首页 > 学术期刊知识库 > 永磁材料最新研究进展论文

永磁材料最新研究进展论文

发布时间:

永磁材料最新研究进展论文

稀土永磁同步电机的开发与应用扩大了永磁同步电动机在各个行业的应用,稀土永磁电机最显著的性能特点是轻型化、高性能化、高效节能。高性能稀土永磁电机是许多新技术、高技术产业的基础。它与电力电子技术和微电子控制技术相结合,可以制造出各种性能优异的机电一体化产品,如数控机床,加工中心,柔性生产线,机器人,电动车,高性能家用电器,计算机等等。随着稀土永磁电机技术的不断发展其行业逐渐呈现以下发展趋势。 向高效节能方向发展 稀土永磁电机又是一种高效节能产品,平均节电率高达10%以上,专用稀土永磁电机可高达15%~20%。 电动机的节能分两个方面。一方面是改革异步电动机的结构,提高效率和其他性能,异步电动机以其结构简单、价格便宜、适应各种工况条件等优点被广泛应用于工业生产各个领域。其次是发展永磁同步电动机,可以取得更高的节电效果。 国外提高电动机效率的主要途径,是通过对异步电动机的优化设计,增加铜、铝、电工钢板等有效材料用量,降低绕组损耗和铁耗;采用较好的磁性材料和工艺,以降低铁耗:合理设计通风结构和选用高性能轴承,降低机械损耗;通过改进设计和工艺,降低杂散损耗,国外己开发出高效异步电机。根据我国国情,高性能的稀土永磁材料已实现产业化,钕铁硼的产量现已居世界第一位,钕铁硼的价格也趋向合理。所以发展永磁同步电动机是新世纪电机工业技术发展趋势之一。 向机电一体化方向发展 要提升传统机电产品的水平,必须紧紧抓住机电一体化这个环节。实现机电一体化的基础,是发展各种机电一体化需用的各种高性能稀土永磁电机,如数控机床用伺服电机,计算机用VCM音圈电机。一台60把刀加工中心,要配备30台伺服电机。变频调速稀土永磁同步电机和无刷直流电机是机电一体化的基础。 向高性能方向发展 现代化装备向电机工业提出各种各样的高性能要求,如军事装备要求提供给各种高性能信号电机,移动电站,自动化装备用伺服系统及电机,航空航天用高性能、高可靠性永磁电机,化纤设备用高调速精度变频调速同步电动机,数控机床、加工中心、机器人用高调速比稀土永磁伺服电机,计算机用高精度摆动电机及主轴电机等等。 向专用电机方向发展 电机所驱动的负载千变万化,如全部采用通用型电动机,在某些情况下,技术经济很不合理。因此国外大力发展专用电机,专用电机约占总产量的80%,通用电机占20%。而我国恰恰相反,专用电机只占20%,通用型电机占80%。专用电机是根据不同负载特性专门没计的,如油田用抽油机专用稀土永磁电机,节电率高达20%。这方面的节能潜力很大。电机工作者不仅要研究电机本身,更应当研究所驱动负载的特性,设计出性能先进、运行可靠、价格合理的稀土永磁电机产品。 向轻型化方向发展 航空航天产品,电动车辆、数控机床、计算机、视听产品、医疗器械、便携式光机电一体化产品等,都对电机提出体积小、重量轻的严格要求。永磁同步电动机以其体积小、 节能、 控制性能好、 又容易做成低速直接驱动, 消除齿轮减速装置, 可通过频率的变化进行调速等优点, 在电梯技术上得以开发应用。相信随着电子技术和控制技术的发展,稀土永磁同步电机技术会朝着高效节能、机电一体化、高性能、专用电机、轻型化的方向发展并日趋完善。

近年来,随着重稀土资源的匮乏及新能源汽车等对永磁材料耐温需求的不断上升,开发新型耐温永磁材料尤为迫切。具有胞状组织结构的钐钴永磁材料高温磁性能和耐腐蚀性优异,在航天航空、微波器件、传感器、汽车部件、高温电机等尖端领域具有不可替代的应用,其耐温机制的深入研究对新型耐温永磁体的开发有重要指导性意义。中科院宁波材料所稀土磁性功能材料实验室长期从事高品质钐钴永磁材料的研发,近期在钐钴永磁矫顽力调控机制方面取得创新性研究进展。 传统研究一致认为铜对钐钴胞壁相磁性的影响是调控其耐温性的主要技术途径。宁波材料所稀土磁性功能材料实验室通过对钐钴磁体胞状组织结构及其高温反磁化行为的系统研究,创新性地利用稀土元素对胞壁相磁性的影响,通过液相合金热扩散工艺,攻克了稀土元素在胞壁相偏聚分布的关键技术难题,成功实现稀土元素对胞壁相磁晶各向异性的调控,研制出矫顽力温度系数(150~550K)连续可调的钐钴磁体。对矫顽力机制的深入研究表明该现象来源于钐钴磁体胞壁相的自旋再取向转变,是一种新型的矫顽力调控技术,且可能具有普适性。基于这一研究结论,研究人员进一步提出在其它的永磁材料体系中,通过双相纳米复合的途径,控制复合相磁晶各向异性随温度的变化,有望实现磁体矫顽力温度系数的连续可调。值得指出的是,该技术有望从根本上解决耐温型钕铁硼永磁材料对重稀土元素严重依赖的现状,实现无重稀土耐高温稀土永磁材料磁性能的突破。相关研究成果已申请专利(; ),并发表在APL (accept)、JMMM (374(2015)634–638)、IEEE Trans. Magn. (50(2014) 2101704) 国际专业期刊上。 本研究工作得到了宁波市创新团队(2012B81001)、宁波市科技重大攻关(2014B11009)、国家青年自然基金(51301190)等项目的支持。 反常矫顽力温度系数图磁体微观结构示意图

对国际新闻了解很多的朋友应该了解这些信息,并在土耳其发现大量稀土。众所周知,稀土是一种相对宝贵的资源,但在土耳其发现了矿山稀土已经达到了亿吨,其中的数量非常惊人,中国也是稀土资源最丰富的国家,然后土耳其在中国发现了这样的稀土资源,这会产生什么影响?

众所周知,在土耳其发现稀土之前,中国是世界上第一个拥有稀土储量的国家,作为重要资源,甚至是工业黄金。它被广泛使用,许多新材料需要作为原材料回收的,其中最重要的回收作用是提高产品质量和相关性能,众所周知,稀土资源可用于制造坦克和导弹这些用于钢铁的高端武器这些军事武器在国防中非常重要。这意味着稀有土地对国防军的发展非常重要,而稀有土地也在科学技术中发挥作用,一些超导电子芯片其他技术需要稀土资源的帮助,稀土在军事科技中发挥着不可或缺的作用。

首先,在土耳其发现稀土后,它肯定会对中国的稀土储量产生影响。事实上,一方面,稀土资源储量稀缺,另一方面,精炼土地稀缺另一方面,这也很重要,尽管土耳其发现了惊人的稀土矿储量,但稀土冶炼技术仍然短缺,因此,在短时间内,土耳其的稀土资源将不会它对中国的稀土资源产生了影响。与此同时,由于土耳其发现了大量的稀土资源储量,因此有可能进行出口。那么,如果我国被迫进口稀土资源土耳其,那么我们稀缺的土地资源就可以得到很好的保护,这也是保护我们国家免受资源侵害的一种方式。

最后,作为最重要的不可再生资源之一,稀土资源的利用和冶炼非常重要。据信,中国将有效利用稀土资源,并将发挥更大的作用。

前瞻网摘要:近来,中国工业和信息化部原材料工业司副司长潘爱华指出:新材料是带动传统产业升级的革命力量,是推动中国技术创新的先导,历史上每一次重大新技术的发现和某种新产品的研制成功,都离不开新材料的发现和应用。新材料产业“十二五”发展规划提出了六大领域20个重点发展方向,稀土永磁材料位列其中。前瞻网发布的《中国稀土永磁材料行业市场前瞻与投资战略规划分析报告》分析认为,稀土永磁材料需求结构中,风电、新能源汽车、节能变频空调是行业三大增长点。前瞻网发布的《中国稀土永磁材料行业市场前瞻与投资战略规划分析报告》数据显示,2001-2013年,我国稀土永磁材料的生产规模不断扩大,从2001年的产量不足1万吨,到2012年的10万吨,11年期间实现了翻番。2010年,我国稀土永磁材料产量为82600吨(实物),比2009年增长,其中:烧结钕铁硼磁体78000吨,较2009年增长50%;粘结钕铁硼磁体4000吨,较2009年增长;钐钴磁体600吨,与2009持平。2013年,我国稀土永磁材料产量已超过10万吨,已超过世界总产量的85%,粘结钕铁硼的产量为4400万吨左右。前瞻产业研究院稀土永磁材料行业研究小组预计2015年,我国的稀土永磁材料将超过15万吨。

永磁材料的研究前沿进展论文

具有宽磁滞回线、高矫顽力、高剩磁,一经磁化即能保持恒定磁性的材料。又称硬磁材料。实用中,永磁材料工作于深度磁饱和及充磁后磁滞回线的第二象限退磁部分。常用的永磁材料分为铝镍钴系永磁合金、铁铬钴系永磁合金、永磁铁氧体、稀土永磁材料和复合永磁材料。铝镍钴系永磁合金以铁、镍、铝元素为主要成分,还含有铜、钴、钛等元素。具有高剩磁和低温度系数,磁性稳定。分铸造合金和粉末烧结合金两种。20世纪30~60年代应用较多,现多用于仪表工业中制造磁电系仪表、流量计、微特电机、继电器等。铁铬钴系永磁合金以铁、铬、钴元素为主要成分,还含有钼和少量的钛、硅元素。其加工性能好,可进行冷热塑性变形,磁性类似于铝镍钴系永磁合金,并可通过塑性变形和热处理提高磁性能。用于制造各种截面小、形状复杂的小型磁体元件。永磁铁氧体主要有钡铁氧体和锶铁氧体,其电阻率高、矫顽力大,能有效地应用在大气隙磁路中,特别适于作小型发电机和电动机的永磁体。永磁铁氧体不含贵金属镍、钴等,原材料来源丰富,工艺简单,成本低,可代替铝镍钴永磁体制造磁分离器、磁推轴承、扬声器、微波器件等。但其最大磁能积较低,温度稳定性差,质地较脆、易碎,不耐冲击振动,不宜作测量仪表及有精密要求的磁性器件。稀土永磁材料主要是稀土钴永磁材料和钕铁硼永磁材料。前者是稀土元素铈、镨、镧、钕等和钴形成的金属间化合物,其磁能积可达碳钢的150倍、铝镍钴永磁材料的3~5倍 ,永磁铁氧体的8~10倍,温度系数低,磁性稳定,矫顽力高达800千安/米。主要用于低速转矩电动机、启动电动机、传感器、磁推轴承等的磁系统。钕铁硼永磁材料是第三代稀土永磁材料,其剩磁、矫顽力和最大磁能积比前者高,不易碎,有较好的机械性能,合金密度低,有利于磁性元件的轻型化、薄型化、小型和超小型化。但其磁性温度系数较高,限制了它的应用。复合永磁材料由永磁性物质粉末和作为粘结剂的塑性物质复合而成。由于其含有一定比例的粘结剂,故其磁性能比相应的没有粘结剂的磁性材料显著降低。除金属复合永磁材料外,其他复合永磁材料由于受粘结剂耐热性所限,使用温度较低,一般不超过150℃ 。但复合永磁材料尺寸精度高,机械性能好,磁体各部分性能均匀性好,易于进行磁体径向取向和多极充磁。主要用于制造仪器仪表、通信设备、旋转机械、磁疗器械及体育用品等。编辑本段永磁材料分类概况第一大类是:合金永磁材料,包括稀土永磁材料(钕铁硼Nd2Fe14B)、钐钴(SmCo)、铝镍钴(AlNiCo) 第二大类是:铁氧体永磁材料(Ferrite) 按生产工艺不同分为:烧结铁氧体、粘结铁氧体、注塑铁氧体,这三种工艺依据磁晶的取向不同又各分为等方性和异方性磁体。 这些就是目前市面上的主要永磁材料,还有一些因生产工艺原或成本原因,不能大范围应用而淘汰,如Cu-Ni-Fe(铜镍铁)、Fe-Co-Mo(铁钴钼)、Fe-Co-V(铁钴钒)、MnBi(锰铋)稀土永磁材料稀土永磁材料(钕铁硼Nd2Fe14B) 按生产工艺不同分为以下三种 (1)、烧结钕铁硼(Sintered NdFeB)——烧结钕铁硼永磁体经过气流磨制粉后冶炼而成,矫顽力值很高,且拥有极高的磁性能,其最大磁能积(BHmax)高过铁氧体(Ferrite)10倍以上。其本身的机械性能亦相当之好,可以切割加工不同的形状和钻孔。高性能产品的最高工作温度可达200摄氏度。由于它的物质含量容易导致锈蚀,所以根据不同要求必须对表面进行不同的凃层处理。(如镀锌、镍、环保锌、环保镍、镍铜镍、环保镍铜镍等)。非常坚硬和脆,有高抗退磁性,高成本/性能比例,不适用于高工作温度(>200℃)。 (2)、粘结钕铁硼(Bonded NdFeB)——粘结钕铁硼是将钕铁硼粉末与树脂、塑胶或低熔点金属等粘结剂均匀混合,然后用压缩、挤压或注射成型等方法制成的复合型钕铁硼永磁体。产品一次成形,无需二次加工、可直接做成各种复杂的形状。粘结钕铁硼的各个方向都有磁性,可以加工成钕铁硼压缩模具和注塑模具。精密度高、磁性能极佳、耐腐蚀性好、温度稳定性好。 (3)、注塑钕铁硼(Zhusu NdFeB)——有极高之精确度、容易制成各向异性形状复杂的薄壁环或薄磁体烧结铁氧体烧结铁氧体(Sintered Ferrite)的主要原料包括BaFe12O19和SrFe12O19,依据磁晶的取向不同分为等方性和异方性磁体。由于其低廉的价格和适中的磁性能而成为目前应用较为广泛的一种磁体。铁氧体磁铁是通过陶瓷工艺法制造而成,质地也比较坚硬,也属脆性材料,由于铁氧体磁铁有很好的耐温性及价格低廉,已成为应用较为广泛的永磁体。橡胶磁橡胶磁(Rubber Magnet)是铁氧体磁材系列中的一种,由粘结铁氧体料粉与合成橡胶复合经挤出成型、压延成型、注射成型等工艺而制成的具有柔软性、弹性及可扭曲的磁体。可加工成条状、卷状、片状及各种复杂形状。 橡胶磁体由磁粉(SrO6Fe2O3)、聚乙烯(CPE)和其它添加剂(EBSO、DOP)等组成,通过挤出、压延制造而成。橡胶磁材可以是同性的或异性的,它由铁氧体磁粉、CPE和某些微量元素制成,可弯、可捻、可卷。它无需更多机械加工即可使用,也可以按所需尺寸修整形状,橡胶磁也可以根据客户要求复PVC,背胶,上UV油等。它的磁能积在 至 MGOe之间。 橡胶磁材的应用领域:冰箱、讯息告示架、将物件固定于 金属体以用作广告等的紧固件,用于玩具、教学仪器、开关和感应器的磁片。主要应用于微特电机、电冰箱、消毒柜、厨柜、玩具、文具、广告等行业。铝镍钴铝镍钴(AlNiCo)是最早开发出来的一种永磁材料,是由铝、镍、钴、铁和其它微量金属元素构成的一种合金。根据生产工艺不同分为烧结铝镍钴(Sintered AlNiCo)和铸造铝镍钴(Cast AlNiCo)。产品形状多为圆形和方形。铸造工艺可以加工生产成不同的尺寸和形状;与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯尺寸公差比铸造产品毛坯要好,磁性能要略低于铸造产品,但可加工性要好。在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。钐钴钐钴(SmCo)依据成份的不同分为SmCo5和Sm2Co17,分别为笫一代和笫二代稀土永磁材料。由于其原材料十分稀缺,价格昂贵而使其发展受到限制。钐钴(SmCo)作为第二代稀土永磁体,不但有着较高的磁能积(14-28MGOe)和可靠的矫顽力,而且在稀土永磁系列中表现出良好的温度特性。与钕铁硼相比,钐钴更适合工作在高温环境中(>200℃)。编辑本段永磁材料的发展历程随着社会的发展,磁铁的应用也越来越广泛,从高科技产品到最简单的包装磁,目前应用最为广泛的还是钕铁硼强磁和铁氧体磁铁。 从永磁材料的发展历史来看,十九世纪末使用的碳钢,磁能积(BH)max(衡量永磁体储存磁能密度的物理量)不足1MGOe(兆高奥),而目前国外批量生产的Nd-Fe-B永磁材料,磁能积已达50MGOe以上。这一个世纪以来,材料的剩磁Br提高甚小,能积的提高要归功于矫顽力Hc的提高。而矫顽力的提高,主要得益于对其本质的认识和高磁晶各向异性化合物的发现,以及制备技术的进步。二十世纪初,人们主要使用碳钢、钨钢、铬钢和钴钢作永磁材料。二十世纪三十年代末,AlNiCo永磁材料开发成功,才使永磁材料的大规模应用成为可能。五十年代,钡铁氧体的出现,既降低了永磁体成本,又将永磁材料的应用范围拓宽到高频领域。到六十年代,稀土钴永磁的出现,则为永磁体的应用开辟了一个新时代。1967年,美国Dayton大学的Strnat等,用粉末粘结法成功地制成SmCo5永磁体,标志着稀土永磁时代的到来。迄今为止,稀十永磁已经历第一代SmCo5,第二代沉淀硬化型Sm2Co17,发展到第三代Nd-Fe-B永磁材料。此外,在历史上被用作永磁材料的还有Cu-Ni-Fe、Fe-Co-Mo、Fe-Co-V、MnBi、A1MnC合金等。这些合金由于性能不高、成本不低,在大多数场合已很少采用。而AlNiCo、FeCrCo、PtCo等合金在一些特殊场合还得到应用。目前Ba、Sr铁氧体仍然是用量最大的永磁材料,但其许多应用正在逐渐被Nd-Fe-B类材料取代。并且,当前稀土类永磁材料的产值已大大超过铁氧体永磁材料,稀土永磁材料的生产已发展成一大产业。(抄于百度)

前瞻网发布的的《中国稀土永磁材料行业市场前瞻与投资战略规划分析报告》分析认为,随着科技的进步,稀土永磁材料不仅用于传统的家电、玻璃等领域,风力发电、新能源汽车、变频家电、节能电梯、节能石油抽油机等新兴领域对高端稀土永磁材料的需求日益增长。高端稀土永磁材料需求结构中,风电、新能源汽车、节能变频空调是稀土永磁材料行业三大增长点。 按照2012年7月国家发改委发布的《可再生能源发展“十二五”规划》,到2015年,累计并网风电装机达到1亿千瓦,年发电量超过1900亿千瓦时,其中海上风电装机达到500万千瓦,基本形成完整的、具有国际竞争力的风电装备制造产业。到2020年,累计并网风电装机达到2亿千瓦,年发电量超过3900亿千瓦时,其中海上风电装机达到3000万千瓦,风电成为电力系统的重要电源。前瞻产业研究院发布的《中国稀土永磁材料行业市场前瞻与投资战略规划分析报告》分析认为,随着全球风电装机容量保持快速增长,风电对钕铁硼永磁体材料的需求也将保持较快增速,预计到2014年,全球风电行业对钕铁硼永磁体的需求量将达到4万吨,其中,来自中国的风电行业对其的需求量将超过万吨。前瞻产业研究院稀土永磁材料行业研究小组分析认为,变频家电领域在我国发展从2000年开始起步,最开始从变频空调开始,技术主要掌握在日本厂商手中,2008年之后,变频空调的销售开始上升,据统计2012年国内市场变频空调销售量占比,销售额占比约,已牢牢占据空调市场的主流地位。从2008年市场份额不足8%,到2012年变频空调成为国内市场主流地位,成为消费者首选,变频空调市场发展已实现了历史性跨越。前瞻网发布的《中国稀土永磁材料行业市场前瞻与投资战略规划分析报告》分析认为,2006-2010年稀土永磁变频空调内销量同比增速均在100%以上,2011年增速开始趋缓,但同比增速仍在100%之间。前瞻预测,到2014年,变频空调领域稀土永磁材料的需求量将达到14000吨。

把电瓶的正极进行扩大,以此来增大电流。这样我们的驱动电机能在短时间内输出最大功率。

稀土永磁材料已经步入第四代研发阶段

第一代稀土永磁材料为钐钴永磁材料(SmCo5),经过多年的研发和生产工艺的改进,目前第三代钕铁硼(Nd2Fe14B)永磁材料基本替代了第一、二代钐钴永磁材料,成为应用范围最广、发展速度最快、综合性能最优的磁性材料,是支撑现代电子信息产业的重要基础材料之一。与此同时,以稀土铁氮(Re-Fe-N系)和稀土铁碳(Re-Fe-C系)为代表的第四代稀土永磁材料正在研发阶段,预计未来有望走向大规模产业化应用。

我国已经成为全球第一大钕铁硼永磁材料生产国

据中国稀土行业协会公布的数据显示,2019年我国钕铁硼永磁材料产量为万吨,同比增长,增速较2018年增长个百分点,我国钕铁硼永磁材料产量快速增长得益于下游电子信息制造业等需求的快速增长。

与此同时,根据中国稀土行业协会公布的数据显示,2018年我国钕铁硼磁材产量为万吨,占全球总产量87%,是产量全球第二的日本近10倍。我国已经成为全球最大的钕铁硼永磁材料生产国。

——以上数据及分析均来自于前瞻产业研究院《中国稀土永磁材料行业市场前瞻与投资战略规划分析报告》。

温铁磁材料研究进展论文

本人从智网上找的 有PDF格式 这是从上面转下来的 统磁体以单原子或离子为构件,三维磁有序化主要来自通过化学键传递的磁相互作用,其制备采用冶金学或其一、引 言他物理方法;而分子磁体以分子或离子为构件,在临界 作为一种新型的软材料,分子基材料(molecule2based温度以下的三维磁有序化主要来源于分子间的相互作materials)在近年来材料科学的研究中已成为化学家、物用,其制备采用常规的有机或无机化学合成方法.由于理学家以及生物学家非常重视的新兴科学领域[1].分子在分子磁体中没有伸展的离子键、共价键和金属键,因基材料的定义是,通过分子或带电分子组合出主要具有而很容易溶于常规的有机溶剂,从而很容易得到配合物分子框架结构的有用物质.顾名思义,分子基磁性材料的单晶,有利于进行磁性与晶体结构的相关性研究,有(molecule2based magnetic materials) ,通称分子磁性材料,利于对磁性机制的理论研究.作为磁性材料,分子铁磁是具有磁学物理特征的分子基材料.当然,分子磁性材体具有体积小、相对密度轻、结构多样化、易于复合加工料是涉及化学、物理、材料和生命科学等诸多学科的新成型等优点,有可能作为制作航天器、微波吸收隐身、电兴交叉研究领域.主要研究具有磁性、磁性与光学或电磁屏蔽和信息存储的材料.导等物理性能相结合分子体系的设计、合成.我们认为, 分子磁性研究始于理论探索.早在 1963 年McCo2分子磁性材料是在结构上以超分子化学为主要特点的、nnel[2]就提出有机化合物可能存在铁磁性,并提出了分在微观上以分子磁交换为主要性质的、具有宏观磁学特子间铁磁偶合的机制.1967 年,他又提出了涉及从激发征并可能应用的一类物质.态到基态电子转移的分子离子之间产生稳定铁磁偶合 分子铁磁体是具有铁磁性质的分子化合物,它在临的方法[3].同年,Wickman[4]在贝尔实验室合成了第一个界温度(Tc)下具有自发磁化等特点.分子磁体有别于传分子铁磁体.之后,科学家们相继报道了一些类铁磁性统的不易溶解的金属、金属合金或金属氧化物磁体.传质的磁性化合物,但直到1986年前,这些合成的磁性化·15 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi 合物没有表现出硬铁磁所具有的磁滞特征.1986 年,材料理论的精确预言和计算是相当困难的,而且,分子Miller等人[5]将二茂铁衍生物[Fe(Cp3)2](Cp3为五甲基磁性材料中包含的原子和分子基团更多,空间结构的基环戊二稀)与四氰基乙烯自由基(TCNE)经电荷转移合对称性更复杂,局部的磁交换的途径也体现出多样性,成了第一个分子铁磁体[Fe(Cp3)2]+[TCNE] ,其转换温使得目前的研究还处于实验经验的积累和定性的解释度 T上.尽管如此,科学家们对分子磁交换的机制进行了大c= K.与此同时,Kahn 等人[6]报道了具有铁磁性的MnCu(pbaOH)·(H量的研究,提出了许多近似理论模型,并基于这些模型2O)3分子化合物.从此,分子磁体的研究引起了人们的广泛关注,分子基磁性材料也应和大量的实验数据,在磁性与结构的关系研究中取得了运而生.一定的进展.对于一些对称性较高的体系,根据自旋相 开始,由于分子间的磁相互作用较弱,分子磁体的互作用的 Hamilton可由量子力学求出磁化率的解析形转换温度式T,然后根据实验数据计算出磁偶合系数 J 值,探索随c通常远远低于室温,难于达到应用的要求.结构的变化关系.对于对称性较差及组成较为复杂的体但是,第一个室温分子磁体V(TCNE)2·xCH2Cl2在1991系,自旋 Hamilton 的解析解很难求出.此时可用 Monte年由Manriquez[7]报道出后,虽然是一个不稳定的电荷转Carlo方法对物理过程进行模拟,求出磁偶合系数 J[10].移钒配合物,但近年来,分子磁性的研究已取得了令人 根据产生磁性的具体类型,磁交换机制主要通过以鼓舞的进展,Verdauger[8,9]报道了 Tc高达340 K的稳定下途径来实现:类普鲁士蓝的分子铁磁体. (1) 磁轨道正交 根据 Kahn等人的分子轨道理论,顺磁离子A与B之间的磁相互作用(J)由两部分贡献组二、分子磁性中的物理基础成,即铁磁贡献和反铁磁贡献,J = JF+ JAF.当A中未成对电子所占据的磁轨道与B中未成对电子所占据的磁 分子磁体的磁性来源于分子中具有未成对电子离轨道互相重叠时,它们之间的相互作用为反铁磁偶合,子之间的偶合,这些偶合相互作用既来自分子内,也可重叠积分越大,反铁磁偶合越强;当A与B中未成对电来自于分子间.分子内的自旋- 自旋相互作用往往通过子所占据的磁轨道正交时,它们之间的相互作用为铁磁“化学桥”来实现磁超相互作用.所以,分子磁性材料兼偶合.如图(1)中(a)、(b)所示.如果铁磁偶合与反铁磁偶具磁偶极- 偶极相互作用和超相互作用,故该类材料的合同时存在,通常反铁磁偶合强于铁磁偶合,因此只有磁性比常规的无机磁性材料表现出更丰富多彩的磁学当 JAF为零时,A与B间才为铁磁偶合.如在CsNiⅡ[CrⅢ性质.(CN)6]·2H2O[9]中,CrⅢ的磁轨道具有t2g对称性,而NiⅡ 根据铁磁体理论,要使材料产生铁磁性,首先体系的磁轨道具有e的原子或离子必须是顺磁性的g对称性,二者互为正交轨道,因而呈现,其次它们间的相互作用铁磁性偶合( T是铁磁性的.对于分子磁性材料,一个分子内往往包含c=90 K).当磁轨道正交时,铁磁偶合的一个或多个顺磁中心,即自旋载体,按照 Heisenberg 理大小依赖于轨道间的距离.论,两个自旋载体之间的磁交换作用可用以下等效Ham2 (2) 异金属反铁磁偶合 对于两个具有不同自旋的ilton算符来表示:顺磁金属离子,SA≠SB若A与B间存在磁相互作用,有^H两种情况:当A与B 间的磁相互作用为短程铁磁偶合ex= - 2J^S1^S2(1)其中时,总自旋 SJ 为交换积分,表示两个自旋载体间磁相互作用的T= SA+ SB;当A与B间的磁相互作用为反类型和大小. J 为正值时为铁磁性偶合,自旋平行的状态铁磁偶合时,总自旋 Sr=| SA- SB| (如图1中(c) (d)所为基态;J 为负值时为反铁磁性偶合,自旋反平行为基示).顺磁离子A和B间的磁相互作用大多为反铁磁偶态.如对分子磁性材料:A- X- B 体系(A,B 为顺磁中合.当为反铁磁偶合时,若 Sr= SB,则 Sr=0;若 SA与心,X为化学桥) ,X作为超交换的媒介使A和B发生磁SB不相等,则有净自旋,当在转换温度以下,净自旋有性偶合,设 SA= SB=1P2,则当反铁磁偶合时,分子基态序排列,使体系呈现亚铁磁性.因此,利用异金属之间反用单重态和三重态的能量差来表示:J = E铁磁偶合是构建高自旋分子的另一条有效途径.如CsMnS- ET. 磁相互作用研究的目的在于了解磁交换的机理,寻[Cr(CN)6] ,Mn2+的自旋为 SA=5P2,而Cr3+的自旋为 SB找磁性与结构之间的关系,并反过来指导分子磁性材料=3P2,二者之间产生反铁磁偶合,净自旋 ST= SA- SB的设计和合成.和通常的磁性材料一样,对分子基磁性=1P2,在低于转换温度( Tc=90 K)时,配合物表现为亚1·6 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述铁磁性[11].以分为下面几类:1. 有机自由基分子磁体 化合物中不含任何带磁性的金属离子,大多由 C,H,O,N四种有机元素组成的磁体材料.其自旋载体为有机自由基,如氮氧自由基.McConnel 早在1963 年就提出有机化合物内存在铁磁偶合的机制[2].制备方法采用有机合成方法.由于它们具有有机材料特殊的物理、化学图性能,因而是更具应用前景的分子铁磁材料.但直到今1 相同自旋之间的偶合:(a) 铁磁偶合;(b) 反铁磁偶合; 不同自旋之间的偶合:(c) 铁磁偶合;(d) 亚铁磁偶合日,纯有机分子磁体的转换温度仍极低,和有机超导材料一样,在小于50 K的低温区.日本科学家在这方面的 (3) 电荷转移 对给体- 受体电荷转移类配合物,工作做得很好.目前,得到广泛研究并进行了结构标定如[FeCp32]+[TCNE]-,基态时,[FeCp32]+的自旋为1P2,的有机铁磁体主要有氮氧自由基及其衍生物[14]、C60[TCNE]-的自旋也为1P2.在这样一个系统中,由于电荷(TDAE)(TDAE为四(二甲胺基) - 1,2- 亚乙基)[15]等.转移,形成激发三重态.在[FeCp32]+与[TCNE]-交替排列形成的链中,阳离子与前后两个[TCNE]-等距离,它2. 金属- 有机自由基分子磁体的e2g电子可向前后两个[TCNE]转移,形成 S =1的激发 化合物中含有带磁性的过渡金属或稀土金属离子,态.基态激发态混合后,降低了体系能量,使自旋取向沿同时也含有机自由基的基团,故有两种以上的自旋载体着一条链形成.如果每个链的取向都是平行的,且链间存在,并发生相互作用,由这种金属或金属配合物与自和链内[FeCp32]+与[TCNE]-位置相当,那么e2g电子可由基两种自旋载体组装的化合物,也可以构建分子铁磁以在链间传递,从而进一步稳定了体系,导致了相邻链体.其中有些是有机金属与自由基形成的电荷 转移盐的自旋平行取向,产生宏观的铁磁性现象[12].体系. (4) 有机自由基与多自由基 自从1991 年日本京 美国的Miller和Epstein教授在这个体系中作出了卓都大学的 Takahashi 等[13]成功地合成了基于 C、H、O、N越的贡献,首先他们发现了[M(Cp32][TCNZ](Z=Q或四种元素组成的有机铁磁体,使人们认识到含有氮氧自E,TCNE为四氰基乙烯,TCNQ为四氰代对苯醌二甲烷,M由基的有机化合物也是制备分子铁磁体的一条有效途(C3p)2为环戊二烯金属衍生物)[12]. 如,[Fe(Cp3)2]径.氮氧自由基与金属配合物形成的磁偶合体系已成为[TCNZ]为一变磁体(它有一反铁磁基态,但在临界外场分子铁磁体研究领域的一个重要方面.为1500Oe时,转变为具有高磁矩的类铁磁态) ,它由[Fe(Cp3)2]+阳离子与[TCNQ]-阴离子交替排列形成平行三、分子基磁性材料的分子设计和目的一维链,每一个离子均有一未成对的电子自旋[16].磁 前热点研究体系有序要求在整体上的自旋偶合,因此,直径较小的[TC2NE]-将比[TCNQ]-有较大的电子密度,预期将有利于 分子磁体的设计与合成实质上是一个在化学反应自旋偶合.实际情况证明了这一点,[Fe(Cp3中分子自组装的过程.选择合适的高自旋载体(砖头) ,2)]+[TC2NE]-由阳离子与阴离子交替排列构成一维链,在 K这可以是金属离子或具有自旋不为零的有机自由基,通以下表现为磁有序过非磁性的有机配体等桥梁基团作为构筑元件(石灰),在 T=2 K时,其矫顽力为1 000Oe,,超过了传统磁存储材料的值[17]以一定的方式无限长地联接起来.为了提高磁有序温度,,如通过脱溶剂法处理、改变抗衡离子或改变配体等途径他们又开创了M[TCNE],形成分子内部间x·yS(M=V,Mn,Fe,Ni,Co;S为的强相互作用和单元间弱相互作用的超分子结构.通过溶剂分子) 另外一类电荷转换盐分子磁体的研究工调控无限分子P分子单元(或链、层)间磁相互作用的类型作[18].并发现第一个室温以上的分子磁体V[TCNE]x·和大小,组装成低维或三维铁磁体.但就目前来说,除选yCH2Cl2,其 Tc高达400 K.值得一提的是,在常温下它显择合适的高自旋载体和桥联配体外,控制分子在晶格中示出矫顽力超过无机磁体,薄膜材料也在积极的研究堆砌方式也十分重要.中,已接近应用.遗憾的是,这类化合物的结构至今仍是 按照自旋载体和产生的磁性不同,分子磁性材料可不清楚.近年来,Miller等对[MnⅢTPP]+[TCNE]-(H2TPP·17 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi 为中心四苯卟啉)类分子磁体也进行了广泛的研究.有物在低温下,能够被光激发而发生从铁磁体到顺磁体的关的综述论文可参考文献[12]和[19].可逆转跃迁,是非常有实际应用的特性. Mn( Ⅱ) - 氮氧自由基链状配合物Mn(hfac)2(NIT2 草酸根桥联的双核或异双核金属配位物分子磁体Me)[20](hfac是六氟乙酰丙酮,NITMe 为2- 甲基- 4,4,一直吸引着人们的注意.具有D3对称性的[MⅢ(ox)3]3-5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物自由基,Tc是一个非常有用的建造单元.它在3个不同的方向上都=7. 8 K) 及 Cu ( Ⅱ) 自由基配合物 [Cu (hfac)2]有“钩子”,能轻而易举地把别的金属离子拉进来而形成(NIT[21]多维的金属离子交替排列,从而成为二维或三维分子磁pPy)2(NITpPy为2- (2’吡啶 - 4,4,5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物)是另一类的金属- 有体.如A[MⅡMⅢCr(ox)3](A =N(n - C4H9)+4、N( n -机自由基分子磁体.近年来,这类分子铁磁体的研究进C6H5)+4等) ,当MⅢ=Cr( Ⅲ) ,MⅡ为Mn(Ⅱ) ,Cu( Ⅱ) ,Co展很大,已由单自由基- 金属配合物扩展到多自由基-(Ⅱ) ,Fe( Ⅱ)和Ni( Ⅱ)时,其 Tc分别为6,7,10,12,14金属配合物.由于多自由基较单自由基有更多的自旋中K[26];当MⅢ=Fe( Ⅲ) ,MⅡ为Fe(Ⅱ) ,Ni(Ⅱ) ,Co( Ⅱ)时,心和配位方式,并且与金属配位更易形成多维结构的优Tc=30~50 K[27].点,多自由基—金属配位物的研究已成为分子磁体研究 草胺酸根合铜[Cu(opba)]2-、[Cu(pba)]2-及[Cu的热点之一[22].(pbaOH)]2-含有未配位基团,可作为形成多核配合物的前体.此前体具有两个桥基,易与Mn2+、Fe2+等阳离子3.金属配合物的分子磁体形成异双金属链而构成一维链状配合物,链内通过铁磁 金属配合物分子磁体是目前研究得最广泛、最深入或反铁磁偶合得到铁磁链或亚铁磁链,链间的铁磁或反的一类分子磁体,其自旋载体为过渡金属.在其构建单铁磁偶合导致材料的宏观磁性表现为铁磁或反铁磁性.元中,可以形成单核、双核及多核配合物.由这些高自旋这类分子磁体转变温度低,如由双草酰胺桥联的锰铜配的配位物进行适当的分子组装,可以形成一维、二维及合物MnCu(pbaOH)(H2O)3,Tc= K[28].三维分子磁体,可以形成链状或层状结构.根据桥联配 除此之外,近十年来化学家们对由三叠氮(N3)配体位体的不同,这类分子磁体主要包括草胺酸类、草酰胺桥联的多维化合物产生了极大的兴趣,这是因为三叠氮类、草酸根类、二肟类、氰根类等几种类型.配体主要以两种方式连接金属离子,见图2,分别对应反 报告的第一个这种类型的分子磁体是中间自旋 S =铁磁偶合和铁磁偶合,便于对分子磁性的设计.单独由3P2的FeⅢ(S2CNEt2)2Cl[4],在温度为 K以下表现为三叠氮配体桥联或混入其他有机桥联配体,可构成一磁有序,但无磁滞现象.接着便是基于双金属的低温铁维,二维和三维的配位聚合物,形成独特的磁学性质并磁有序材料[CrⅢ(NH3)6]3+[FeⅢCl6]3-( Tc= K和在一定温度下构成分子磁体[29].这方面,我国的南京大亚铁磁有序材料[CrⅢ(NH3)6]3+[CrⅢ(CN)6]3-( Tc=2.学和南开大学也做出了很好的工作[30,31].85 K) ,它们同样不具有磁滞现象[23,24]. 近年来,由法国科学家Verdaguer发现普鲁士蓝类配合物所表现出的较高的转换温度,大的矫顽力,使得普鲁士蓝类磁性配合物越来越吸引人们的注意[25].普鲁士蓝类分子磁体是基于构筑元件M(CN)k-6与简单金属离子通过氰根桥联的类双金属配合物,双金属离子均处于八面体配位环境,并通过氰桥连接成三维网络.其组成形式为 Mk[M’(CN)6]l·nH2O 或 AMk[M’(CN)6]l·nH2O(M和M’为不同的顺磁性,化合物为铁磁体,如图2 三叠氮配体和金属离子以及对应的磁交换Cu3[Cr(CN)6]2·15H2O( Tc= 66 K) 、Cu3[Fe(CN)6]2·12H4. 单分子磁体(Single2Molecular Magnets)2O(Tc=14 K) 、Ni3[Cr(CN)6]2·14H2O( Tc=23 K)均为铁磁体.若两个金属离子磁轨道重叠,它们之间的磁 以上情况都是分子被连接成聚合物后产生非常强偶合为反铁磁性,化合物为反铁磁体或亚铁磁体,如的分子间相互作用.从另一个角度,若分子间相互作用(Net4)[V(CN)6]·2H2O( Tc=230 K) 、CrⅡ3[CrⅢ很小可忽略,则分子被隔离成一个个独立的磁分子.当(CN)6]2·10H2O( Tc=240 K)[25].有价值的是,这类化合分子内含有多个自旋离子中心并发生磁偶合时,则总分1·8 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述子的磁矩决定于磁偶合后的最低能态,这时就可能出现域.如在本文中提到的:转换温度超过室温的分子基铁基态为自旋数较高的稳定态,在磁场的作用下产生准连磁和亚铁磁体材料的发现;具有高自旋的多核配合物在续的激发态能级.所以整个分子的磁矩在外场下,沿外低温下表现出磁性的单分子磁体的发现;在室温以上具场的方向偏转时需要克服一个较大的势垒,这种势垒来有大的磁滞现象的自旋交叉配合物的发现;分子基磁体自零场分裂的磁各向异性.有时也称这种现象为自旋阻的光磁、热磁效应;以及分子基磁体的 GMR、CMR效应挫(spinfrustration)[32].这种依赖于外磁场的双稳态(bist2等.所有这些成果都预示着分子磁性材料光明的未来.ability)被看作是新一代信息材料应用的基础.目前所发 相比于传统的磁性材料,由于广泛的化学选择性,现的单分子磁体主要包括Mn12和Mn14离子簇、Fe8离子可以从分子级别上对分子磁性材料进行修饰和改良;作簇和 V为磁性材料4离子簇等三类,如基态为 S = 10 的 Mn12O12,分子铁磁体具有体积小、相对密度小、能耗(O[33]小及结构的多样化等优点,其制备的方法大多为常规的2CMe)16(H2O)4.有意义的是,当这种单分子体积大到一定值时,可被认为是一种尺寸单一的可磁化的纳化学方法,便于做成各种形态的产品,所体现的性质有米材料,具有不可估量的应用前景.些是传统的磁性材料不可替代的.已发现这类新物质可能成为各类高科技材料,特别是新一代的信息存储5. 自旋交叉配合物材料. 众所周知 当然,当配合物分子内的自旋离子中心减少到,作为一种新生的材料,有很多方面仍需要进仅一个时一步研究和改进,这也是我国科学家在基础研究和应用,分子间的相互作用又很小,配合物显示出独立离子的特性科学走向世界前列的良机.可以预见,在未来的发展中,,为近似理想的顺磁性.具有3d4- 3d7电子配置的过渡金属配合物分子基磁性材料将可能在:①高,在八面体配位结构下,电子Tc温度的分子磁体;②在五个d电子轨道上的排布,可能会受到配位场e提高材料的物理稳定性;③透明的绝缘磁体;④易变、易g和t2g加工的分子磁体轨道之间的能隙Δ大小的影响;⑤和其他物理性能结合的复合磁性材,当Δ平均电子对能p相料近时;⑥超硬和超软磁体; ⑦液体磁体等方面着重探索和,化合物的自旋态可能由于某些外界条件的微扰,得到发展可呈现高自旋态与低自旋态的交叉转变[34].(.最典型的是2000年8月29日收到)一些Fe(Ⅱ)配合物,发生高自旋态5T1 Alivisatos A. P. ,Barbara P. F. ,Castleman A. W. ,et. al. Adv. Ma22(S =2,顺磁性)与ters. ,1998;10:1297低自旋态1A1(S =0,抗磁性)的转变,伴随自旋相变,化2 McConnel . J. Chem. Phys. ,1963;39:1910合物可能有结构甚至和颜色的变化.有一些的转变温度3 McConnel . Proc. . Welch Found. Chem. ;11:144还在常温区,如[Fe(Htrz)4 Wickman . ,Trozzolo . ,Williams . ,et. al. Phys. Rev. ,3- 3x(NH2trz)3x](ClO4)2·H2O1967;155:563(trz=1,2,4 三唑类) ,在常温下从紫色(低自旋)随温度5 Miller . ,Calabrese . ,Epstein . ,et. al. J. Chem. Soc. ,上升转为白色(高自旋).成为另一种新的可利用的双稳Chem. Commun,1986;10266 Pei Y. ,Verdauger M. ,Kahn O. ,et al. J. Am. Chem. Soc. ,1986;态现象[35].1984年,Decurtins等人首次观察到光诱导自108:7428旋交叉效应[36],并随后在低温下利用光对自旋态的激发7 . ,Yee . ,Mclean . ,et al. Science,1991;252:和调控进行了深入研究,期望能用作纳秒级的快速光开14158 FerlayS. ,Mallsah T. ,Ouahes R. ,et al. Nature,1995;378:701关和存储器[34].我国在自旋交叉研究方面也取得了可喜9 Mallah T. ,Thiebaut S. ,VerdaguerM. ,et al. Science,1993;262:1554的成绩[37],如发现温度回滞宽度近55 K的自旋交叉化10 Zhong . ,You X. Z. ,Chen T. Y. Annual Sci Rept—suppl of J of合物[Fe(dpp)Nanjing Univ. ,, Nov19942(NCS)2]py(dpp =二吡嗪(3,2,2-,3-)邻11 Griebler . ,Babel . ,NaturforschB. Anorg. Chem. ,1982;37B菲罗啉,py=吡啶)[38],而且首次发现在快速冷却下仍保(7) :832持高自旋亚稳态,实现了不通过光诱导也能得到低温下12 . ,. Chem. Int. Ed. ,1994;33:38513 Takahashi M. ,Turek P. ,NakazawaM. ,et al. PhysLett,1991;67:746的双稳态[39].14 Chiarelli R. ,. ,Rassat A. ,et al. Nature,1993;363:14715 Allemand . ,Khemani . ,Koch A. ,et al. Science,1991;254:301四、展 望16 . ,. ,Reiff . ,et al. J. Phys. Chem. ,1987;91:4344 分子基磁性材料作为一种新型的材料,近十年来,17 . ,. ,. ,et. al. J. Am. Chem. Soc. ,1987;109:769在化学家和物理学家的努力下,在很多方面已经取得了18 Zhou P. ,. ,. ;181:71突破性的进展,迅速发展成为一门材料学科的前沿领19 . Inorg. Chem. ,2000;39:4392估计效果很不好 如果想要的话,留个邮箱,给你发过去

近期,中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室M08组龙有文研究员团队和武汉大学物理科学与技术学院的何军教授团队合作,对不同厚度的Cr2Te3样品进行了研究,发现其 T C随着材料厚度的降低而逐渐升高,直到厚度低于二维极限(~10 nm)时, T C由块体的160 K急剧上升至室温附近(约280 K),并通过理论计算揭示了这一反常现象的机理。 一直以来,根据Mermin-Wagner理论,由于热扰动的影响,长程的铁磁有序很难在二维材料中形成。但是,近期一系列二维层状材料,比如Cr2Ge2Te6,CrI3以及VSe2等的长程铁磁性被发现,掀起了层状材料(层与层之间由范德瓦尔斯键连接)磁性研究的热潮。然而到目前为止,对于非层状铁磁材料(原子之间由非范德瓦尔斯键连接)不断变薄直至1个元胞左右厚度的磁性演化却缺乏相关的研究。为 探索 二维非层状材料的铁磁行为,研究团队生长出了不同厚度的Cr2Te3,并对其结构、电输运、磁性以及反常霍尔效应等进行了详细表征。研究表明,当厚度大于12 nm时,材料展示了与块体类似的铁磁行为,其 T C仅随厚度降低略有升高。然而,当厚度降低至6个元胞厚度时(约 nm), T C急剧上升至室温附件,可高达280 K,展示了与其他铁磁材料 T C随厚度变化截然相反的规律。进一步通过理论计算,团队发现Cr2Te3铁磁居里温度随厚度的反常变化可能源于材料表面原子的重构,使得表面原子间距离变短,铁磁相互作用增强,该结论进一步获得了X光衍射结果的佐证。本工作率先发现了铁磁居里温度随厚度降低而急剧升高的反常现象,为深入研究二维材料特别是非层状二维材料的新奇物理性质提供了范例。 相关研究结果发表在近期的Nano. Lett. 上(20,3130,2020)。该工作获得了 科技 部(2018YFE0103200,2018YFA0305700),国家自然科学基金委(11934017,51772324,11921004,11574378),中国科学院(QYZDB-SSW-SLH013,GJHZ1773)等项目的支持。 文章链接: 图1:Cr 2 Te 3 具有三方晶体结构。 图2:二维Cr 2 Te 3 具有铁磁性,在280 K和180 K附近出现两个磁转变。 图3:不同厚度Cr 2 Te 3 铁磁居里温度 Tc 随厚度的变化关系,低于二维极限(~10 nm)时, Tc 急剧上升到室温附件(约280 K)。 图4:理论计算和XRD测试表明二维Cr 2 Te 3 表面原子可能会重构,使得表面原子间距离变短,从而导致 Tc 急剧升高。 ↓ 点击标题即可查看 ↓ 1. 为什么不倒翁小姐姐能摇一晚上不倒? 2. 如果在家考,作弊就很容易吗? 3. 「我给你 37 美元,求求你把这桶油搬走吧」 4. 老师隔离后用射击 游戏 上网课,真不怕学生看完更想玩 游戏 ? 5. 被五步蛇咬,走几步才最安全? 6. 我们从不你,除非……你不懂物理 7. 为什么菜油倒海上能救命?这道题美国学霸国父也不会做 8. 为什么有 32 个关卡的超级马里奥兄弟只要 64KB? 9. 十大物理效应,一次看个够! 10. 方程 E = mc² 中,m 的能量从何而来?

图1. CrN/ C r₂O₃ 超晶格界面结构和电子态表征

界面磁性 是一个具有代表性的过渡金属氧化物低维结构的界面物性,对于理解界面自旋轨道耦合的物理机制和构筑低维自旋电子器件非常重要。 氧化物异质界面的多自由度耦合不仅可以影响界面两侧氧化物的本征磁性,还可以在界面诱发出新的磁基态 。 例如,研究者们在两个反铁磁性氧化物界面观测到铁磁性【Science 280, 5366 (1998)】、在完全抗磁的铜基超导体与锰氧化物界面反铁磁序【Nat. , 244 (2006)】、在反铁磁性氧化物和顺磁性氧化物界面观测到磁交换偏置【Nat. Mater. 11, 195 (2012)】和反常霍尔效应【Nat. Commun. 7, 12727 (2016)】等。近二十年来,在 全氧化物异质界面 观测到的出乎意料的新奇磁性现象极大地丰富了氧化物异质结的物理图像。与此同时,过渡金属氮化物是与过渡金属氧化物媲美的一族具有 关联量子效应 和 丰富物理特性 的材料体系。通常,制备单晶氮化物需要苛刻的高压和高温的极端条件,同时这些氮化物的化学计量比极难准确控制。因此,到目前为止,将氧化物与氮化物外延生长构成异质界面未见报道,其界面的物理特性亟待研究。在这类新型异质界面中, 两种阴离子(氧和氮)都将与过渡金属离子发生轨道杂化构成界面结构,它们都将提供共存的库伦排斥和原子内/间的交换相互作用 。 同时,由于不同离子之间的价态、离子半径、轨道电子数目等本征特性不同,这种新型界面将有可能产生有别于本征过渡金属氮化物和氧化物母体的新奇物性,有望进一步丰富低维关联电子材料的物理图像,扩展这类量子界面的多功能性。

图2. 利用超导量子干涉仪和X射线光电子能谱表征CrN /Cr₂O₃超晶 格宏观磁性

氮化铬(CrN)块体是一类反铁磁金属性材料,具有简单立方晶格(Fm3m)【详见2020年103期: 反铁磁金属氮化铬超薄膜的电子态相变研究 】,而氧化铬( Cr ₂ O ₃ )块材具有反铁磁绝缘体特性,是典型的六方晶格 六方晶格 。两种材料。 两种材料本征的对称性、电负性、阴离子和晶格常数均有很大差别, 能否形成高质量的量子界面以及界面是否具有与本征材料不同的新颖物性 是本项目研究的重点 。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心的郭尔佳特聘研究员指导博士研究生金桥,与金奎娟研究员、谷林研究员、朱涛研究员、刘刚钦特聘研究员以及中国科学院宁波材料技术与工程研究所的杨洪新研究员、南方 科技 大学的王善民教授和中国科学技术大学的闫文盛研究员/李倩研究员紧密合作, 利用脉冲激光沉积技术制备了高结晶质量、准确化学配比、单原胞层精度的反铁磁氮化铬(CrN)/反铁磁氧化铬( Cr ₂ O ₃ )超晶格 (以下简称超晶格)。利用扫描透射电镜和电子能量损失谱,他们观察到氮和氧离子在各自超薄膜中均匀分布,同时界面处的阴离子化学混杂小于4埃, 具有单原胞层量级的平整界面 。实验上,他们首先利用超导量子干涉仪测量不同周期的超晶格,发现随着厚度增加,饱和磁化强度减小和矫顽场增加。在室温下,两原胞层周期的超晶格表现出典型的 铁磁性特征 , 居里温度约为325K ,超过了两种母体材料的反铁磁聂耳温度。研究团队进一步通过X射线磁圆二色谱、氮空位色心磁力仪等实验技术确认了这种新颖的超晶格界面具有 室温铁磁性 。他们利用中国散裂中子源和美国橡树岭国家实验室的散裂中子源的极化中子反射谱仪将不同周期超晶格中的磁矩和化学组分随薄膜厚度的分布关系精确表征,进一步给出了该界面具有铁磁性的确凿证据。研究团队根据界面原子结构开展了系统的第一性原理计算,结果表明铁磁性是该界面结构的最稳定基态,能隙和磁矩的随厚度的变化均与实验观测一致 。 研究团队认为通过界面处不同阴离子与铬离子的轨道耦合改变交换耦合强度,产生的自旋排列长程序,打破了本征两种母体材料的反铁磁序。本工作的意义在于 首次在单原胞层尺度精准构筑了不同于全氧化物界面的氮化物/氧化物新型量子界面,利用人工界面耦合在两个反铁磁材料界面观测到室温铁磁性 ,这种方法为研究低维量子异质结中的量子序和发现新物态提供了新思路。

图3. 氮空位色心和极化中子反射技术进一步确认超晶格中存在确凿净磁矩。

本研究的相关内容以“Room-temperature ferromagnetism at an oxide/nitride interface”为题发表在Physical Review Letters上。

图4. 超晶格的能带结构、原子磁矩和能隙随周期的变化关系

本研究成果的共同第一作者为中国科学院物理研究所的博士生金桥和张庆华副研究员以及中国科学院宁波材料技术与工程研究所的博士生王智文。中国科学院物理研究所的郭尔佳特聘研究员和金奎娟研究员以及中国科学院宁波材料技术与工程研究所的杨洪新研究员为文章的共同通讯作者。本工作得到了中国科学院高能物理研究所的王嘉鸥研究员、上海大学的尹鑫茂教授、新加坡国立大学的Chi Sin Tang和Andrew T. S. Wee教授在同步辐射光源测量方面以及美国西北太平洋可再生能源国家实验室的王乐博士和Scott A. Chambers教授在X射线光电子能谱方面以及郑州大学郭海中教授、法国国家科学院的Sujit Das博士在宏观物性表征方面的支持。

该工作得到了 科技 部重点研发计划“量子调控与量子信息”专项(2020YFA0309100和2019YFA0308500)、国家自然科学基金委、北京市 科技 新星计划、北京市自然科学基金、中国科学院各类专项经费等项目的支持。

相关工作链接:

铁磁性材料的研究进展论文

“成功啦!”“成功啦!”“哈哈……”从我家里传出一阵阵笑声和欢呼声,这是我和伙伴们在做一个有趣的实验。在学校里,老师常在科技兴趣课上做许多有趣的实验,引起了我浓厚的兴趣。于是,在星期天,我邀来几个要好的朋友,神秘地说:“咱们做一个实验好吗?”听说我要做实验,邻居的小弟弟也被吸引过来。伙伴们七嘴八舌地问:“什么实验?”“是什么?”我像变戏法似地拿出一支蜡烛、一块磁铁和一根铁条。伙伴们不知我葫芦里卖的是什 么药,被我搞得丈二和尚摸不着头脑。我胸有成竹地把蜡烛点燃,立在桌面上,用一根铁条吸住磁铁,拿到火上去烧。开始,磁铁紧紧地贴在铁条上。蜡烛的火焰贪婪地舔着磁铁。不一会儿,磁铁像生病似的,有气无力地粘在铁条上,快要掉下来了。终于,“砰”的一声,磁铁落地了。“实验成功喽!成功喽!”大家手舞足蹈,那高兴劲儿就别提了。为什么磁铁遇热会失去磁性呢?大家心里不禁打起了一个问号,连忙去翻书找答案。我突然想起《少年科学画报》里有介绍科学知识的内容,就去翻《少年科学画报》。“找到了!”我惊喜地叫了起来,像哥伦布发现新大陆一般高兴。原来,磁和电子是分不开的,运动的电子周围就有磁,这叫电磁效应,电磁铁烧红了,它内部的分子热得乱窜,破坏了电子运动方向的一致性,磁效应作用互相抵消,所以整块“磁铁”不再显示磁性。我想:在家用电器中,收音机喇叭上有磁铁,就不能让高温物体接近。可想而知,电视机上也有喇叭,上面也有磁铁,原理不正是一样吗?如果高温物体靠近带有磁性的冰箱,冰箱不就被损坏了吗?怪不得说明书上强调不能接近高温物体。我把自己想法告诉大家,他们恍然大悟。邻居小弟弟似懂非懂,皱着眉头,一本正经地说:“好像懂了,又好像没懂。”一句话把我们逗得哈哈大笑。

本人从智网上找的 有PDF格式 这是从上面转下来的 统磁体以单原子或离子为构件,三维磁有序化主要来自通过化学键传递的磁相互作用,其制备采用冶金学或其一、引 言他物理方法;而分子磁体以分子或离子为构件,在临界 作为一种新型的软材料,分子基材料(molecule2based温度以下的三维磁有序化主要来源于分子间的相互作materials)在近年来材料科学的研究中已成为化学家、物用,其制备采用常规的有机或无机化学合成方法.由于理学家以及生物学家非常重视的新兴科学领域[1].分子在分子磁体中没有伸展的离子键、共价键和金属键,因基材料的定义是,通过分子或带电分子组合出主要具有而很容易溶于常规的有机溶剂,从而很容易得到配合物分子框架结构的有用物质.顾名思义,分子基磁性材料的单晶,有利于进行磁性与晶体结构的相关性研究,有(molecule2based magnetic materials) ,通称分子磁性材料,利于对磁性机制的理论研究.作为磁性材料,分子铁磁是具有磁学物理特征的分子基材料.当然,分子磁性材体具有体积小、相对密度轻、结构多样化、易于复合加工料是涉及化学、物理、材料和生命科学等诸多学科的新成型等优点,有可能作为制作航天器、微波吸收隐身、电兴交叉研究领域.主要研究具有磁性、磁性与光学或电磁屏蔽和信息存储的材料.导等物理性能相结合分子体系的设计、合成.我们认为, 分子磁性研究始于理论探索.早在 1963 年McCo2分子磁性材料是在结构上以超分子化学为主要特点的、nnel[2]就提出有机化合物可能存在铁磁性,并提出了分在微观上以分子磁交换为主要性质的、具有宏观磁学特子间铁磁偶合的机制.1967 年,他又提出了涉及从激发征并可能应用的一类物质.态到基态电子转移的分子离子之间产生稳定铁磁偶合 分子铁磁体是具有铁磁性质的分子化合物,它在临的方法[3].同年,Wickman[4]在贝尔实验室合成了第一个界温度(Tc)下具有自发磁化等特点.分子磁体有别于传分子铁磁体.之后,科学家们相继报道了一些类铁磁性统的不易溶解的金属、金属合金或金属氧化物磁体.传质的磁性化合物,但直到1986年前,这些合成的磁性化·15 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi 合物没有表现出硬铁磁所具有的磁滞特征.1986 年,材料理论的精确预言和计算是相当困难的,而且,分子Miller等人[5]将二茂铁衍生物[Fe(Cp3)2](Cp3为五甲基磁性材料中包含的原子和分子基团更多,空间结构的基环戊二稀)与四氰基乙烯自由基(TCNE)经电荷转移合对称性更复杂,局部的磁交换的途径也体现出多样性,成了第一个分子铁磁体[Fe(Cp3)2]+[TCNE] ,其转换温使得目前的研究还处于实验经验的积累和定性的解释度 T上.尽管如此,科学家们对分子磁交换的机制进行了大c= K.与此同时,Kahn 等人[6]报道了具有铁磁性的MnCu(pbaOH)·(H量的研究,提出了许多近似理论模型,并基于这些模型2O)3分子化合物.从此,分子磁体的研究引起了人们的广泛关注,分子基磁性材料也应和大量的实验数据,在磁性与结构的关系研究中取得了运而生.一定的进展.对于一些对称性较高的体系,根据自旋相 开始,由于分子间的磁相互作用较弱,分子磁体的互作用的 Hamilton可由量子力学求出磁化率的解析形转换温度式T,然后根据实验数据计算出磁偶合系数 J 值,探索随c通常远远低于室温,难于达到应用的要求.结构的变化关系.对于对称性较差及组成较为复杂的体但是,第一个室温分子磁体V(TCNE)2·xCH2Cl2在1991系,自旋 Hamilton 的解析解很难求出.此时可用 Monte年由Manriquez[7]报道出后,虽然是一个不稳定的电荷转Carlo方法对物理过程进行模拟,求出磁偶合系数 J[10].移钒配合物,但近年来,分子磁性的研究已取得了令人 根据产生磁性的具体类型,磁交换机制主要通过以鼓舞的进展,Verdauger[8,9]报道了 Tc高达340 K的稳定下途径来实现:类普鲁士蓝的分子铁磁体. (1) 磁轨道正交 根据 Kahn等人的分子轨道理论,顺磁离子A与B之间的磁相互作用(J)由两部分贡献组二、分子磁性中的物理基础成,即铁磁贡献和反铁磁贡献,J = JF+ JAF.当A中未成对电子所占据的磁轨道与B中未成对电子所占据的磁 分子磁体的磁性来源于分子中具有未成对电子离轨道互相重叠时,它们之间的相互作用为反铁磁偶合,子之间的偶合,这些偶合相互作用既来自分子内,也可重叠积分越大,反铁磁偶合越强;当A与B中未成对电来自于分子间.分子内的自旋- 自旋相互作用往往通过子所占据的磁轨道正交时,它们之间的相互作用为铁磁“化学桥”来实现磁超相互作用.所以,分子磁性材料兼偶合.如图(1)中(a)、(b)所示.如果铁磁偶合与反铁磁偶具磁偶极- 偶极相互作用和超相互作用,故该类材料的合同时存在,通常反铁磁偶合强于铁磁偶合,因此只有磁性比常规的无机磁性材料表现出更丰富多彩的磁学当 JAF为零时,A与B间才为铁磁偶合.如在CsNiⅡ[CrⅢ性质.(CN)6]·2H2O[9]中,CrⅢ的磁轨道具有t2g对称性,而NiⅡ 根据铁磁体理论,要使材料产生铁磁性,首先体系的磁轨道具有e的原子或离子必须是顺磁性的g对称性,二者互为正交轨道,因而呈现,其次它们间的相互作用铁磁性偶合( T是铁磁性的.对于分子磁性材料,一个分子内往往包含c=90 K).当磁轨道正交时,铁磁偶合的一个或多个顺磁中心,即自旋载体,按照 Heisenberg 理大小依赖于轨道间的距离.论,两个自旋载体之间的磁交换作用可用以下等效Ham2 (2) 异金属反铁磁偶合 对于两个具有不同自旋的ilton算符来表示:顺磁金属离子,SA≠SB若A与B间存在磁相互作用,有^H两种情况:当A与B 间的磁相互作用为短程铁磁偶合ex= - 2J^S1^S2(1)其中时,总自旋 SJ 为交换积分,表示两个自旋载体间磁相互作用的T= SA+ SB;当A与B间的磁相互作用为反类型和大小. J 为正值时为铁磁性偶合,自旋平行的状态铁磁偶合时,总自旋 Sr=| SA- SB| (如图1中(c) (d)所为基态;J 为负值时为反铁磁性偶合,自旋反平行为基示).顺磁离子A和B间的磁相互作用大多为反铁磁偶态.如对分子磁性材料:A- X- B 体系(A,B 为顺磁中合.当为反铁磁偶合时,若 Sr= SB,则 Sr=0;若 SA与心,X为化学桥) ,X作为超交换的媒介使A和B发生磁SB不相等,则有净自旋,当在转换温度以下,净自旋有性偶合,设 SA= SB=1P2,则当反铁磁偶合时,分子基态序排列,使体系呈现亚铁磁性.因此,利用异金属之间反用单重态和三重态的能量差来表示:J = E铁磁偶合是构建高自旋分子的另一条有效途径.如CsMnS- ET. 磁相互作用研究的目的在于了解磁交换的机理,寻[Cr(CN)6] ,Mn2+的自旋为 SA=5P2,而Cr3+的自旋为 SB找磁性与结构之间的关系,并反过来指导分子磁性材料=3P2,二者之间产生反铁磁偶合,净自旋 ST= SA- SB的设计和合成.和通常的磁性材料一样,对分子基磁性=1P2,在低于转换温度( Tc=90 K)时,配合物表现为亚1·6 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述铁磁性[11].以分为下面几类:1. 有机自由基分子磁体 化合物中不含任何带磁性的金属离子,大多由 C,H,O,N四种有机元素组成的磁体材料.其自旋载体为有机自由基,如氮氧自由基.McConnel 早在1963 年就提出有机化合物内存在铁磁偶合的机制[2].制备方法采用有机合成方法.由于它们具有有机材料特殊的物理、化学图性能,因而是更具应用前景的分子铁磁材料.但直到今1 相同自旋之间的偶合:(a) 铁磁偶合;(b) 反铁磁偶合; 不同自旋之间的偶合:(c) 铁磁偶合;(d) 亚铁磁偶合日,纯有机分子磁体的转换温度仍极低,和有机超导材料一样,在小于50 K的低温区.日本科学家在这方面的 (3) 电荷转移 对给体- 受体电荷转移类配合物,工作做得很好.目前,得到广泛研究并进行了结构标定如[FeCp32]+[TCNE]-,基态时,[FeCp32]+的自旋为1P2,的有机铁磁体主要有氮氧自由基及其衍生物[14]、C60[TCNE]-的自旋也为1P2.在这样一个系统中,由于电荷(TDAE)(TDAE为四(二甲胺基) - 1,2- 亚乙基)[15]等.转移,形成激发三重态.在[FeCp32]+与[TCNE]-交替排列形成的链中,阳离子与前后两个[TCNE]-等距离,它2. 金属- 有机自由基分子磁体的e2g电子可向前后两个[TCNE]转移,形成 S =1的激发 化合物中含有带磁性的过渡金属或稀土金属离子,态.基态激发态混合后,降低了体系能量,使自旋取向沿同时也含有机自由基的基团,故有两种以上的自旋载体着一条链形成.如果每个链的取向都是平行的,且链间存在,并发生相互作用,由这种金属或金属配合物与自和链内[FeCp32]+与[TCNE]-位置相当,那么e2g电子可由基两种自旋载体组装的化合物,也可以构建分子铁磁以在链间传递,从而进一步稳定了体系,导致了相邻链体.其中有些是有机金属与自由基形成的电荷 转移盐的自旋平行取向,产生宏观的铁磁性现象[12].体系. (4) 有机自由基与多自由基 自从1991 年日本京 美国的Miller和Epstein教授在这个体系中作出了卓都大学的 Takahashi 等[13]成功地合成了基于 C、H、O、N越的贡献,首先他们发现了[M(Cp32][TCNZ](Z=Q或四种元素组成的有机铁磁体,使人们认识到含有氮氧自E,TCNE为四氰基乙烯,TCNQ为四氰代对苯醌二甲烷,M由基的有机化合物也是制备分子铁磁体的一条有效途(C3p)2为环戊二烯金属衍生物)[12]. 如,[Fe(Cp3)2]径.氮氧自由基与金属配合物形成的磁偶合体系已成为[TCNZ]为一变磁体(它有一反铁磁基态,但在临界外场分子铁磁体研究领域的一个重要方面.为1500Oe时,转变为具有高磁矩的类铁磁态) ,它由[Fe(Cp3)2]+阳离子与[TCNQ]-阴离子交替排列形成平行三、分子基磁性材料的分子设计和目的一维链,每一个离子均有一未成对的电子自旋[16].磁 前热点研究体系有序要求在整体上的自旋偶合,因此,直径较小的[TC2NE]-将比[TCNQ]-有较大的电子密度,预期将有利于 分子磁体的设计与合成实质上是一个在化学反应自旋偶合.实际情况证明了这一点,[Fe(Cp3中分子自组装的过程.选择合适的高自旋载体(砖头) ,2)]+[TC2NE]-由阳离子与阴离子交替排列构成一维链,在 K这可以是金属离子或具有自旋不为零的有机自由基,通以下表现为磁有序过非磁性的有机配体等桥梁基团作为构筑元件(石灰),在 T=2 K时,其矫顽力为1 000Oe,,超过了传统磁存储材料的值[17]以一定的方式无限长地联接起来.为了提高磁有序温度,,如通过脱溶剂法处理、改变抗衡离子或改变配体等途径他们又开创了M[TCNE],形成分子内部间x·yS(M=V,Mn,Fe,Ni,Co;S为的强相互作用和单元间弱相互作用的超分子结构.通过溶剂分子) 另外一类电荷转换盐分子磁体的研究工调控无限分子P分子单元(或链、层)间磁相互作用的类型作[18].并发现第一个室温以上的分子磁体V[TCNE]x·和大小,组装成低维或三维铁磁体.但就目前来说,除选yCH2Cl2,其 Tc高达400 K.值得一提的是,在常温下它显择合适的高自旋载体和桥联配体外,控制分子在晶格中示出矫顽力超过无机磁体,薄膜材料也在积极的研究堆砌方式也十分重要.中,已接近应用.遗憾的是,这类化合物的结构至今仍是 按照自旋载体和产生的磁性不同,分子磁性材料可不清楚.近年来,Miller等对[MnⅢTPP]+[TCNE]-(H2TPP·17 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi 为中心四苯卟啉)类分子磁体也进行了广泛的研究.有物在低温下,能够被光激发而发生从铁磁体到顺磁体的关的综述论文可参考文献[12]和[19].可逆转跃迁,是非常有实际应用的特性. Mn( Ⅱ) - 氮氧自由基链状配合物Mn(hfac)2(NIT2 草酸根桥联的双核或异双核金属配位物分子磁体Me)[20](hfac是六氟乙酰丙酮,NITMe 为2- 甲基- 4,4,一直吸引着人们的注意.具有D3对称性的[MⅢ(ox)3]3-5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物自由基,Tc是一个非常有用的建造单元.它在3个不同的方向上都=7. 8 K) 及 Cu ( Ⅱ) 自由基配合物 [Cu (hfac)2]有“钩子”,能轻而易举地把别的金属离子拉进来而形成(NIT[21]多维的金属离子交替排列,从而成为二维或三维分子磁pPy)2(NITpPy为2- (2’吡啶 - 4,4,5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物)是另一类的金属- 有体.如A[MⅡMⅢCr(ox)3](A =N(n - C4H9)+4、N( n -机自由基分子磁体.近年来,这类分子铁磁体的研究进C6H5)+4等) ,当MⅢ=Cr( Ⅲ) ,MⅡ为Mn(Ⅱ) ,Cu( Ⅱ) ,Co展很大,已由单自由基- 金属配合物扩展到多自由基-(Ⅱ) ,Fe( Ⅱ)和Ni( Ⅱ)时,其 Tc分别为6,7,10,12,14金属配合物.由于多自由基较单自由基有更多的自旋中K[26];当MⅢ=Fe( Ⅲ) ,MⅡ为Fe(Ⅱ) ,Ni(Ⅱ) ,Co( Ⅱ)时,心和配位方式,并且与金属配位更易形成多维结构的优Tc=30~50 K[27].点,多自由基—金属配位物的研究已成为分子磁体研究 草胺酸根合铜[Cu(opba)]2-、[Cu(pba)]2-及[Cu的热点之一[22].(pbaOH)]2-含有未配位基团,可作为形成多核配合物的前体.此前体具有两个桥基,易与Mn2+、Fe2+等阳离子3.金属配合物的分子磁体形成异双金属链而构成一维链状配合物,链内通过铁磁 金属配合物分子磁体是目前研究得最广泛、最深入或反铁磁偶合得到铁磁链或亚铁磁链,链间的铁磁或反的一类分子磁体,其自旋载体为过渡金属.在其构建单铁磁偶合导致材料的宏观磁性表现为铁磁或反铁磁性.元中,可以形成单核、双核及多核配合物.由这些高自旋这类分子磁体转变温度低,如由双草酰胺桥联的锰铜配的配位物进行适当的分子组装,可以形成一维、二维及合物MnCu(pbaOH)(H2O)3,Tc= K[28].三维分子磁体,可以形成链状或层状结构.根据桥联配 除此之外,近十年来化学家们对由三叠氮(N3)配体位体的不同,这类分子磁体主要包括草胺酸类、草酰胺桥联的多维化合物产生了极大的兴趣,这是因为三叠氮类、草酸根类、二肟类、氰根类等几种类型.配体主要以两种方式连接金属离子,见图2,分别对应反 报告的第一个这种类型的分子磁体是中间自旋 S =铁磁偶合和铁磁偶合,便于对分子磁性的设计.单独由3P2的FeⅢ(S2CNEt2)2Cl[4],在温度为 K以下表现为三叠氮配体桥联或混入其他有机桥联配体,可构成一磁有序,但无磁滞现象.接着便是基于双金属的低温铁维,二维和三维的配位聚合物,形成独特的磁学性质并磁有序材料[CrⅢ(NH3)6]3+[FeⅢCl6]3-( Tc= K和在一定温度下构成分子磁体[29].这方面,我国的南京大亚铁磁有序材料[CrⅢ(NH3)6]3+[CrⅢ(CN)6]3-( Tc=2.学和南开大学也做出了很好的工作[30,31].85 K) ,它们同样不具有磁滞现象[23,24]. 近年来,由法国科学家Verdaguer发现普鲁士蓝类配合物所表现出的较高的转换温度,大的矫顽力,使得普鲁士蓝类磁性配合物越来越吸引人们的注意[25].普鲁士蓝类分子磁体是基于构筑元件M(CN)k-6与简单金属离子通过氰根桥联的类双金属配合物,双金属离子均处于八面体配位环境,并通过氰桥连接成三维网络.其组成形式为 Mk[M’(CN)6]l·nH2O 或 AMk[M’(CN)6]l·nH2O(M和M’为不同的顺磁性,化合物为铁磁体,如图2 三叠氮配体和金属离子以及对应的磁交换Cu3[Cr(CN)6]2·15H2O( Tc= 66 K) 、Cu3[Fe(CN)6]2·12H4. 单分子磁体(Single2Molecular Magnets)2O(Tc=14 K) 、Ni3[Cr(CN)6]2·14H2O( Tc=23 K)均为铁磁体.若两个金属离子磁轨道重叠,它们之间的磁 以上情况都是分子被连接成聚合物后产生非常强偶合为反铁磁性,化合物为反铁磁体或亚铁磁体,如的分子间相互作用.从另一个角度,若分子间相互作用(Net4)[V(CN)6]·2H2O( Tc=230 K) 、CrⅡ3[CrⅢ很小可忽略,则分子被隔离成一个个独立的磁分子.当(CN)6]2·10H2O( Tc=240 K)[25].有价值的是,这类化合分子内含有多个自旋离子中心并发生磁偶合时,则总分1·8 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述子的磁矩决定于磁偶合后的最低能态,这时就可能出现域.如在本文中提到的:转换温度超过室温的分子基铁基态为自旋数较高的稳定态,在磁场的作用下产生准连磁和亚铁磁体材料的发现;具有高自旋的多核配合物在续的激发态能级.所以整个分子的磁矩在外场下,沿外低温下表现出磁性的单分子磁体的发现;在室温以上具场的方向偏转时需要克服一个较大的势垒,这种势垒来有大的磁滞现象的自旋交叉配合物的发现;分子基磁体自零场分裂的磁各向异性.有时也称这种现象为自旋阻的光磁、热磁效应;以及分子基磁体的 GMR、CMR效应挫(spinfrustration)[32].这种依赖于外磁场的双稳态(bist2等.所有这些成果都预示着分子磁性材料光明的未来.ability)被看作是新一代信息材料应用的基础.目前所发 相比于传统的磁性材料,由于广泛的化学选择性,现的单分子磁体主要包括Mn12和Mn14离子簇、Fe8离子可以从分子级别上对分子磁性材料进行修饰和改良;作簇和 V为磁性材料4离子簇等三类,如基态为 S = 10 的 Mn12O12,分子铁磁体具有体积小、相对密度小、能耗(O[33]小及结构的多样化等优点,其制备的方法大多为常规的2CMe)16(H2O)4.有意义的是,当这种单分子体积大到一定值时,可被认为是一种尺寸单一的可磁化的纳化学方法,便于做成各种形态的产品,所体现的性质有米材料,具有不可估量的应用前景.些是传统的磁性材料不可替代的.已发现这类新物质可能成为各类高科技材料,特别是新一代的信息存储5. 自旋交叉配合物材料. 众所周知 当然,当配合物分子内的自旋离子中心减少到,作为一种新生的材料,有很多方面仍需要进仅一个时一步研究和改进,这也是我国科学家在基础研究和应用,分子间的相互作用又很小,配合物显示出独立离子的特性科学走向世界前列的良机.可以预见,在未来的发展中,,为近似理想的顺磁性.具有3d4- 3d7电子配置的过渡金属配合物分子基磁性材料将可能在:①高,在八面体配位结构下,电子Tc温度的分子磁体;②在五个d电子轨道上的排布,可能会受到配位场e提高材料的物理稳定性;③透明的绝缘磁体;④易变、易g和t2g加工的分子磁体轨道之间的能隙Δ大小的影响;⑤和其他物理性能结合的复合磁性材,当Δ平均电子对能p相料近时;⑥超硬和超软磁体; ⑦液体磁体等方面着重探索和,化合物的自旋态可能由于某些外界条件的微扰,得到发展可呈现高自旋态与低自旋态的交叉转变[34].(.最典型的是2000年8月29日收到)一些Fe(Ⅱ)配合物,发生高自旋态5T1 Alivisatos A. P. ,Barbara P. F. ,Castleman A. W. ,et. al. Adv. Ma22(S =2,顺磁性)与ters. ,1998;10:1297低自旋态1A1(S =0,抗磁性)的转变,伴随自旋相变,化2 McConnel . J. Chem. Phys. ,1963;39:1910合物可能有结构甚至和颜色的变化.有一些的转变温度3 McConnel . Proc. . Welch Found. Chem. ;11:144还在常温区,如[Fe(Htrz)4 Wickman . ,Trozzolo . ,Williams . ,et. al. Phys. Rev. ,3- 3x(NH2trz)3x](ClO4)2·H2O1967;155:563(trz=1,2,4 三唑类) ,在常温下从紫色(低自旋)随温度5 Miller . ,Calabrese . ,Epstein . ,et. al. J. Chem. Soc. ,上升转为白色(高自旋).成为另一种新的可利用的双稳Chem. Commun,1986;10266 Pei Y. ,Verdauger M. ,Kahn O. ,et al. J. Am. Chem. Soc. ,1986;态现象[35].1984年,Decurtins等人首次观察到光诱导自108:7428旋交叉效应[36],并随后在低温下利用光对自旋态的激发7 . ,Yee . ,Mclean . ,et al. Science,1991;252:和调控进行了深入研究,期望能用作纳秒级的快速光开14158 FerlayS. ,Mallsah T. ,Ouahes R. ,et al. Nature,1995;378:701关和存储器[34].我国在自旋交叉研究方面也取得了可喜9 Mallah T. ,Thiebaut S. ,VerdaguerM. ,et al. Science,1993;262:1554的成绩[37],如发现温度回滞宽度近55 K的自旋交叉化10 Zhong . ,You X. Z. ,Chen T. Y. Annual Sci Rept—suppl of J of合物[Fe(dpp)Nanjing Univ. ,, Nov19942(NCS)2]py(dpp =二吡嗪(3,2,2-,3-)邻11 Griebler . ,Babel . ,NaturforschB. Anorg. Chem. ,1982;37B菲罗啉,py=吡啶)[38],而且首次发现在快速冷却下仍保(7) :832持高自旋亚稳态,实现了不通过光诱导也能得到低温下12 . ,. Chem. Int. Ed. ,1994;33:38513 Takahashi M. ,Turek P. ,NakazawaM. ,et al. PhysLett,1991;67:746的双稳态[39].14 Chiarelli R. ,. ,Rassat A. ,et al. Nature,1993;363:14715 Allemand . ,Khemani . ,Koch A. ,et al. Science,1991;254:301四、展 望16 . ,. ,Reiff . ,et al. J. Phys. Chem. ,1987;91:4344 分子基磁性材料作为一种新型的材料,近十年来,17 . ,. ,. ,et. al. J. Am. Chem. Soc. ,1987;109:769在化学家和物理学家的努力下,在很多方面已经取得了18 Zhou P. ,. ,. ;181:71突破性的进展,迅速发展成为一门材料学科的前沿领19 . Inorg. Chem. ,2000;39:4392估计效果很不好 如果想要的话,留个邮箱,给你发过去

品 名:超导陶瓷拼音:chao1dao3tao2ci2英文名称:superconductivity ceramics说明:具有超导性的陶瓷材料。其主要特性是在一定临界温度下电阻为零即所谓零阻现象。在磁场中其磁感应强度为零,即抗磁现象或称迈斯纳效应(Meissner effect)。高临界温度(90开以上)的超导陶瓷材料组成有YBa2Cu3O7-δ,Bi2Sr2Ca2Cu3O10,Tl2Ba2Ca2Cu3O10。超导陶瓷在诸如磁悬浮列车、无电阻损耗的输电线路、超导电机、超导探测器、超导天线、悬浮轴承、超导陀螺以及超导计算机等强电和弱电方面有广泛应用前景。奇异的超导陶瓷1973年,人们发现了超导合金――铌锗合金,其临界超导温度为,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。

电磁吸波器研究新进展论文

一、项目概述 1.项目名称:吸波材料系列产品 2.项目简介 选择吸波材料系列产品优势 电磁辐射已成为我国第四污染源,随着科学技术的进步,电磁技术环境的应用给社会创造了物质文明,但也把人们带进一个充满电磁辐射的环境里。早在1975年专家就曾预言,随着城市经济发展和人口增长,电子、通信、计算机、汽车与电气设备等大量进入家庭,城市空间人为电磁能量每年增长7%至14%,也就是说25年后最高可增加700倍,21世纪城市电磁环境将更为复杂与恶化。 20年来,我国经济与城市化得到迅速发展,城市空间的电磁环境更趋复杂,出现了许多新现象、新问题。主要有:(1)由于城市发展与扩大,一些广播电视台与无线通信发射站被四周居民区所包围,局部居民生活区形成强场区;(2)移动通讯技术(包括移动通信、寻呼通信、集群专业网通信)发展迅速,城市高层建筑上架起为数众多的移动通信发射站,这些电磁辐射源虽然功率不大,但在市区遍地开花,使城市高空电磁波场强增强,除此之外,还有许多微波定向天线、卫星天线和短波天线;(3)随着城市用电量增加及电网改造工程实施,110kV和220kV高压变电站进入城市中心区,或室内或室外,或地面或地下,引起邻近住户恐慌与投诉;(4)城市交通运输(汽车、电车、地铁、轻轨等)迅速发展,引起电磁噪声呈上升趋势;(5)个人无线通信手段及家用电器增多,家庭小环境电磁能量密度增加,室内电磁环境与室外电磁环境融为一体,城市电磁环境总量在不断增加。 电磁辐射是指“能量以电磁波形式由源发射到空间的现象”,电磁环境是“存在与给定场所的所有电磁现象的总和”。恶化的电磁环境不仅对人们日常的通信在人类进入信息化社会的今天,计算机与各种电子系统造成危害,而且会对人们身体健康带来威胁。电磁辐射由于看不见摸不着,所以很难被人觉察。电磁辐射对生物肌体的伤害,早在20年前专家们就曾在历时9年完成的报告中指出:数以百万计的人由于长期暴露在来自电缆和家庭电器的电磁辐射中,所面对的患癌症和退化性疾病的危险正在增加,高频电磁波对生物肌体细胞、神经系统、循环系统、免疫、生殖和代谢功能具有极强的辐射伤害,对公众身体有着长期潜在的威胁和影响,对家用电器、医疗设备、军事设施、航空的强干扰甚至还会造成灾难性后果。美国环境保护委员会经过多年的研究发现,长期生活在极低频电磁场中(如工频50Hz),可能导致人类某些癌症的发生。随着各种家用电器进入千家万户,人们接触和暴露于由电冰箱、电热毯等家用电器产生极低频磁场的机会逐步增多,潜在危害逐步增大。 随着我国电磁环境日趋恶化,居民住宅及办公楼内电磁辐射水平有明显增加趋势。继大气污染、水污染和噪声污染之后,电磁辐射已成为我国第四污染源。在北京、上海、广州、深圳、石家庄等地已发生多起电磁辐射纠纷。目前,我国电磁辐射环境情况相当于20世纪60年代的水污染、大气污染的状况,现在就要加强研究,未雨绸缪,若电磁污染到了环境无法忍受的地步,再想发展经济将举步维艰。为此,电磁污染防治研究迫在眉睫。 面对日趋恶化的电磁污染,为有效降低电磁辐射对人体和设备的侵害,人们采用了许多方法,其中,研究开发吸收电磁波新型材料越来越受到人们的重视,客户资源极其丰富。 初期投资较小,风险小,上手快,切入到高端市场周期短。 技术成熟,无需昂贵的研发及专利费用。 项目发展规划:(略) 二 、技术方面 1. 基本原理 本项目及产品是一种吸收电磁波的功能材料,它的原理和性能类似于美国隐形飞机涂层,它由胶粘剂中加入具有特定介质参数的吸收剂制成,吸收剂的特性决定吸波涂层的吸收电磁波的性能,它利用电磁能量转换原理,材料以吸收电磁波为主,不发生反射而造成二次污染,防污染覆盖频带宽,吸收材料性能优良、无任何毒副作用、无放射性、可生产性强、价格低廉,极具竞争力。与现有的屏蔽材料有着本质和历史性突破,是一种干净,彻底消除电磁波污染的高级手段。原只用于军事领域,世界上只有美国少数先进国家拥有,开发民用领域史无前例,是国际、国内目前治理电磁污染的尖端技术。 主要生产设备检测仪器 (略) 2. 吸波材料系列产品类别 2.1 吸波涂料产品(环保绿色生态涂料) 2.1.1 吸波有机涂料 2.1.2 吸波无机涂料 2.2 工业系列产品 2.2.1 胶板类吸波材料 2.2.2 蜂窝状吸波材料 2.2.3 管状类吸波材料 2.2.4 异型状吸波材料 2.3 民用系列产品 2.3.1 辐射源防护系列 2.3.1.1 手机防辐射系列 2.3.1.2 电脑防辐射系列 2.3.1.3 家电防辐射系列 2.3.2 人体防护系列 2.3.2.1 消减卡类 2.3.2.2 戴挂系列 2.3.2.3 衣物系列 3.专利方面 3.1 发明专利 3.1.1 抗电磁辐射特种复合材料 3.1.2 吸波环保手机 20031011393 3.1.3 吸收电磁波特种复合材料 3.1.4 吸收微波发热材料的制造方法及其应用 3.1.5 微波泄漏防护胶 3.1.6 无辐射抗干扰屏蔽线 3.2 实用新型专利 3.2.1 手机电磁辐射防护物品 3.2.2 一种能消除电磁辐射的包装物品 3.2.3 一种能防护电磁波的多功能钱包 3.2.4 一种能消除电磁波污染的促销物品 3.2.5 一种能防护电磁波的多功能垫 3.2.6 一种能防护电磁波的多功能腰带 3.2.7 一种带有消除辐射功能的电脑摄像头 3.2.8 一种能防手机辐射的眼镜脚套 3.2.9 一种防电磁辐射围裙 3.2.10 一种吸收消除电磁波污染的窗帘 3. 2. 11 吸收微波发热物品 4.新技术方面 吸波材料的原理是一个能量转换的过程,通过大量的试验,发现它有另外的一个用途。它能吸收微波并将微波能量迅速转换为热能,其发热效率极高,可以通过控制材料组成和加工工艺控制其发热效率,从而控制微波加热物体的温度。广泛应用于:工业用微波加热元件(普通家用微波炉里2分钟可融化玻璃,可超过1000℃),微波烤盘用热转换材料,微波冶炼、微波焚烧、其他微波加热元器件等。经美的、格兰士、三洋测试材料的吸收发热效率已超过日本的材料。 试验结果:烤盘放在底板上,日本三洋烤盘最高温度约200℃,低于特氟龙的极限使用温度250℃,而国产烤盘的最高温度285℃,高于特氟龙的极限使用温度250℃。 5.生产技术和工艺的成熟度 目前国内外吸波涂料民用频段的应用还是空白点,(军用频段吸波涂料的应用美国、法国有先例)利用吸波原理的民用系列产品我们是首创,胶板类的吸波材料可以加工卷材是国内首创,吸波材料、吸波涂料的核心技术是材料的配伍,生产工艺简单,加工设备都是通用设备,一次性投资少。 三 、市场方面 1.国内外行业发展趋势 海湾战争美国首先出现了隐形飞机,国内首先由国防科工委组织有关科研院校攻关吸波材料项目,在1993至1996年我们就率先在雷达波吸收频段已实现车载雷达40米军事目标、轰炸机雷达400米军事目标的隐形技术,民用方面的吸波胶板类的产品国内我们也是首家在3年前推出,吸波涂料、吸波材料民用防护系列目前只有我们一家在做。随着吸波材料的发现,各种各样的产品将面世,从而取代了目前传统、落后的以金属材料来防护电磁波污染的方法,随着信息量的增大,频率范围也在加宽,吸波材料的优势愈来愈显著它的特点。 2.国内外市场 吸波涂料的应用已远远超出军事隐形和反隐形、对抗和反对抗范围,更广泛地应用在人体安全防护、通讯及导航系统的抗电磁干扰、安全信息保密、改善整机性能、提高信噪比、电磁兼容等许多方面。吸波涂料是能够吸收投射到它表面的电磁波能量、并通过材料的损耗转变成热能的一类材料(能量转换的原理)。在各种的电磁辐射防护材料中,涂料以其方便、轻量、不占空间以及与基材一体化等众多优势成为其中的佼佼者,因为,吸波涂料可吸收多余的电磁波,这样不仅减少杂波对自身设备的干扰,也有效防止电磁辐射对周围设备及人员的骚扰和伤害;而且,吸波涂料能够在复杂的曲面、微小的角落、孔、棱边等处方便地涂抹,从而在精密复杂的部位,准确坚固地形成涂膜,满足工业、科学和医疗设备的屏蔽、EMC的需要。 广播、电视发射台的电磁辐射防护:广播、电视发射台对周围区域会造成较强的场强。利用对电磁辐射的吸收特性,在辐射频率较高的波段,使用合适的吸收型涂料,覆盖建筑物,以衰减室内场强。另外,该涂料兼具屏蔽性能,是一种屏蔽吸收型涂料,在10MHz至范围有20至30dB的屏蔽性能。 工业、科学和医疗设备电磁辐射的防护:工业、科学和医疗设备等在工作过程中会产生大量的电磁辐射,如果处理不当,不仅会对自身的工作环境造成损害,同时也会对起周围的设备造成干扰。最明显的例子就是机器内的二次杂波问题。二次杂波往往会带来机器、设备的程序紊乱,致使科学实验、医疗检测结果等出现较大的偏差,从而给科研、生产带来很大阻力,甚至会威胁到人的生命安全。另外,这些设备发出的电磁辐射也会对操作人员的身体健康带来危害。因此,对工业、科学和医疗设备进行电磁辐射防护十分必要。由于工业、科学和医疗设备的精密度较高,因此对电磁辐射的防护方法也提出了更高的要求。在辐射防护方法的选择上,除选用低辐射的基材和距离防护外,使用吸波材料进行防护也是非常重要的防护方法之一。 家用电器的电磁辐射防护:所有的电器如电冰箱、电视机等,在使用过程中都会发出电磁辐射,只是由于电磁波是一种"无形"的物质,因为电磁波是看不见,摸不着的能量物质,又无时不有、无处不在,因此更具有危险性和危害性,我们觉察不到而已。随着3C认证的实施,对电磁辐射防护的要求也越来越高,其实,象家用电器的电磁辐射,采取防护措施并不是什么难事,只是在生产制作过程中,加一道简单的工序――喷涂吸波材料而已,不过,对吸波涂料的选择要根据其频段来决定。 手机、电脑的电磁辐射防护:在科技发展的今天,手机、电脑给人们带来方便的同时,也带来了不容忽视的电磁辐射危害。为了尽可能地减少手机、电脑对人体,尤其是头部的辐射,除了尽可能地减少手机的辐射功率及保证使用手机时不要让它与人体接触,还应考虑其他防护措施,手机的辐射频率为800至1800MHz, 电脑也会产生几百兆的电磁波,如果在生产过程中,能够在手机外壳、电脑机箱、电脑显示器内侧喷涂具有吸收功能的吸波涂料,将多余电磁波吸收,就不会再有电磁辐射的危害问题。喷涂吸波涂料,非常简单。既不会影响外形的美观,也不会增加多少成本。随着人们对电磁辐射的认识越来越多,防辐射型产品的市场也会越来越大。 例如:绿色环保机箱(世界首创)如今电脑整体性能飞速提高,电脑内部主要部件的功率在不断增大,但同时电脑主机的辐射量也在随之增长。众所周知,电磁辐射对人体健康的危害极大。长时期处在电磁辐射污染的环境中,将使人产生易疲劳、记忆力下降、生理机能减退等等的不良症状。更可怕的是,这种辐射伤害看不见、摸不着,即使你终日为电脑辐射所害,你也无从觉察。由此,选择一款防辐射性能高的机箱,就势在必行。目前防辐射机箱技术是屏蔽电磁波,屏蔽目的是将电磁波局限在某一个区域内,所不同的是屏蔽主要利用导电材料对电磁波的反射作用来限制电磁波的传播。一般需要将整个辐射源全部屏蔽,否则的话会出现一个方向减弱,而其它方向增加的现象,理论上简单,实际上对工艺技术要求相当高。 吸波则是利用材料对电磁波的吸收,使电磁波的电磁场能转变为热能。电磁波吸收材料使用技术要求低。EMC材料的研究目前主要集中在屏蔽材料,对电磁波吸收材料的研究相对较少。实际上电磁波吸收材料在EMC技术上具有屏蔽材料等技术所不可代替的作用。吸波材料使用简单易行,不需要对原设计作改动,只要在电脑机箱内2至6面体上喷涂上至毫米厚度的吸波涂料即可,使用吸波涂料除了有防辐射功能外更有意想不到的效果。 办公、居住区的电磁辐射防护:吸波涂料在民用产品上的应用不仅仅只有这些,很快吸波涂料会应用到您的日常生活当中,例如:您的办公、居室内喷涂吸波涂料,就不会再有电磁辐射的危害问题,它将您的办公、居室内的家用电器、办公设备辐射出的电磁波(电子雾)吸收转换成无害的物质,同时将外界的电磁波大部分吸收隔离,那将是一个非常干净的电磁环境空间。 3.目标 世界进入信息时代,信息革命给人类带来巨大益处,但负面电磁辐射污染刚刚被人们认识,治理电磁辐射污染史无前例,研究刚刚开始,产品系列有待大量开发,属于朝阳产业,寿命期极长。治理电磁波污染,是一门高新技术和新兴产业。随着《中华人民共和国电磁环境污染防治条例》即将频布执行,治理电磁污染也一定会象今天治理水、空气,噪音污染一样,将会有众多企业参与,众多产品进入这一市场,迅速形成一个新兴的环保产业。充分利用自身技术,材料独特优势,迅速完善和建立起国内电磁辐射防护技术与产品研究、开发生产应用基地,引领全国,走向世界,是一大战略举措。 4.市场及客户 4.1 通讯基站、电视广播系统 4.2 手机、电脑、电子产品、家用电器等 4.3 高频加热设备、高频炉等工业设施 4.4 医院CT室、B超室、抢救室、手术室等医疗区 四、项目风险评估分析 1.劣势 新产品、新技术需要宣传推广的费用大。 2.市场分析 电磁波防污染项目是一项很有前途的事业,主要表现在有政府的大力支持及群众意思的提高,也可申报科技项目,取得各级政府的资金无偿、有偿的支持。生产产品,主要是以购买原材料为主,然后经配伍组合,不需大型设备、投资少、见效快,不会有大的风险。利用本技术、材料开发的系列产品,也可获得巨额利润!如果采取全方位合作开发,强强联合,开发系列产品,在这个全新的需求领域,必将获得巨大的经济效益和社会效益。 3.威胁 唯一尖锐的问题是:目前参照一些过去的标准,由于粗糙和低下,致使一些污染较大的地区也不超标,这给治理污染带来很大障碍,但是,不久的将来国家会制定出科学的污染标准,另外,从电磁波污染积累效应角度,这一风险也会减少。 本栏目编辑 王胜举

你的问题太广泛 是什么论文 小论文?毕业论文? 如果是小论文可以到有数据库的院校下载,如果是毕业论文,建议还是自己好好写写,多看小论文,尤其是SCI/EI 收录的文章,多看看,多模仿,相信你会写出优秀的论文的

“电磁辐射”不是一个新鲜的话题。几年前发生在北京的百旺家苑事件是民众质疑高压线电磁辐射的典型,曾被媒体冠以“环境权民间觉醒”之称。公众提高对自身居住环境的关注,是社会文明进步的体现。但如何疏解因误导产生的不满情绪,正确引导公众在电磁辐射问题上去伪存真,树立科学观念,应该引起有关各方的重视。质疑电磁辐射并非我国独有的现象。邻近住宅的输电线路工频磁场是否会对当地居民的健康产生有害影响,已成为国际关注的热点。面对来自公众的压力,许多国家积极采取措施,对电磁辐射进行研究,向公众大力宣传科学知识,建立有效的沟通渠道。“他山之石,可以攻玉”,其他国家的一些做法也许会给我们带来一定的启发和借鉴。美国:研究与传播并重作为世界上拥有最多发电装机容量的国家,美国的“电磁辐射”问题是一个社会性话题,与之相关的质疑与解释时见报端。电磁辐射是否危及健康已引起美国国会的关注,众多机构如国家科学院(NAC)、全国研究委员会(NRC)、国家辐射防护委员会(NCRP)、全国环境卫生学会(NIEHS)和国家癌症研究所都为此做了大量工作。实际上,电磁研究已不单单是电力企业的事情,它已成为政府行为,政府用于电磁研究的投资也相当可观。其中,影响较大的当数美国电磁场研究与公众资料传播计划(EMFRAPID)。该计划由美国国会提议,1992年得到法律确认后开始全面实施。该计划的研究内容不仅包括输电环节,同时涉及发电和用电环节。此项计划的工作人员非常注重与相关各方的沟通互动,积极接受由公民团体、劳工组织、电力公司、国家科学院等团体组成的国家电磁场顾问委员会(NEMFAC)所提出的建议。该计划的工作人员还定期与美国能源部及全国环境卫生学会职员会面,向公众开放有关科学会议,计划发布的公众信息资料也要经过公民团体的审查。美国全国环境卫生学会给国会的报告强调,目前,极低频场危害健康的可能性很小。只有微弱的缺乏任何实验室支持的流行病学关联,对电磁场可能引起伤害提供了勉强的支持。同时,该学会不建议对电气设备采用电磁场限制标准,或将电力线路埋置于地下。与此同时,全国环境卫生学会建议有关部门向公众提供如何减少电磁场暴露的方法,建议电力公司和公用事业部门继续关注和探索降低输配电线路电磁场的方法。该学会鼓励制造商在费用投入最小的前提下降低磁场,并认为昂贵的电气设备重新设计是不合理的。美国的电力企业也在积极寻求公众的理解与支持。除了宣传变电站和输电线路的电磁辐射并不具有危害性外,一些企业还学习借鉴“杜邦做法”,即公司老板带头住在变电站或输电线路附近,员工的宿舍也尽量安排在变电站附近,希望以此引导公众对变电站和输电线路的电磁辐射不再惧怕。法国:来一场“公共辩论”作为欧洲最大的电力供应商和电力出口企业,法国电力公司也会面对电力建设需求与公众利益诉求之间的矛盾。近年来的实践证明,“公共辩论”机制为缓解类似矛盾提供了有效途径。据法国电力公司亚太区有关人士介绍,近年来在法国,大型建设项目包括高压输电等工程,在启动前必须先过“公共辩论”这一关。1993年,法国BILLARDON行政通报规定:法国电力公司的电力设施计划(主要指63千伏以上电网线路的更新及新建计划),都必须在公共调查程序启动之前组织公开听证会(后被“公共辩论”所取代),用于准备环境影响报告。在“公共辩论”机制出台的过程中,“高铁事件”扮演了重要角色。1992年,法国决定建设连通地中海的高速地铁,遇到了激烈的群体性抵制活动。这一事件促使法国政府规定,一切与国计民生关系重大的大型基础建设项目必须进行全民听证和辩论程序后才能决策。1995年,法国规定为大型辩论活动设立独立的“公众辩论全国委员会”机制。2005年,为配套法国电力公司在弗拉芒维勒地区建设首台欧洲压水堆(EPR)核电站,将其生产的电力顺利输入电网,法国电力公司输电网公司(EDF-RTE)决定建设科当坦-梅纳(Coteniin-Maine)400千伏超高压输电(THT)架空线路送出工程项目,线路全长150千米。随即,有关方面根据法令规定,对该项目组织展开公共辩论。公共辩论面向全民,针对法国电力公司输电网公司的工程计划,健康与环境专家、社会学家、当地农民等纷纷发表意见,参与辩论。辩论之前,法国电力公司输电网公司公布了“业主项目介绍材料”,包括该输电工程的情况介绍、对当地的意义、对环境的影响等。最激烈的辩论集中在电磁辐射对人体健康有无影响的问题上。公共辩论委员会特别组织了专题讨论会,邀请国际知名专家到场,约600多人参加这一会议,对这些专家持完全否定与不信任态度的人士同样包括在内。其实,法国各界对于“电磁辐射”这一问题的争论已经持续了30多年,专家、学者在流行病学方面作了大量研究,输电工程所经地区的官员们也表达了强烈的担忧,并希望有明确的答案。公共辩论委员会从科学、审慎的角度出发,最终认为,在短暂的辩论时间里,不可能百分之百地消除疑虑。但是,委员会认为,至少应将这一问题的最新研究结果公布于众,使各方能根据掌握的材料进行认真思考,特别是在激烈的辩论之后。公共辩论委员会主席最后汇总各方意见,形成综合性总结报告,在专门网站上公开。尽管公共辩论对所辩论的项目并不具有裁决权,但这一机制为业主、公众、专家、反对者创造了发表意见的机会,提供了了解有关信息的平台。毕竟,辩论也是一种沟通,参与各方的想法在辩论之后或多或少会发生改变。法国电力公司输电网公司考虑到当地居民对人体健康和畜牧业发展的双重担忧,通过协议承诺,重视电网工程与环境的协调性,尽可能减少对当地畜牧业的影响。公共辩论结束后,法国电力公司输电网公司正式宣布启动该输电工程项目,但按照有关规定,辩论之后,各方对话依旧继续进行。业主不仅在开工前,而且在建设工程过程中,都要执行资讯透明政策,接受各方监管。启发:信息畅通规划先行作为公众,最希望听到的是来自权威部门的权威结论。当前关于电磁辐射最权威的结论,应该是来自世界卫生组织(WHO)的观点,在一些国家,该观点还被引用作为法庭证据文件。世界卫生组织的观点包括:没有一致的证据表明,暴露在我们生活环境中所经历的极低频场,会对生物的分子(包括DNA)引起直接伤害。迄今为止进行的动物实验结果提示:ELF场并不能始发或促进癌症;没有一个重要的委员会已经得出低水平的场确实存在危害性的结论;在输电线和配电线周围的ELF场水平并不考虑为对健康有危险。在国内,近年来抗议、阻挠输电线路施工的现象时有发生。有关方面认为,解决当前矛盾的重点是,按照世界卫生组织(WHO)的建议,改变国内电磁场公共健康信息严重失衡的状况,加强对符合标准的电力设施电磁场对公众健康无害的宣传。如果任由不科学、不准确的“道听途说”蔓延,会进一步增加公众的不安和恐惧。针对公共健康信息不均衡的局面,政府和电力企业应加强对公众的科普教育,向公众提供平衡的、明确的和全面的环保信息。制定鼓励政策,积极鼓励开展降低输变电设施的电磁场经济实用技术的研究和推广,积极研究改进电力设施与城市景观保持协调的措施,彻底解决公众对电力设施的误解。《电力最前沿》作者何学民认为,一些输电线路受到公众阻碍,一方面是由于公众出于对电磁辐射的担忧,另一方面则是公众认为经济利益受损——“你建了这条输电线路以后,我的土地贬值了,我的别墅跌价了,我的生活深受负面影响”。这也提醒政府和电力企业应该确立电力先行理念,输电线路规划必须及早进行,输电规划必须走在城镇规划的前面。如果电力建设滞后于城镇建设,那么这种滞后就会给输电线路建设带来很多难以逾越的障碍。

摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组:其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合:其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,…此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件:其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复杂目标的处理。5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。参考文献〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69.〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991.〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18.〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991.〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143.〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74.〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339.〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994.〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

  • 索引序列
  • 永磁材料最新研究进展论文
  • 永磁材料的研究前沿进展论文
  • 温铁磁材料研究进展论文
  • 铁磁性材料的研究进展论文
  • 电磁吸波器研究新进展论文
  • 返回顶部