• 回答数

    5

  • 浏览数

    356

金弓木小火
首页 > 毕业论文 > did双重差分毕业论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

萌萌萌萌瓜

已采纳

现在用个OLS、FE似乎根本就就拿不出手了,因为方法太简单可能会与期刊的“气质”不符,而DID听起来就很高端(虽然就是个交互项),能够满足作者和编辑们的虚荣心。

双重差分法又叫做倍差法,被用作政策效应评估,由于双重差分法的原理以及模型非常的容易理解。因此,受到了很多人的喜爱,双重差分法的本质就是面板数据固定效应,因此仅仅需要面板数据,如果只有截面数据的话,是不能够运用双重差分法的。

DID模型中包括个体与分组虚拟变量,如果个体会受到政策实施的影响,那么,分组虚拟变量将会取1,否则,分组虚拟变量就会取0,这样便可以反映出政策实施的净效应是什么样的,在双重差分法的模型中,还需要有至少达两年的'面板数据集,这样才能够正确的反映政策实施的效应。

双重差分法属于评估政策实施效应的一种非常有效的方法,被广泛的应用于微观经济学。

213 评论

请叫我大王哦

百度知道双重差分模型显著但是系数小JinLaiOumask超过40用户采纳过TA的回答第一部分 模型简介1、模型应用背景2、模型运用前提条件3、稳健性检验第二部分 经典论文分析1、民族地区转移支付、公共支出差异与经济发展差距2、基于多期双重差分的分位回归及其应用第三部分 双重差分模型(DID)stata实例操作1、变量构造和基本命令2、平行趋势检验第四部分 经典论文推荐第五部分 专题预览估计政策效应常用的方法有:工具变量法、断点回归、倾向得分匹配法、双重差分法、合成控制法等。我们在这里介绍双重差分法。第一部分 模型简介1、模型应用背景现代计量经济学和统计学的发展为我们的研究提供了可行的工具。倍差法来源于计量经济学的综列数据模型,是政策分析和工程评估中广为使用的一种计量经济方法。主要是应用于在混合截面数据集中,评价某一事件或政策的影响程度。该方法的基本思路是将调查样本分为两组,一组是政策或工程作用对象即“作用组”,一组是非政策或工程作用对象即“对照组”。根据作用组和对照组在政策或工程实施前后的相关信息,可以计算作用组在政策或工程实施前后某个指标(如收入)的变化量(收入增长量),同时计算对照组在政策或工程实施前后同一指标的变化量。然后计算上述两个变化量的差值(即所谓的“倍差值”)。这就是所谓的双重差分估计量(Difference in Differences,简记DD或DID),因为它是处理组差分与控制组差分之差。该法最早由Ashenfelter(1978)引入经济学,而国内最早的应用或为周黎安、陈烨(2005)。2、模型运用前提条件 使用前提(1)政策不能是“一刀切”类型,即存在受政策影响的实验组和不受政策影响的对照组(2)至少两年的面板数据,如果是截面数据一般也别考虑了 模型前提(1)平行趋势(CT)假设:处理组和对照组有共同趋势,在政策干预之前,处理组和控制组的结果效应的趋势应该是一样的。(2)SUTVA条件:政策干预只影响处理组,不会对控制组产生交互影响,或者政策干预不会产生外溢效应;(3)线性形式条件:潜在结果变量同处理变量和时间变量满足线性条件。由此可见DID的使用条件较为严苛,并不能随意使用。3、稳健性检验为了证明所有的效应是由政策实施所引起的,必须做稳健性检验,主要体现在两个方面: 平行趋势检验如果是多

324 评论

木鱼199210

你好,经过我查阅相关资料得知双重差分模型显著但是系数小是因为:使用观测数据模拟实验研究设计,其基本思路是将调查样本分为两组:一组为被政策影响组,即实验组,一组为未被政策影响组,即对照组。首先计算实验组在政策前后某个指标的变化量,再计算对照组在政策前后同一指标的变化量,然后计算上述两个变量的差值,从而反映政策的净影响。

178 评论

汤包sama

双重差分 (Differences-in-Differences,DID),其常用于政策评估效应研究,比如研究‘鼓励上市政策’、‘开通沪港通’、‘开通高铁’、‘引入新教育模式’等效应时,分析效应带来的影响情况。

涉及两个关键数据,分别是Treated和Time,此处Treated为地区(A和B两个地区),以及时间项Time(高铁开通前和开通后)。

同时研究‘开通高铁’参于gdp的影响,那么被解释变量Y即为gdp,与此同时还涉及可选的控制变量(控制变量为可选项,多数情况下并不需要),比如教育投入,人口或对外投资情况等,如下表说明:

特别提示:

理论上,双重差分研究可在很大程度上避免数据内生性问题。‘政策效应’通常为外生项,因而不存在双向因果关系,比如开通高铁影响gdp,gdp同时影响开通开通。与此同时,双重差分也有着一定的前提性要求,通常其希望满足‘平行趋势假设’(Parallel Trend Assumption),即time项为0时,即比如开通高铁前,A类和B类两类地区的gdp数据需要无明显的差异性。

至于‘平行趋势假设’(共同趋势)的检验,其有多种检验方式。包括t检验法,‘交叉项’显著性检验法,F统计量检验法,图示法。具体说明如下:

针对‘交互项显著性检验法’或‘F统计量检验法’,时间项可能仅为2期(实验前和实验后),也可能为多期m期(m>2),那么哑变量设置后,放入分析的交互项为‘实验前时的交互项’,如下表说明:

关于哑变量说明:

如果是使用t检验法,SPSSAU在进行DID分析时默认有提供,如果是使用‘交互项显著性检验法’或者‘F统计量检验法’,可先将时间项作哑变量处理后,与treated项作交互项,然后进行线性回归(SPSSAU通用方法里面的线性回归或计量研究里面的OLS回归均可)。如果是使用‘图示法’,则使用SPSSAU【可视化-> 簇状图 】完成。

某地区(实验组,B地区)通过法律将最低工资从每小时美元提高中到美元,但相邻的另一地区(控制组,A地区)保持不变。某研究人员收集实施新法律前后就业人数数据,使用DID差分法进行研究‘提高最低工资’是否有助于‘就业人数增加’,即提高最低工资是否会提升民众的就业积极性。

此案例时:treated为地区(数字0为控制组即A地区,数字1为实验组即B地区)。Time为时间(数字0为法律实施前,数字1为法律实施后)。研究的效应项即被解释变量Y为‘就业人数’。与此同时还有另外3个控制变量。

双重差分法DID,其通常用于政策效应类研究。共涉及两项,分别是实验组别treated(数字0表示控制组,数字1表示实验组),和时间项time(数字0表示实验前,数字1表示实验后)。一般希望在实验前即time为0时,实验组别数据基本保持一致性,即满足‘平行趋势假设’。‘平行趋势假设’检验有多种方式,建议查看本页面中相关说明。

比如本案例可使用SPSSAU的簇状图进行‘平行趋势假设’查看,如下图可以看到,实验前时两个组别的‘从业人数’即效应水平基本完全一致,说明满足‘平行趋势假设’,因而可以继续分析,当然也可使用实验前时,控制组和实验组效应值的差异情况进行检验,SPSSAU默认有提供。

本案例操作截图如下,案例中带3个控制变量,如果没有控制变量可直接不放入即可,如下:

SPSSAU共输出5类表格,分别是DID模型描述统计,DID模型结果汇总,t 检验(Before),t 检验(After),OLS回归分析结果。说明如下:

上表格展示不同实验组别,以及实验前后时的样本分布情况。本案例共有155个实验样本,77个为实验前,78个为实验后。

上表格展示DID模型最终结果。分别包括实验前和实验后时,控制组或实验组的效应值水平(特别提示,效应值是一种量化指标,并非被解释变量从业人数的平均值(但通常接近于平均值),数学原理上其为ols回归的回归系数值)。

上表格显示:在实验前before状态时,实验组和控制组的差分效应量为,并且没有呈现出显著性(p = >),即说明实验前时,实验组和控制组的效应水平基本一致并没有明显的差异性,也即说明满足‘平行趋势假设’。

实验后after状态时,实验组和控制组的差分效应量为,并且呈现出显著性(p = < ),即说明在实验后时间点时,实验组的效应值明显高于控制组效应值。

最终查看应该以diff-in-diff,即最终的双重差分值,上表格时,双重差分效应值为且呈现出显著性(p = < ),也即说明双重差分效应显著,即说明‘提高最低工资’是否有助于‘就业人数增加’,提高的平均效应水平为。

上表格展示实验前状态时,控制组和实验组两类别下被解释变量或控制变量的差异情况。通常仅关注被解释变量的差异性即可,从上表格可知,控制组和实验组并没有呈现出显著性(p = > ),也即说明实验前时控制组和实验组的‘从业人数’并没有明显的差异性,即说明数据通过‘平行趋势假设’。

上表格展示实验后状态时,控制组和实验组两类别下被解释变量或控制变量的差异情况。通常仅关注被解释变量的差异性即可,从上表格可知,控制组和实验组呈现出显著性(p = 0. 043 < ),也即说明实验前时控制组和实验组的‘从业人数’呈现出明显的差异性,说明实验后状态下实验组和控制组的平均水平有着显著性差异,而且实验组()明显高于控制组()。

上表格展示OLS回归结果,其为DID差分模型的数学原理,比如上表格中treate*time这一交互项的回归系数值为即为‘DID模型结果汇总’表格中的Diff-in-Diff效应值。

涉及以下几个关键点,分别如下:

188 评论

蓝冰儿雪莲

实证的方法主要有VAR 模型和单期双重差分模型,本文将利用70 个大中城市在三个不同调控期的房地产相关数据,采用多期双重差分模型双重差分模型 (Difference-Differences, DID)是政策评估的非实验方法中最为常用的一种方法,其中交互项是DID的灵魂。 交互项形式拥有各种形式,包括(2. 传统DID 双重差分法是研究“处理效应”(treatment effects)的流行方法。一般来说,DID的使用场景为,在面板数据中,个体可分为两类,即受到政策冲击的3. 经典DID 经典DID是在传统DID模型

260 评论

相关问答

  • 方差分析多重比较毕业论文

    是指方差分析后对各样本平均数间是否有显著差异的假设检验的统称。 多重比较(multiple comparisons)是指方差分析后对各样本平均数间是否有显著差异

    开心往前飞tt 4人参与回答 2023-12-07
  • did双重差分毕业论文

    现在用个OLS、FE似乎根本就就拿不出手了,因为方法太简单可能会与期刊的“气质”不符,而DID听起来就很高端(虽然就是个交互项),能够满足作者和编辑们的虚荣心。

    金弓木小火 5人参与回答 2023-12-07
  • 硕士毕业论文双重差分法

    百度知道双重差分模型显著但是系数小JinLaiOumask超过40用户采纳过TA的回答第一部分 模型简介1、模型应用背景2、模型运用前提条件3、稳健性检验第

    臭豆腐精 5人参与回答 2023-12-08
  • 本科毕业论文双重差分模型

    你好,经过我查阅相关资料得知双重差分模型显著但是系数小是因为:使用观测数据模拟实验研究设计,其基本思路是将调查样本分为两组:一组为被政策影响组,即实验组,一组为

    Lucia慢半拍 6人参与回答 2023-12-09
  • 毕业论文差重多少

    近年来,学校越来越重视学生论文的原创性,其要求是学生毕业论文的查重率。毕业论文的查重率是多少?不同学位对毕业论文重复率的要求是否一致?paperfree小编给大

    都亲上了 5人参与回答 2023-12-07