首页 > 学术期刊知识库 > 数学解题研究杂志

数学解题研究杂志

发布时间:

数学解题研究杂志

《中国科教创新导刊》《数学大世界》《数学学习与研究》《数理化解题研究》《理科考试研究》等等可以发表。可进我空间参考参考

只要是关于教育之类就可以啦。只要是适合你文章的期刊。

《解题研究》是奥博丛书之一,作者单墫,由上海教育出版社出版。本书是数学解题研究方面的专著,介绍了解题基础知识和解题理论。这套奥博丛书,其中就有若干或许可以称为解题秘籍。

本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在为了给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论应用数学领域内不同方向问题与发展的交流平台,

《应用数学进展》是一本关注应用数学领域最新进展的国际中文期刊,主要刊登数学的各种计算方法研究,数学在统计学、计算机等方面应用的学术讠仑文和成果评述。

数理化解题研究杂志

三月至四月见刊,最少200字最多500字,不要出现重复,回答您的问题要把您改成您。三月和四月是一个充满活力和希望的季节,这两个月是春季的开始,也是一年中最具活力的时期。三月是一个充满活力的月份,它是春季的开始,也是一年中最具活力的时期。四月是一个充满希望的月份,它是春季的结束,也是一年中最充满希望的时期。三月和四月是一个充满活力和希望的季节,它们是一年中最具活力和最充满希望的时期。在这两个月里,大自然开始慢慢苏醒,花朵开始绽放,树木开始发芽,春风拂面,温暖的阳光照耀着大地,让人们感受到春天的气息。

《数理化解题研究》维普上只有初中版,显示收录到14年11期,《数理化解题研究》初中版、高中版知网权收录 目前已收录到15年1期 可以在知网上查

步骤一:自己准备文章。没有的再说。强烈建议自己准备,有利于自己对自己知识的总结和对行业的基础认识。步骤二:选择适合投稿的期刊。先从行业入手,再从级别入手。步骤三:投稿。选择好期刊后就要投稿了。步骤四:等待审稿。结果有二:录用与不录用。录用之后步骤五为等待安排的刊期见刊。不录用之后步骤五为修改稿件并重新选择投稿期刊,然后再等待审稿。步骤一环节之后的步骤二以及以后的环节,都可以交给万方100论文发表网(全网唯一一家社内正规授权,支持支付宝担保的网站),当然决定选择投稿期刊等一些环节,需要您自己敲定,会有必要的沟通的。如果您手里有职称文件,需要先发过来让编辑分析。

结构不严谨。因为结构不严谨,所以数理化解题研究被停刊。《数理化解题研究》由哈尔滨学院于1997年创办的月刊,分初中版和高中版。

数理化解题研究杂志怎么样

结构不严谨。因为结构不严谨,所以数理化解题研究被停刊。《数理化解题研究》由哈尔滨学院于1997年创办的月刊,分初中版和高中版。

额,很好吧。

d正规的学术期刊所有稿件都是要收取版面费的,现在期刊成本都比较高,即使论文再好也要收取版面费,难道审计编辑后期排版以及你的样书证书都不要钱了吗,除非期刊质量较低,需要吸引优秀资源,或者您是大神级人物,人家特邀您撰稿,不过都17年了,中国也鱼龙混杂,版面费已经成为潜规则了,不要版面费的跟大熊猫一样稀少

好用的。里面信息还是比较全面的。期刊也叫杂志,是定期或不定期的连续出版的成册刊物,如周刊、旬刊、半月刊、月刊、季刊、半年刊、年刊等。有固定名称,按卷、期或按年月顺序编号出版。由依法设立的期刊出版单位出版刊物,期刊出版单位出版期刊,必须经新闻出版总署批准,持有国内统一连续出版物号,领取《期刊出版许可证》。学术期刊是一种经过同行评审的期刊,发表在学术期刊上的文章通常涉及特定的学科。

数理化解题研究杂志一本多少页

哥德巴赫猜想已经彻底解决。《数理化解题研究》2019年1月刊第19-20页,速证“Goldbach猜想” 张奎福

结构不严谨。因为结构不严谨,所以数理化解题研究被停刊。《数理化解题研究》由哈尔滨学院于1997年创办的月刊,分初中版和高中版。

2*3*5*7*11*13*......*pn*,,,,,,*p=Pn+Pn*(2*3*5*7*11*13*......*P-1)所有素数的乘积等于任何一个素数加上这个素数乘以(其他所有素数的乘积减1)。(Pn任何素数,p能想到的最大素数。)结论无限大的偶数哥德巴赫猜想不成立。

额,很好吧。

数学解题研究类论文

论小学生解题能力什么是解题能力?构成解题能力的基本要素有哪些?它是怎样形成发展的?长期以来,正是由于对这些基本理论问题无法作出明确回答,才使得应用题教学难以有突破性的发展,使得应用题教学心理研究长期陷于困顿。显然,要改革当前应用题教学体制,优化应用题教学系统,推进应用题教学心理研究,就必须首先在理论上揭示小学生解题能力的实质、构成要素及形成发展规律。本文试作探讨。长期以来,应用题教学心理研究虽对解题能力的实质没有作出明确回答,但纵观哲学与心理学文献,有关能力问题的讨论已有了相当长的历史。这些有关一 般能力的基本观点,影响着人们对解题能力的基本看法。人们关于解题能力实质的日常看法,大致可以分为四类。1.因素论观点。把解题能力看作是某些一般能力因素(如理解能力、分析能力、综合能力、运算能力等)的综合体,试图通过对解题能力的因素分析或经验分析,探讨影响解题活动的一般能力因素。2.先验论观点。解题能力是与个体经验无关,并先于个体经验而存在的实体,把能力看作是主宰活动的非物质心理实体的官能,或把它看作是遗传而来的个人禀赋。3.经验论观点。经验论观点与先验论观点相对,解题能力是个体在解题过程中习得的知识经验,提出解题能力即解题知识。4.“合金”论观点。从对能力形成发展条件的研究出发,认为解题能力是先天秉赋和后天解题活动成果的融合物(亦即“合金”)。上述四种观点能否正确反映解题能力的实质呢?本文认为,首先,解题能力属于特殊能力。根据唯物辩证法,一般能力虽然大致地概括了特殊能力,但却不能完全代替特殊能力。因素论观点用一般能力来界定特殊能力的本质,否认了特殊能力的特殊本性及其形成发展的特殊规律,因而并不能正确地揭示解题能力的实质。该论点反映在教学上,实质是形式训练说的翻版,导致了教师用一般能力的训练取代解题能力这一特殊能力的培养。第二,解题能力在本性上是调节解题活动的个体心理特性,按照辩证唯物主义观点,个体心理特性虽不完全排斥生理因素或先天因素对能力形成、发展的影响作用,但究其本性则是人类有机体与环境相互作用过程中,通过主体能力的反映活动,在头脑里构建起来的心理形成物,属于经验范畴。先验论观点把解题能力看成是先天的、固定不变的实体,夸大了遗传在能力发展中的作用,因而常常把学生解题能力的暂时低下看成是该学生无法提高能力的根据,这种唯心主义和形而上学论断在教学中是十分有害的。第三,解题能力作为个体心理特性,对解题活动的调节应该具有一定的稳定性。经验论观点不仅抹煞了解题知识与技能的不同调节作用,缩小了能力实质的内涵,而且忽视了能力作为活动调节机制的稳定性能,把能力简化成了知识实在。该观点在教学中表现为教师以解题知识的传授代替对学生解题能力的培养,直接影响了应用题教学的效能。第四,对能力形成、发展条件的认识不同于关于能力实质的观点,前者要解决的是影响能力的形成、发展因素的问题,而后者要解决的是能力是什么的问题。“合金”论观点虽然较好地解决了能力形成、发展的条件问题,却并没有揭示出解题能力的真正实质。那么,解题能力的实质到底是什么呢?我认为,解题能力是解题活动稳定的调节机制。就其本质而言,是类化了的解题经验,即概括化、系统化的解题知识和解题技能。我把这一对解题能力实质的基本观点简称为类化经验观点。解题能力实质的类化经验观大致包含了以下几个含义:①从本性上说,小学生解题能力是一种个体心理特性,因而在原则上属于经验范畴;②从功能上说,小学生解题能力是解题活动的内在调节机制;③从结构上说,它是解题知识和技能组成的经验实体;④从性能上说,它对解题活动的调节具有稳定性,因而是一种类化经验,即概括化、系统化的解题经验;⑤从类别上说,它是解题这一特殊活动的内在调节机制,属于特殊的数学能力。要全面认识解题能力的实质,还必须看到,小学生解题能力并非是单一的类化经验,而是一个由不同层次和不同类型解题能力组成的层级系统。在这个层级系统中,按所调节的活动对象的复杂性和数量性质的不同,包括简单应用题、复合应用题和分数应用题三个不同层次的解题能力。这些能力在经验的概括水平上存在明显差异。按所调节活动类型的不同,每一层次的解题能力又包含了算术法和代数法两种不同类型的解题能力,它们在经验的概括水平上大致相仿,但在经验的构成要素上却有所不同。这些不同层次、不同类型的解题能力,究其实质仍是类化经验,只是经验的含义有所变化。因此,解题能力的层级系统实质是类化经验的层级系统。在树立了解题能力的类化经验观和层级系统观的基础上,为深化解题能力的认识,为应用题教学改革提供更多、更具体的指导,还必须对能力的构成要素作进一步的分析,确定构成能力的具体知识和技能成分。

[摘要]:在数学的学习中,数学概念的学习毫无疑问是重中之重。概念不清,一切无从谈起。概念的深层理解和精确把握,对数学问题的解决具有非常重要的作用。然而数学概念数量众多并且非常抽象,如何才能达到一个真正理解且深层记忆的效果呢?下面简述几种方法。[关键词]: 举例 温故 索因 联系 比喻 类比1、举例法:举例通常分成两种情况即举正面例子和举反面例子。举正面例子可以变抽象为形象,变一般为具体使概念生动化、直观化,达到较易理解的目的。例如在讲解向量空间的时候就列举了大量的实例。在解析几何里,平面或空间中从一定点引出的一切向量对于向量的加法和实数与向量的乘法来说都作成实数域上的向量空间;复数域可以看成实数域上的向量空间;数域F上一切m*n矩阵所成的集合对于矩阵的加法和数与矩阵的乘法来说作成F上一个向量空间,等等。举反面例子则可以体会概念反映的范围,加深对概念本质的把握。例如在讲解反比例函数概念的时候就可以举这样的一个例子。试判断下列关系式中的y是x的反比例函数吗? , , 。这就需要我们对反比例函数有本质的把握。什么是反比例函数呢?一切形如 的函数,本质是两个量乘积是一定值时,这两个量成反比例关系。 (1)中y和x-1成反比例关系,(2)中y+3和x成反比例关系。定义中要求k为常数当然可以是-1,所以(1),(2)不是,(3)是。2、温故法:不论是皮亚杰还是奥苏伯尔在概念学习的理论方面都认为概念教学的起步是在已有的认知的结构的基础上进行的。因此在教授新概念之前,如果能先对学生认知结构中原有的概念作一些适当的结构上的变化,再引入新概念,则有利于促进新概念的形成。例如:在高中阶段讲解角的概念的时候最好重新温故一下在初中阶段角的定义,然后从角的范围进行推广到正角、负角和零;从角的表示方法进行推广到弧度制,这样有利于学生思维的自然过渡较易接受。又如在讲解线性映射的时候最好首先温故一下映射的概念,在讲解欧氏空间的时候同样最好温故一下向量空间的概念。3、索因法:每一个概念的产生都具有丰富的背景和真实的原因,当你把这些原因找到的时候,那些鲜活的内容,使你不想记住这些概念都难。例如三角形的四个心:内心、外心、旁心和重心,很多同学总是记混这些概念。内心是三角形三个内角平分线的交点,因为是三角形内切圆的圆心而得名内心;外心是三角形三条边垂直平分线的交点,因为是三角形外接圆的圆心因而的名外心;旁心是三角形一个内角平分线和两个不相邻的外角平分线的交点,因为是三角形旁切圆的圆心而得名旁心;重心是三角形三条中线的交点,因为是三角形的重力平衡点而得名重心。当你了解了上述内容,你有怎么可能记混这些概念呢?又例如:点到直线的距离是这样定义的,过点做直线的垂线,则垂线段的长度,便是点到直线的距离。那么为什么不定义为点和直线上任意点连线的线段的长度呢?因为只有垂线段是最短的,具有确定性和唯一性。再如:我们之所以把n元有序数组也称为向量,一方面固然是由于它包括通常的向量,作为特殊的情形;另一方面也是由于它与通常的向量一样可以定义运算,并且有许多运算性质是共同的。像这样的例子还有很多,不再一一列举。4、联系法:数学概念之间具有联系性,任意数学概念都是由若干个数学概念联系而成,只有建立数学概念之间的联系,才能彻底理解数学概念。例如在学习数列的时候,我们不妨作如下分析:数列是按一定次序排列的一列数,是有规律的。那规律是什么呢?项与项数之间的规律、项与项之间的规律、数列整体趋势的规律。项与项数之间的规律就是我们说的通项公式,项与项之间的规律就是我们所说的递推公式,数列整体趋势的规律就是我们所说的极限问题。当项与项之间满足差数相等的关系时,数列被称为等差数列;当项与项之间满足倍数相等的关系时,数列就被称为等比数列。这样我们对数列这一章的概念便都了然于胸了。5、比喻法:很多同学概念不清的原因是觉得概念单调乏味、没有兴趣,从而不去重视它、深究它,所以我们在讲解概念的时候,不妨和生活相联系作些形象地比喻,以达到吸引学生提高学习兴趣的效果。例如:在讲解映射的时候,不妨把映射的法则比喻成男女恋爱的法则。两个人可以同时喜欢上一个人,但一个人不可以同时爱上两个人。这不正是映射的法则:集合A中的每一个元素在集合B中都唯一的像与之对应吗?又如函数可以理解为一个黑匣子或交换器,投入的是数产出的也是数;投入一个数只能产出一个数;但是当投入不同数的时候可以产出同一个数。再如:满足和的像等于像的和、数乘的像等于像的数乘的映射称之为线性映射。这不正像一个人怎么舞动他的影子就怎么舞动吗?所以有的时候把线性映射理解为“人影共舞”的映射。 6、类比法:在学习向量空间的时候,很多同学疑问重重。向量不就是那些既有大小又有方向的量吗?怎么连矩阵、连续函数、甚至线性变换也可以理解为向量呢?这一切是不是太不可思议了!但是当你作如下思考的时候,一切便顺理成章了。让小学生算一道5-7的题,他会说你这道题出错了,但是让一个初中生去算的话,他就会告诉你等于-2;当你让一个初中生对负数进行开平方运算,他会说不能对负数进行开平方。然而高中生却能够进行运算。这就说明了一个问题,随着年龄的增长和认识层次的提高,人们对于同一概念的理解和认识也在逐步的深入和扩大。正如数的概念由小学生的整数、分数和小数扩大为初中生的实数最后扩大为高中生的复数。同样对于向量的理解也就不能只限于既有大小又有方向的量,应该把这一观念转变过来。像这样的方法还有很多,不再一一列举。总之一句话:数学概念是重要的,分析概念是有趣的,在乐趣和玩赏中去理解概念是容易做到的.

那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了。于是我和奶奶就去买西瓜。 走进菜市场,我一眼就瞅住了一个西瓜堆儿。这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺。奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,斤,17元8角。”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤元,单价是:÷1=元,而一斤半十五块五,也就是斤元,它的单价是:÷,我没细算,想想可能应该比多,但是却犯了个致命的错误。 算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了。”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了。 回到家,我把这件事告诉给妈妈。妈妈听了之后又问了一遍价钱。我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五。”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”。“因为这儿是÷1=,而别人那儿是÷,反正他这儿便宜”我理直气壮。妈妈说:“你呀,太马虎了,÷……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!”

如何写数学论文 随着教育科研意识的不断提高,很多教师希望把自己培养成学者型教师,把自己的教育、教学研究成果写成论文. 根据本人的粗浅经历,我认为注意以下几点,与同事们讨论,旨在共同进步。 一、借鉴成果,博采众长——先粗保存,再归类保存,整理中顿生灵感 对他人的研究成果,进行吸收消化,为我所用,这是每一个科研工作者都在做、并且必须做的事情. 一个人的精力、能力、水平等毕竟是有限的,要弥补这个“先天性缺陷”,就一定要向他人学习借鉴. 就初中数学教师而言,我们所涉猎的范围自然应以初中数学的教育教学科研信息为主,但还应兼顾高中和小学的数学,以及计算机、物理、化学等相关学科的信息,特别是教育学、心理学方面的知识和信息,信息的采集形式多种多样,大致可以分为三类: (一)书面形式,比如各种书籍、报纸、刊物等; (二)口头形式,比如各种会议、听课、交流、咨询等; (三)电子形式,比如网络。 这些信息采集后的保存方式也各不相同,先粗保存。主要有四种方式: (1)制卡片,简要注明作者、题目、出处、摘要、编号、日期等项内容;(2)做摘记,写在本上;(3)复印或收藏;(4)电子信息存盘。 再归类保存。电脑的使用可以把这些宝贵的文献资料,全部化为电子信息存盘,并整理归类。整理归类的过程,即便是文字输入的过程都能够使你顿生灵感,我记得一位台湾女诗人创作了一首诗《一生都在整理一张书桌》,我想,做学问人都应该“一生都在忙碌中整理一张书桌”。这样为论文写作,提供了强大的理论支持和众多的珍贵例子,从而萌生对某一题材的进一步研究和发掘,撰写成了论文。所以论文不是谁刻意写出来的,有一点瓜熟蒂落的感觉,无病呻吟成不了好文章。 二、完备素材,厚积薄发——论文还自教研始,处处留心皆学问 “论文还自教研始”、“论文在研不在写”等观点,有一定的道理。“厚积”是基础,没有来源于实践的经验教训、数据统计等素材的积累,想要写出比较有价值的论文,几乎是不可能的. 这些素材源于何处?如何去发现这些素材呢?答案是那句古话“处处留心皆学问”. 具体说来,素材的来源主要有以下几方面: (1)课堂教学,它是教研工作的主阵地,也是素材最重要的来源,这不但是一个教学实践的过程,还是一个发现问题的过程,是一个向学生学习、自己提高的过程; (2)课后反思; (3)作业记录,从学生作业中不但能发现具有共性的问题,还提示我们教研的改革方向; (4)考试总结; (5)解题分析,并从中探索解题规律和命题趋势; (6)调查反馈,可以用谈心、问卷等多种形式进行,从中反馈的信息是难得的写作素材; (7)成果质疑,学习他人但不要迷信,发现不足甚至是错误之处,理由不充分的就要敢于质疑; (8)探讨争论,在日常探讨问题的过程中,持有不同观点的人发生激烈争论是常有的事,从中往往加深了对问题的理解程度; (9)灵感顿悟,事实上很多自选课题的素材是平时工作、学习、生活甚至睡梦中突然想到的,这种灵感是对问题深入思考的结果,如果没有自觉教研的精神,灵感就无从谈起.。 三、立足实践,提炼新意——“冷点”、“热点” 初中数学教师都从事着一线教学工作,最清楚教学中的困惑和喜悦,最了解学生的想法和看法,最直接的进行着实践和改革,这些是专门从事教育科研工作的专家、学者和部门所难以具备的.正因如此,一线教师的论文多数源于实践,具有强烈的实用性和鲜明的针对性,对于我们的这些优势应该有充分的认识,并不断保持和发展. 再比如,教学中的一些“冷点”问题虽不常见,但一旦出现便会使学生无从插手。论文的新意如何出?我认为有两点非常重要: 一是在主题上,立意新颖,视角独特; 二是在时间上,意识超前,创作及时。 四、从小到大,循序渐进——先文章、再论文,从小中见大好成文 写论文需要一个过程,循序渐进,不可能一蹴而就. 按照一般情况,初写者先尝试以下两个步骤: 第一步:练习写学习辅导类的文章.这些虽然一般称不上“论文”,但是进行这样的写作,既可以当作练笔,又可以用于教学,还可以视为一次小小的课题研究,通常有1000字左右;要求与教学同步。 第二步,进行教学研究类论文的写作,先侧重于解题方法研究等实践性强的,由浅入深,不要急于写理论性太强的论文. 可以先探讨解题技巧,再挖掘思想方法,后深究素质能力,进而分析命题原则,预测趋势走向等。 如果写有些理论性的文章,可以从教学实践中去寻找适应教育发展趋势的新课题,需要指出的是,一篇论文的范围不求广,但求分析透彻,凝练精华,小中见大;论文篇幅不求长,一般在3000字左右;此类论文与学习辅导类的文章相比,格式要规范得多,应认真研读报刊风格。 五、技巧和经验——复制、删除、添加 当文思涌动,意欲写作时,先应确立文稿的题目,用小标题清晰地表达想写的几个方面。例如:我写《数学建构主义学习的探索和实践》一文时,根据建构主义学习的三大特征——自主学习、合作活动、个人体验,列出三个小标题,然后分别展开。 (1)为了借鉴别人的成果,有必要复制相关的文章段落,作为你的理论依据或论述的素材、旁例。但要讲究文德,切勿剽窃抄袭他人论文。这就要参考多遍文章,复制多款内容,不怕内容多,只怕内容不全,然后去粗取精,大刀阔斧地删除。留下的骨架再添加自己的思想,教学实践中的例证,自己平时积累的成果等,但文章一定要有更多自己的东西,这样才是真正自己的文章。 (2)做有心人。经常阅读,选择有关书刊放在床头、沙发边或办公桌上,只要有空经常翻阅。一旦有想法,及时记录,并经常向这个方向思考和研究,再参考他人成果必能成就自己的文章。坚持不懈,持之以恒,“功夫不负有心人”。 (3)抓住热点、冷点。例如:我写《数学探究性学习策略》(市一等奖),就是抓住新教材契机,对《课程标准》进行仔细地学习,结合平时的教学经验和资料收集完成的。另外,听课、听报告等,往往有许多新的思想、新的观念,同样是论文研究的好题材,例如:我写《数学建构主义学习的探索和实践》(市二等奖),所选择的内容就是计算机本科函授时,老师的讲课内容。当然,开始对这个问题还意识模糊,只觉得是一个好题材,但后来经过了许多文章的阅读,才清晰地认识了“建构主义学习”所具备的三个主要特征,于是文章头绪也理清了。再者,我写《学困生元认知的培养》(全国二等奖),就是偶然看到“元认知”的概念,是一种“对认知的认知”,再搜索引擎得相关资料,结合本人体验成文的。 以上所谈是我对初中数学论文写作的几点看法,希望能给朋友们带来一些帮助,所涉及的内容较为肤浅,如要在论文写作的道路上不断提高,还需要借鉴更多人的成功之道,但无论如何,个人的实践创新才是最重要的因素之一,同行们一定会写出比我更好的文章。

  • 索引序列
  • 数学解题研究杂志
  • 数理化解题研究杂志
  • 数理化解题研究杂志怎么样
  • 数理化解题研究杂志一本多少页
  • 数学解题研究类论文
  • 返回顶部