首页 > 学术期刊知识库 > 隐函数求导研究论文

隐函数求导研究论文

发布时间:

隐函数求导研究论文

隐函数的三种求导方法如下:

一、隐函数求导法则

隐函数求导法则和复合函数求导相同。由xy²-e^xy+2=0,y²+2xyy′-e^xy(y+xy′)=0,y²+2xyy′-ye^xy-xy′e^xy=0,(2xy-xe^xy)y′=ye^xy-y²,所以y′=dy/dx=y(e^xy-y0/x(2ye^xy)。

对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有y'的一个方程,然后化简得到y'的表达式。

二、隐函数导数的求解一般可以采用以下方法

方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;

方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);

方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;

方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

举个例子,若欲求z=f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)=0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。

三、显函数与隐函数

1、显函数

解析式中明显地用一个变量的代数式表示另一个变量时,称为显函数。显函数可以y=f(x)来表示。

2、隐函数

如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。

3、隐函数与显函数的区别

1.隐函数不一定能写为y=f(x)的形式,如x²+y²=0。

2.显函数是用y=f(x)表示的函数,左边是一个y,右边是x的表达式。比如:y=2x+1。隐函数是x和y都混在一起的,比如2x-y+1=0。

3.有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。

引函数求导,首先要把引函数求出正确的函数定义式,再根据函数定义式再去求导数。

简单说来就是对多项式的每一项求导,有y的项求导后加写个y',然后将含有y'的各项合并,提出y',移到等号一边就可以了。如果有y=???,则可以将求导后的y用y=???代替。你可以用我的方法试试,祝好运。

隐函数求导法则是隐函数求导不需要记忆公式计算导数,建议借助求导的四则运算法则与复合函数求导的运算法则,采取对等式两边同时关于同一变量求导数的方式来求解。

隐函数求导方法是先把隐函数转化成显函数,再利用显函数求导的方法求导;隐函数左右两边对x求导,注意把y看作x的函数;利用一阶微分形式不变的性质分别对x和y求导,再通过移项求值;把n元隐函数看作n加1元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

隐函数顾名思义就是隐藏着的函数, 也就是关系式不是 y=f(x) 的样子, 例如 x^2+y^2=1(y>0) 这个上半圆就是一个隐函数。

当然, 必然有很多隐含不可能写成 y=f(x) 的样子, 所以我们需要笼统地研究 F(x,y)=0, 那首先就是 F(x,y) 在什么时候是函数, 这时候就像我们的圆 x^2+y^2=1 中限制 y>0 一样, 对 y 做一定的限制,当然, 对 y 的限制相对来说是次要的。

导数对函数的研究论文

1)导数概念是微积分的基本概念之一,它有着丰富的实际背景。教科书选取了两个典型的变化率问题,从平均变化率到瞬时变化率定义导数。在此基础上,教科书借助函数图象,运用观察与直观分析阐明了曲线的切线斜率和导数间的关系。同时,教科书还注重渗透和展现其中蕴含的丰富思想,如逼近、以直代曲等。 (2)在导数的计算一节,教科书先根据导数定义求出几个常见函数的导数,以让学生进一步理解导数的概念;然后,教科书直接给出基本初等函数的导数公式和导数的运算法则,本节的重点在于让学生会使用这些公式与法则求简单函数的导数。 (3)导数是研究函数的有力工具,教科书主要介绍了如何用导数研究函数的单调性,如何用导数求函数的极大(小)值和最大(小)值。其中,运用导数研究函数的单调性是本节的基础。 (4)教科书选取了三个生活中的优化问题:如何设计海报、饮料瓶大小对公司利润的影响、磁盘的最大存储量,以说明如何通过建立这些问题的数学模型,运用导数这个工具解决生活中的优化问题。 (5)在引导学生认识定积分概念的过程中,教科书利用求曲边梯形的面积、变速直线运动的路程这两个典型问题,着重揭示出“以直代曲”“以不变代变”和“逼近”这些重要的思想方法,给出求解这类问题的一般步骤,进而引出定积分的定义和几何意义. (6)教科书引导学生分析分别用变速直线运动的“位置函数”s=s(t)及其导数(“速度函数”)表示物体在某一时间段内的位移的方法,使学生体会微积分基本定理的内涵,了解导数和定积分之间的内在联系. (7)教科书介绍了定积分在求一些简单平面图形的面积、变速直线运动的路程以及变力作功中的应用,使学生进一步体会定积分丰富的背景和广泛的应用. 三、编写中考虑的几个问题 1.突出概念本质 导数和定积分都是微积分中的核心概念。导数就是瞬时变化率,是平均变化率有确定(的)变化趋势的结果,蕴含了由均匀变化研究不均匀变化,通过一个小的区域研究一点的性质,由一点的性质估计此点附近的性质等基本思想;定积分概念中最本质的思想是在局部小范围内“以直代曲”“以不变代变”。 教科书编写的重点就是突出概念的本质思想,并没有从数学定义的角度讲极限,而是通过对跳水运动的研究,引导学生经历由平均变化率到瞬时变化率的过程,从中引出导数;通过解决曲边梯形的面积给出解决这类问题的一般步骤(分割、近似代替、求和、取极限),从而揭示出定积分的思想,引入定积分的概念。这样,可以避免学生难以克服极限概念的理解这个问题,从而将更多的精力关注于导数和定积分概念本质的理解上,而不单单地将导数和定积分理解为一种特殊的极限。虽然教科书没有给出极限的定义,但是自始至终都体现出了极限的思想,以让学生在学习的过程中以具体内容为载体,逐步体会和感受极限思想,从而为大学阶段学习严格的极限定义打好基础。 同时,教科书对概念的表示、公式的推导、运算法则等都作了淡化处理,以突出对概念内涵的理解。 2.重视直观、强调背景、体现应用 在学生初次接触微积分的概念时,给学生一个形象直观的背景支持,使学生充分认识 导数和定积分的几何意义和物理意义,对于学生正确理解概念、建立概念的抽象定义都是非常重要的。在编写过程中,教科书在这方面作了较大的努力。例如,借助于过一点的曲线割线到切线的变化过程,展示平均变化率到瞬时变化率的过程;导数的运算中,求出导函数后,给出相应的几何意义和物理意义的解释;解决曲边梯形面积的每一步,始终是数值计算与图形分析相结合;提供利用导数几何意义和定积分几何意义解决问题的机会;等等。 微积分的思想来源于实践,反过来又服务于实践。教科书强调概念的背景及其在不同 方面的应用。因此,教科书选取了与生活实际密切相关的,现实世界中比较常见的素材,例如,气球的膨胀率、高台跳水运动、净化水费用、国内GDP增长率、工厂“三废”(废物、废水、废气)排污率、城市绿地面积的增长率、人口增长速度、汽油的使用效率、饮料瓶的大小对饮料公司利润的影响等,通过这些素材来引发学生学习微积分的兴趣,展现概念的发生、发展过程,反映微积分的应用,从而使学生感受微积分与科技、社会以及自己的生活的紧密关系。 3.关注微积分的文化价值 微积分的创立是数学发展中的里程碑,它的发展及其广泛应用开创了向近代数学过渡 的新时期,它为研究变量与函数提供了重要的方法和手段。教科书在不同的时机让学生通过了解微积分的发展史。例如,在引言中介绍了与微积分紧密相关的“四大问题”,阐述了微积分在人类科学发展史上的地位,对微积分的意义和作用也作了介绍;通过拓展性栏目,给学生介绍牛顿法,展示导数在科学研究中的作用;通过实习作业,让学生收集微积分创立和发展的有关材料,让学生体会微积分在数学和科学思想史上价值。 四、对教学的几个建议 1.关于极限概念的处理 一般地,导数概念学习的起点是极限,即从数列数列的极限函数的极限导数。这种概念建立方式具有严密的逻辑性和系统性,但是也产生了一些问题:就高中学生的认知水平而言,他们很难理解极限的形式化定义。由此产生的困难也影响了对导数本质的理解。因此,教科书没有介绍任何形式的极限定义及相关知识,而是从变化率入手,用形象直观的“逼近”方法定义导数,用“趋近于”、“无限逼近于”、“趋于”、“无限变小”等通俗易懂的词对极限的过程进行描述。这样一来,其一,避免学生认知水平和知识学习间的矛盾;其二,将更多精力放于导数本质的理解上;其三,学生对逼近思想有了丰富的直观基础和一定的理解,有利于在大学的初级阶段学习严格的极限定义。 在教学中值得注意的是,教科书编写的重点在于理解概念的内涵和基本方法,并不追求理论上的严密性和过多的技巧,建议教学时充分关注这一点,将教学重点放在概念内涵的理解上。 2.把握好教学要求 在导数及其应用的教学中,应该特别注意把握内容的教学要求,除了上述提及的极限问题,还有以下两个方面。 (1)避免过量的形式化的运算练习 关于导数的计算,有两种方法,一是用导数定义计算函数的导数,二是用基本初等函数的导数公式和四则运算法则计算函数的导数。值得注意的是,由于没有介绍极限知识,因此第一种方法只是用导数方法计算四个函数(选修2-2是五个函数)的导数,目的在于让学生在感受用定义求导数的过程中进一步理解导数;第二种方法是教科书直接给出了导数公式和运算法则,并没有进行公式推导,也不要求推导,只是会用它们进行简单的计算即可。 对于定积分,教科书给出的用定义计算定积分的函数都非常简单,而且和导数一样,这种计算方法的目的在于让学生了解定积分的概念。利用微积分基本定理计算定积分的基础是导数公式,由于导数公式有限而且没有讲原函数等知识,故对于定积分的计算要求很简单,基本上都是一些通过观察能想到原函数的函数。 因此,在教学中关于导数和积分的计算要求一定要把握好,避免过量、复杂的形式化练习,防止将导数和积分作为一些规则和步骤来学习,而忽略了它们的思想和价值。 (2)控制应用的广度与深度 无论是导数还是定积分,都加强了它们在数学内部和外部的应用,教科书也选用了大量不同方面的例子。但是,应用的目的是让学生体会到微积分方法在研究某些问题中的一般性和有效性,感受到微积分的价值和作用。因此,在教学中控制应用的广度和深度,避免陷入其中偏离主题。例如,在用导数求函数极(最)值时,将函数控制在不超过三次多项式;利用定积分计算简单的平面图形的面积,不涉及旋转体;关于生活中的问题,尽量选取背景比较简单,学生比较熟悉的物理问题,像膨胀率、速度、温度变化、变力作功等。 3.信息技术的使用 信息技术工具在导数及其应用的学习中有很大的作用,发挥的空间很开阔。如果有条件,我们希望在教学中适时地使用信息技术,充分发挥信息技术的优势,帮助学生更好地理解概念。例如,利用信息技术的图形功能,演示割线的动态变化趋势,会对学生认识导数的几何性质非常有帮助;将函数曲线某一点附近的图象放大得到一个近景图,学生就会看到,图象放得越大,这一小段曲线看起来就越象直线,这有助于学生更好地体会以直代曲的思想;当n发生变化时,信息技术能有效地显示出数值和图形的变化,让学生更好地体会求曲边梯形面积的基本步骤“分割、近似代替、求和、取极限”,从而感受以直代曲、逼近等思想。

函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。1. 中值定理微分学中有费马引理、罗尔定理和拉格朗日中值定理。拉格朗日定理 如果函数 满足:(ⅰ)在闭区间 , 上连续;(ⅱ)在开区间 , 内可导,则在 , 内至少存在一点 ,使或由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。2. 用导数研究函数的性质为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。反过来,我们是否可以有导数的符号来判定函数的单调性呢?一阶导数的符号在 上任取两点 、 ,其中 < ,在区间[ , ]上应用微分中值定理,得到 ( < < )有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。由此我们可以归纳出函数单调性的判别法。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。此外,导数的绝对值告诉我们变化率的大小。当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。曲线的上下凹性设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的;如果在某一区间内 ,那么 在该区间式递减的。如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少, 点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。二阶导数的符号函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。局部极值性我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。 在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。 在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。函数的极大值和极小值概念是局部性的。如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。最大值与最小值在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可知,函数 在闭区间 , 的最大值、最小值必定存在;其次,如果最大值或最小值在开区间 , 内的某一点 取得,那么这个最大值或最小值 必定是函数 的一个极大值或极小值。于是,点 必定为函数 的驻点;最后,函数 的最大值或最小值也可能是在 或 处取得。我们通过一个例子来看一看最大值或最小值的求法过程。例5 求函数 在闭区间 , 上的最大值与最小值。

你教我吧 同样跪求

高中数学合集百度网盘下载

链接:

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

利用导数研究函数零点论文

函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。1. 中值定理微分学中有费马引理、罗尔定理和拉格朗日中值定理。拉格朗日定理 如果函数 满足:(ⅰ)在闭区间 , 上连续;(ⅱ)在开区间 , 内可导,则在 , 内至少存在一点 ,使或由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。2. 用导数研究函数的性质为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。反过来,我们是否可以有导数的符号来判定函数的单调性呢?一阶导数的符号在 上任取两点 、 ,其中 < ,在区间[ , ]上应用微分中值定理,得到 ( < < )有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。由此我们可以归纳出函数单调性的判别法。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。此外,导数的绝对值告诉我们变化率的大小。当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。曲线的上下凹性设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的;如果在某一区间内 ,那么 在该区间式递减的。如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少, 点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。二阶导数的符号函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。局部极值性我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。 在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。 在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。函数的极大值和极小值概念是局部性的。如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。最大值与最小值在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可知,函数 在闭区间 , 的最大值、最小值必定存在;其次,如果最大值或最小值在开区间 , 内的某一点 取得,那么这个最大值或最小值 必定是函数 的一个极大值或极小值。于是,点 必定为函数 的驻点;最后,函数 的最大值或最小值也可能是在 或 处取得。我们通过一个例子来看一看最大值或最小值的求法过程。例5 求函数 在闭区间 , 上的最大值与最小值。

函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。

导数用于求单调性,进而可以得到最值,再通过具体的题中条件代入某些特殊值,利用f(a)xf(b)<0之类的确定零点个数

论文题目利用导数研究函数的性质

函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。1. 中值定理微分学中有费马引理、罗尔定理和拉格朗日中值定理。拉格朗日定理 如果函数 满足:(ⅰ)在闭区间 , 上连续;(ⅱ)在开区间 , 内可导,则在 , 内至少存在一点 ,使或由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。2. 用导数研究函数的性质为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。反过来,我们是否可以有导数的符号来判定函数的单调性呢?一阶导数的符号在 上任取两点 、 ,其中 < ,在区间[ , ]上应用微分中值定理,得到 ( < < )有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。由此我们可以归纳出函数单调性的判别法。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。此外,导数的绝对值告诉我们变化率的大小。当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。曲线的上下凹性设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的;如果在某一区间内 ,那么 在该区间式递减的。如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少, 点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。二阶导数的符号函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。局部极值性我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。 在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。 在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。函数的极大值和极小值概念是局部性的。如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。最大值与最小值在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可知,函数 在闭区间 , 的最大值、最小值必定存在;其次,如果最大值或最小值在开区间 , 内的某一点 取得,那么这个最大值或最小值 必定是函数 的一个极大值或极小值。于是,点 必定为函数 的驻点;最后,函数 的最大值或最小值也可能是在 或 处取得。我们通过一个例子来看一看最大值或最小值的求法过程。例5 求函数 在闭区间 , 上的最大值与最小值。

这个问题你找对人了。我一年前也写过一篇关于数列求和与递归关系的论文(我也是高中生)。下面按我说的做:构思部分:首先,你需要明确研究对象。现在你的研究对象是一种没学过的函数。其次,看着你的函数,然后思考:这是一个什么函数,指数 对数 三角 双曲 幂 反三角 伽玛 贝塔还是西格马,简单函数还是复合函数,初等函数还是高等函数......再次,思考该函数的以下性质:1 定义域和值域 2 单调性 极值 凹凸性 拐点 渐进线 渐进点 连续(离散)性 周期性 奇偶性 渐开线 渐屈线 包络线 等等等等3 f(x+y) f(x-y) f(cx) f(xy) f(x/y)等能否展开4 看该函数是否满足一些非常对称的等式或不等式5 该函数的迭代 复合后有没有什么特殊性质6 几何上的特殊意义 7 生活生产中的应用 8 其他第四,开始研究以上性质。第五,考虑如何利用高中数学知识证明以上性质。例如讨论该函数的极值,有两种办法:1 通过变形,把该函数的极值问题化归为二次函数等已知函数的极值问题,或利用单调性解决之;2 对该函数求导,利用导数解决问题。写作部分:引入:先写一个背景材料 历史回顾什么的,神吹海侃一番,把前人对该函数的研究简单介绍一下。然后写一个内容提要,把你要讲的内容简单说明一下,最重要的是指出你的研究的独创性。正文开头:如果该函数有特殊的几何意义或在生活生产中有重要应用,不妨以此作为引入的材料。如果没有,那就只好直接进入主题。正文主要内容:把前面提到的性质有条例地叙述一遍。结尾:把你在论文中参考到的内容的出处罗列出。然后交给打字员,大功告成!基本上就这过程,好好干吧!祝你好运!

微积分? 最直接的切线问题撒

你可以去百度文库,打上导数在数学中的应用,就会有论文出来。可以看看那个。那个很详细了

函数极限求法的研究现状论文

极限 在高等数学中,极限是一个重要的概念

极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记(x趋近无穷的时候还原成无穷小)2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近 而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0 落笔他 法则分为3中情况1 0比0 无穷比无穷 时候 直接用 2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了3 0的0次方 1的无穷次方 无穷的0次方 对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则 最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单 !!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法 ,非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中 13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的14还有对付数列极限的一种方法, 就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。 15单调有界的性质对付递推数列时候使用 证明单调性!!!!!!16直接使用求导数的定义来求极限 ,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意)(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!),咱英语不好,lim为极限号,下面看清趋向于0还是无穷,根据以上方法即可。嘻嘻,努力哦,加油 资料来源:

函数极限的专业定义: 设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε 那么常数A就叫做函数f(x)当x→x。时的极限。 函数极限的通俗定义: 1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∞时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。记作lim f(x)=A ,x→+∞。 2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。 函数的左右极限: 1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a. 2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a. 注:若一个函数在x(0)上的左右极限不同则此函数在x(0)上不存在极限 注:一个函数是否在x(0)处存在极限,与它在x=x(0)处是否有定义无关,只要求y=f(x)在x(0)近旁有定义即可。 函数极限的性质: 极限的运算法则(或称有关公式): lim(f(x)+g(x))=limf(x)+limg(x) lim(f(x)-g(x))=limf(x)-limg(x) lim(f(x)*g(x))=limf(x)*limg(x) lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 ) lim(f(x))^n=(limf(x))^n 以上limf(x) limg(x)都存在时才成立 lim(1+1/x)^x =e x→∞ 无穷大与无穷小: 一个数列(极限)无限趋近于0,它就是一个无穷小数列(极限)。 无穷大数列和无穷小数列成倒数。 两个重要极限: 1、lim sin(x)/x =1 ,x→0 2、lim (1 + 1/x)^x =e ,x→∞ (e≈...,无理数) ======================================================================== 举两个例子说明一下 一、……=1? (以下一段不作证明,只助理解——原因:小数的加法的第一步就是对齐数位,即要知道具体哪一位加哪一位才可操作,下文中……的加法使用小数点与小数点对齐并不可以保证以上标准,所以对于无限小数并不能做加法。既然不可做加法,就无乘法可言了。) 谁都知道1/3=……,而两边同时乘以3就得到1=……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。 10×…… —1×……=9=9×…… ∴……=1 二、“无理数”算是什么数? 我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。 结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。 类似的根源还在物理中(实际上,从科学发展的历程来看,哲学才是真正的发展动力,但物理起到了无比推动作用),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点切线斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。 真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的。

  • 索引序列
  • 隐函数求导研究论文
  • 导数对函数的研究论文
  • 利用导数研究函数零点论文
  • 论文题目利用导数研究函数的性质
  • 函数极限求法的研究现状论文
  • 返回顶部