达定理的毕业论文

6个回答 默认排序
  • 默认排序
  • 按时间排序

尛嘴亂吃

已采纳

韦达定理的公式为:一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac>0)中,设两个根为x1,x2 则X1+X2= -b/aX1·X2=c/a,1/X1+1/X2=(X1+X2)/X1·X2,用韦达定理判断方程的根一元二次方程ax²+bx+c=0 (a≠0)中,若b²-4ac<0 则方程没有实数根,若b²-4ac=0 则方程有两个相等的实数根,若b²-4ac>0 则方程有两个不相等的实数根。

韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0它的根记作X1,X2…,Xn我们有右图等式组其中∑是求和,Π是求积。如果二元一次方程在复数集中的根是,那么 由代数基本定理可推得:任何一元 n 次方程在复数集中必有根。

因此,该方程的左端可以在复数范围内分解成一次因式的乘积:其中是该方程的个根。两端比较系数即得韦达定理。(x1-x2)的绝对值为√(b^2-4ac)/|a|法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。

历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。韦达定理在方程论中有着广泛的应用

164 评论

小肥羊洋阳

九年义务教育《数学课程标准》中指出:数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。数学教学要让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。 近几年,不仅每年高考都出了应用题,中考也加强了应用题的考察,这些应用题以数学建模为中心,以考察学生应用数学的能力,但学生在应用题中的得分率远底于其他题,原因之一就是学生缺乏数学建模能力和应用数学意识。因此中学数学教师应加强数学建模的教学,提高学生数学建模能力,培养学生应用数学意识和创新意识,本文结合教学实践,谈谈初中数学建模教学的一些学习体会。 ⒈数学建模是建立数学模型的过程的缩略表示,可用下面的框图来说明这一过程: 实际问题 抽象、简化,明确变量和参数 根据某种“定律”或“规律”建立变量和参数间的一个明确的数学关系 解析地或近似地求解该数学问题 解释、验证 投入使用 通不过 通过 审题 建立数学模型,首先要认真审题。实际问题的题目一般都比较长,涉及的名词、概念较多,因此要耐心细致地读题,深刻分解实际问题的背景,明确建模的目的;弄清问题中的主要已知事项,尽量掌握建模对象的各种信息;挖掘实际问题的内在规律,明确所求结论和对所求结论的限制条件。 简化 根据实际问题的特征和建模的目的,对问题进行必要简化。抓住主要因素,抛弃次要因素,根据数量关系,联系数学知识和方法,用精确的语言作出假设。 抽象 将已知条件与所求问题联系起来,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子、图形或表格等形式表达出来,从而建立数学模型。按上述方法建立起来的数学模型,是不是符合实际,理论上、方法上是否达到了优化,在对模型求解、分析以后通常还要用实际现象、数据等检验模型的合理性。 ⒉具体的建模分析方法 ① 关系分析法:通过寻找关键量之间的数量关系的方法来建立问题的数学模型方法。 ② 列表分析法:通过列表的方式探索问题的数学模型的方法。 ③ 图象分析法:通过对图象中的数量关系分析来建立问题的数学模型的方法。 ⒊掌握常见数学应用题的基本数学模型 在初中阶段,通常建立如下一些数学模型来解应用问题: ① 建立几何图形模型 ② 建立方程或不等式模型 ③ 建立三角函数模型 ④ 建立函数模型 案例 例1 王小姐参加了某晚会,晚会中共有40人,若每两人均握手一次,问参加者共握手多少次? 例2 设计合适的包装方式。 ⑴现有4盒磁带,有几种包装方式?哪种方式更省包装纸? ⑵若有8盒磁带,哪种方式更省包装纸? 例3 已知 、 、 均为非负实数,求证: 前两个问题比较明显的须建立几何图形模型来加以分析,第三个问题若用不等式变形来解决则非常困难,但建立几何图形模型解决则轻而易举, 如下图。 例4 甲、乙两厂分别承印八年级数学教材20万册和25万册,供应A、B两地使用,A、B两地的学生数分别为17万和28万,已知甲厂往A、B两地的运费分别为200元/万册和180元/万册;乙厂往A、B两地运费分别为220元/万册和210元/万册。(1)设总运费为w元,甲厂运往A地x万册,试写出w与x的函数关系式;(2)如何安排调动计划,能使总运费最少? 例5 我们已经学会了一些测量方法,现在请你观察一下学校中较高的物体,如教学楼、旗杆、大树等等,如何测量它们的高度呢? 本题显然要建立三角函数模型来分析解决 例6 爸爸准备为小明买一双新的运动鞋,但要小明自己算出穿几“码”的鞋。小明回家量了一下妈妈36码的鞋子长23厘米,爸爸41码的鞋子长厘米。那么自己穿的厘米长的鞋是几码呢? 本题较合理的数学模型是一次函数。 例7 1997年11月8日电视正在播放十分壮观的长江三峡工程大江截流的实况。截流从8:55开始,当时龙口的水面宽40米,水深60米。11:50时,播音员报告宽为米。到13:00时,播音员又报告水面宽为31米。这时,电视机旁的小明说,现在可以估算下午几点合龙,从8:55到11:50,进展的速度每小时减少米,从11:50到13:00,每小时宽度减少米,小明认为回填速度是越来越快的,近似地每小时速度加快1米。从下午1点起,大约要5个多小时,即到下午6点多才能合龙。但到了下午3点28分,电视里传来了振奋人心的消息:大江截流成功!小明后来想明白了,他估算的方法不好,现在请你根据上面的数据,设计一种较合理的估算方法(建立一种较合理的数学模型)进行计算,使你的计算结果更切合实际。 建模合理性分析:本题建模合理性有以下两个评价点 ⑴回填速度以每小时多少立方米填料计。这样,能否建立合理的回填速度计算模型便成为第一个评价要点。 ⑵注意到回填速度是逐渐加快的:水流截面越大,水越深,回填时填料被冲走的就越多,相应的进展速度就越慢。反之就越快。在模型中对回填速度越来越快这一点如何作出较合理的假设,这是第二个评价要点。 ⒋数学建模教学活动设计的体会 ①鼓励学生积极主动地参与,把教学过程更自觉地变成学生活动的过程。 教师不应只是“讲演者”、“总是正确的指导者”而应不时扮演下列角色:模特——他不仅演示正确的开始,也表现失误的开端和“拨乱反正”的思维技能。参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。 ②注意结合学生的实际水平,分层次逐步地推进。 数学建模对教师、对学生都有一个逐步的学习和适应的过程。教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,起始点要低,形式应有利于更多的学生能参与。在开始的教学中,在讲解知识的同时有意识地介绍知识的应用背景。在应用的重点环节结合比较多的训练,如实际语言和数学语言,列方程和不等式解应用题等。逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题,到独立地解决教师提供的数学应用问题和建模问题,最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决它。 ③重视知识产生和发展过程教学。 由于知识产生和发展过程本身就蕴含着丰富的数学建模思想,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程,数学知识、方法的转化、应用,不能仅仅讲授数学建模结果,忽略数学建模的建立过程。 ④注意数学应用与数学建模的“活动性”。 数学应用与数学建模的目的并不是仅仅为了给学生扩充大量的数学课外知识,也不是仅仅为了解决一些具体问题,而是要培养学生的应用意识、数学能力和数学素质。因此我们不应该沿用老师讲题、学生模仿练习的套路,而应该重过程、重参与,更多地表现活动的特性。

328 评论

zoemai0505

韦达定理:

设一元二次方程中,两根x₁、x₂有如下关系:

则有:

扩展资料:

韦达定理的意义:

根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。

无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。

判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。

韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。

韦达定理为数学中的一元方程的研究奠定了基础。

参考资料来源:百度百科-韦达定理

222 评论

沸腾的苦丁茶

(本课选自人教版九年义务教育四年制初级中学教科书《代数》第三册§第二小节.) 一、教学目标 1.通过本节课的学习,使学生进一步掌握韦达定理,并能巧妙灵活地利用韦达定理解决问题. 2.逐步培养学生的变式思维和发散思维. 3.激发学生的求知欲,提高其探索数学知识的积极性.培养学生一题多解、一题多变,善于思考问题本质的能力. 二、教学重点、难点 1.重点:对一类数学知识的拓宽和韦达定理的应用. 2.难点:灵活运用所学知识解决学习中遇到的问题. 三、教学过程 1.复习提问 师:同学们,你们学过韦达定理吗? 生:(齐答)学过. 师:好!哪位同学能写出定理呢? (学生争着举手,热情很高.) 生:韦达定理的内容是两根之和等于一次项系数除以二次项系数的相反数,两根之积等于常数项除以二次项的系数. 师:哪位同学有异议?(部分学生举手.) 生:我认为前面同学说得不完整,韦达定理应这样表述:一元二次方程ax2+bx+c=0 (a≠0)的两根分 师:好!这位同学表达得非常准确,请同学们一定要注意韦达定理只适用于一元二次方程. 师:韦达定理是初中代数中一个非常重要的定理.通过前面的学习,你认为韦达定理有哪些应用呢?(稍停片刻,找几名学生口述.) 生:利用韦达定理可求值. 生:利用韦达定理可构造方程. 生:利用韦达定理可进行恒等变形. 师:同学们说得都很好.韦达定理除以上应用之外,这节课我们再来学习一下韦达定理在其他类型题上的应用. [评析:通过对韦达定理的复习,能使学生进一步掌握韦达定理的基本内容,并使学生对韦达定理有一个初步的总结和归纳.从而很好地培养学生学习、总结、归纳的数学思想.] 2.新课过程 例1:已知a2-3a+1=0,b2-3b+1=0,且a≠b.求:a+b的值. 师:我们分4个小组,然后每小组选一个代表谈本组的做法. (给学生5分钟时间,班级很静,给学生营造了很好的学习气氛.) 第1组:我们组认为可分别求出a、b的值,然后再求a+b的值. 第2组:我组认为:a2-3a+1=b2-3b+1,∴a2-b2-3a+3b =0,(a-b)(a+b-3)=0.∵a≠b,∴a+b-3=0.即:a+b=3. 第3组:我组认为:第一组虽然能求出a+b的值,但解方程不好解,特别是一元二次方程的系数比较大时,更不好解.(此时一个学生补充:方程还可能出现无解的情况,这时如何求a、b的值呢?所以我认为第2组的方法比较好.) 第4组:(学生迫不及待地发言)第2组的做法虽然很好,但也不是最好的.我组认为本题使用韦达定理会更简捷、省时、省力. 师:(马上把话接过来)第4小组的想法很有新意,下面请第4小组的代表到前面给同学板演一下,好不好? 生:(齐答)好!(这时学习气氛非常高涨.) 第4组:我组通过观察发现两方程虽然未知数不同,但未知数的系数是相同的.又因为a≠b所以我们重新构建一个新的一元二次方程x2-3x+1=0 .由于该方程的判断式Δ=5�0,∴该方程一定有两个不相等的实数根,即 x1、x2.因此,我们就可以把a、b 看作是关于x的一元二次方程x2-3x+1=0 的两个不等实根.根据韦达定理可知:a+b=3. 师:同学们赞同第4组的做法吗? 生:同意.(齐声答.) [评析:教师提出问题后,以小组形式讨论、研究把“竞争”意识引入课堂,充分体现了学生是学习的主人,教师是引导者、组织者、合作者的新的教学理念.] 师:第4组做法很好,很有新意.这种做法正是我们这节课的主题. 师:根据第4小组的做法,请同学们思考下面几个问题. ①若要使用此类办法,其两个方程有何特点? ②为什么要加上条件a≠b. (给学生5分钟思考,然后讨论.这样让学生带着问题去思考,为下面学习做准备.) 生:我认为所给两方程必须都是一元二次方程并且系数相同. 生:因为所给方程的“Δ”是大于0的,也就是说方程有两个不等实数根,所以必须有a≠b的条件. 师:以上两位同学说得非常好,下面我们看变式练习,以上条件均不变. 变式1:已知a2-3a+1=0,b2-3b+1=0,且a≠b. 求:a2b+ab2的值.(学生根据以上讲解,很快利用韦达定理求出了值.) A. x2+7x+1=0B. x2+7x-1=0 C. x2-7x+1=0 D. x2-7x-1=0 (学生口答,教师指正.) 3.归纳总结 (先由学生讨论,教师归纳、总结写在黑板一侧.) ①两方程的系数相同,根不同. ②在所求的代数式不能直接代入时,应进行恒等变形,然后代入. ③不要直接解一元二次方程. [评析:通过上面的总结、讨论,使学生在解决问题时有一种“水到渠成”的感觉,从而突出了本节的重点,为下面的教学分散了难点.] 4.引申教学 师:前面同学们已经做得很好了!我们知道两个一元二次方程只要满足“形式”即可使用韦达定理,那么如果所给两个一元二次方程的形式不同,是否可以使用韦达定理加以解决呢?请看例题:已知:a2+2a-1=0,b2-2b-1=0且1-ab≠0.求:[]2008的值. 请同学们观察,两个方程的系数是否相同? 生:(齐答)不同. 师:那么此题是否还可以使用韦达定理解决呢?(这时,班级一片寂静.) 师:好!下面请同学们前后座为一组进行讨论.(给学生5分钟的时间.) 生:老师,我认为不可以使用韦达定理,因为一次项的系数不同,这样就无法构造一元二次方程. 生:我也同意上面的看法. 师:这位同学做得很好,他把方程1做了巧妙的变形,揭开了方程的表面现象,打破了我们的思维模式,形成了很好的发散思维,同学们应向他学习.(这时,班级爆发出一片掌声.) 师:刚才那位同学对方程1进行了变形,得出了正确结论,请同学们思考把方程2变形是否可以呢?(学生纷纷举手.) 师:这位同学做得也非常好.同学们,通过这道题你学到了什么呢? 生:我认为做题不能只看问题的表面现象. 生:我认为做题应根据题的不同恒等变形. 生:我认为在今后做题时要多思考,拓宽自己的知识面,挖掘问题的本质和内涵. 师:这些同学都谈得非常好.下面看练习: 师:同学们能自行解决吗? 生:可以把方程②两边都除以t2,然后按以上方法去做. 生:也可以把方程①两边都除以s2,然后按以上方法去做. [评析:教师在引申教学中,教师不是“教”而是让学生“论”.在教师的引导下 由浅入深、由一般到特殊,从而使学生深深体味到韦达定理的魅力所在,使学生在学习中享受成功的喜悦.很好地调动了学生学习数学的积极性,使他们在处理问题时能不断的探究、发现.] 5.总结 师:同学们都做得很好.今后我们做题时要善于利用学过的知识,灵活解决学习中所遇到的问题,要做到这一点,必须在完全掌握了基础知识的基础上加以拓宽和延伸.这样才能“揭开庐山真面目”,使我们所选择的方法简捷、明快,从而提高做题的速度和效率. 四、评析 学生是数学学习的主人.教师是学习的组织者、引导者和合作者. 孙老师在这节课的教学中,以韦达定理的应用为切入点,在整个教学过程中,教师始终以学生为中心,以引导、讨论、研究、总结贯穿整个课堂.在知识的引申探究中,设置了深浅不同的类型题,引导学生在研究、讨论中由浅入深、循序渐进、层层向上.使学生在已有经验与知识的基础上构造了一种新的数学学习模式――韦达定理的巧妙应用.激发学生的探究欲望,也领略了韦达定理的巧妙所在. “数学课程标准”强调学生在学习数学知识和应用数学知识的同时,更应让学生了解客观世界由一般到特殊再由特殊到一般的变化规律.孙老师在教学中很好地突出了应用――总结――再应用――再总结的教学思想. 在本节课的教学中孙老师很好地引导了学生如何研究、发现问题,从而揭开“庐山真面目”.使学生在学会如何揭示问题本质同时,也培养了不断探究的学习意识,对学生的身心发展不无裨益. 本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

88 评论

childrenqj126

去买一本中学数学建模教与学好了

235 评论

小鱼qt1988

数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

166 评论

相关问答

  • 高斯定理本科毕业论文

    电子工程师不是靠考的,先要有电子方面的知识,还要会画图。最好去电子专业学校学两到三年。同时学会PADS软件。

    米苏and妮娜 7人参与回答 2023-12-05
  • 麦克斯韦的毕业论文

    人物概述 詹姆斯·麦克斯韦 James Clerk Maxwell, 1831年6月13日-1879年11月5日. 詹姆斯·克拉克·麦克斯韦,伟大的英国物理学家

    俊之独秀 4人参与回答 2023-12-12
  • 高斯定理物理毕业论文

    高斯定理,又称为高斯通量定理,是物理学中的一个基本定理,描述了电场或磁场通过某一闭合曲面的总通量与该闭合曲面内的电荷或磁荷之间的关系。其数学表达式为:∮S E·

    米诺很努力 2人参与回答 2023-12-11
  • 韦神的毕业论文怎么样

    我认为他很有才华,而外表并不能代表一切,所以颜值不能作为衡量一个人的标准。

    明天努力找吃喝 9人参与回答 2023-12-08
  • 韦神的毕业论文题目

    我觉得他是非常的厉害的人物,这位外表朴实无华的老师被称为陈景润的接班人,几十年难得一遇的数学天才

    纳兰美黛子 6人参与回答 2023-12-09