细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!
细胞因子的生物学活性
关键字: 细胞因子
细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。
一、免疫细胞的调节剂
免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)
二、免疫效应分子
在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。
三、造血细胞刺激剂
从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。
四、炎症反应的促进剂
炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。
五、其它
许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。
细胞衰老的分子生物学机制
摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。
关键词:细胞衰老;分子生物学;机制研究
细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。
细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。
衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。
1 细胞衰老的特征
科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。
衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。
2 分子水平的变化
①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。
3 细胞衰老原因
迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。
差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。
自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。
英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。
生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。
端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。
遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。
参考文献:
[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.
[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.
[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.
人类衰老之谜初见端倪--------------------------------------------------------------------------------作者: 发表时间:2003-2-27 摘自:中国科学院和中国工程院于2003年1月26日联合在北京宣布了由568位中国科学院和中国工程院院士参与评选的"2002年中国十大科技进展新闻"。 "北京大学医学部科学家初步揭开了人类衰老之谜"成为该十大新闻中唯一的一条医学方面的新闻。该成果还在2003年1月25日公布的"2002年公众关注的中国十大科技事件"评比中名列榜首。该项研究成果是在国家自然科学基金面上项目和重点项目及国家 "973"项目共同支持下,由北京大学医学部童坦君、张宗玉两位教授领导的科研小组,在多年潜心研究基础上取得的。该研究初步阐明了P16基因是人类细胞衰老的主导基因,是人类细胞衰老遗传控制程序的主要因素,揭示了P16基因在衰老过程中高表达是细胞衰老的主要原因。衰老是一种有机体的死亡危险随年龄增加而增大的现象。细胞衰老是生物衰老的基本单位、老年病的发病基础。近年来有关衰老的研究取得了一些进展如细胞凋亡与特殊基因的关系、端粒长度的控制等。童坦君、张宗玉教授领导的课题组密切关注国际前沿发展方向,他们将P16基因导入人成纤维细胞,结果衰老加快,而将其反义重组载体导入细胞则抑制P16使细胞较长时间维持年轻态,且使细胞增殖能力与DNA损伤修复能力加强。这些重要发现在国际著名杂志J Biol Chem 上以两篇文章发表。童坦君、张宗玉教授领导的课题组长期从事衰老及肿瘤形成的分子机理研究。主持和完成了5项相关课题的国家自然科学基金面上项目和重点项目,在国际、国内一流杂志发表多篇研究论文,并多次获省部级科技进步奖。他们的研究是对人类细胞衰老机理研究的原创性贡献,为进一步阐明人类细胞衰老问题提供了一条新途径。
细胞衰老的原因目前还未确定,但是存在这几种原因。分子机理之差错学派细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有实验证据。代谢废物积累学说细胞代谢产物积累至一定量后会危害细胞,引起衰老,哺乳动物脂褐质的沉积是一个典型的例子,脂褐质是一些长寿命的蛋白质和DNA、脂类共价缩合形成的巨交联物,次级溶酶体是形成脂褐质的场所,由于脂褐质结构致密,不能被彻底水解,又不能排出细胞,结果在细胞内沉积增多,阻碍细胞的物质交流和信号传递。最后导致细胞衰老。研究还发现老年性痴呆(AD)脑内的脂褐质、脑血管沉积物中有β-淀粉样蛋白,因此β-AP可做为AD的鉴定指标。大分子交联学说过量的大分子交联是衰老的一个主要因素,如DNA交联和胶原胶联均可损害其功能,引起衰老。在临床方面胶原交联和动脉硬化、微血管病变有密切关系。自由基学说自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。如O2ˉ··、OH·和各类活性氧中间产物(reactive oxygen metabolite ROM),正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。 自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。蛋白质的变性而失活,膜脂中不饱和酸的氧化而流动性降低。实验表明DNA中OH8dG随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。 大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等人(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。体细胞突变学说认为诱发和自发突变积累和功能基因的丧失,减少了功能性蛋白的合成,导致细胞的衰老和死亡。如辐射可以导致年轻的哺乳动物出现衰老的症状,和个体正常衰老非常相似。DNA损伤修复学说外源的理化因子,内源的自由基本均可导致DNA的损伤。正常机体内存在DNA的修复机制,可使损伤的DNA得到修复,但是随着年龄的增加,这种修复能力下降,导致DNA的错误累积,最终细胞衰老死亡。DNA的修复并不均一,转录活跃基因被优先修复,而在同一基因中转录区被优先修复,而彻底的修复仅发生在细胞分裂的DNA复制时期,这就是干细胞能永保青春的原因。端粒学说染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。生物分子自然交联学说该学说在论证生物体衰老的分子机制时指出:生物体是一个不稳定的化学体系,属于耗散结构。体系中各种生物分子具有大量的活泼基团,它们必然相互作用发生化学反应使生物分子缓慢交联以趋向化学活性的稳定。随着时间的推移,交联程度不断增加,生物分子的活泼基团不断消耗减少,原有的分子结构逐渐改变,这些变化的积累会使生物组织逐渐出现衰老现象。生物分子或基因的这些变化一方面会表现出不同活性甚至作用彻底改变的基因产物,另一方面还会干扰RNA聚合酶的识别结合,从而影响转录活性,表现出基因的转录活性有次序地逐渐丧失,促使细胞、组生进行性和规律性的表型变化乃至衰老死亡。 生物分子自然交联说论证生物衰老的分子机制的基本论点可归纳如下:其一,各种生物分子不是一成不变的,而是随着时间推移按一定自然模式发生进行性自然交联。其二,进行性自然交联使生物分子缓慢联结,分子间键能不断增加,逐渐高分子化,溶解度和膨润能力逐渐降低和丧失,其表型特征是细胞和组织出现老态。其三,进行性自然交联导致基因的有序失活,使细胞按特定模式生长分化,使生物体表现出程序化和模式化生长、发育、衰老以至死亡的动态变化历程。分子机理之遗传论学派认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。细胞有限分裂学说 (1961)报道,人的纤维细胞在体外培养时增殖次数是有限的。后来许多实验证明,正常的动物细胞无论是在体内生长还是在体外培养,其分裂次数总存在一个“极极值”。此值被称为“Hayflick”极限,亦称最大分裂次数。如人胚成纤维细胞在体外培养时只能增殖60~70代。 现在普遍认为细胞增殖次数与端粒DNA长度有关。 Harley等1991发现体细胞染色体的端粒DNA会随细胞分裂次数增加而不断缩短。DNA复制一次端粒就缩短一段,当缩短到一定程度至Hayflick点时,细胞停止复制,而走向衰亡。资料表明人的成纤维细胞端粒每年缩短14~18bp,可见染色体的端粒有细胞分裂计数器的功能,能记忆细胞分裂的次数。 端粒的长度还与端聚酶的活性有关,端聚酶是一种反转录酶,能以自身的RNA为模板合成端粒DNA,在精原细胞和肿瘤细胞(如Hela细胞)中有较高的端聚酶活性,而正常体细胞中端聚酶的活性很低,呈抑制状态。重复基因失活学说真核生物基因组DNA重复序列不仅增加基因信息量,而且也是使基因信息免遭机遇性分子损害的一种方式。主要基因的选择性重复是基因组的保护性机制,也可能是决定细胞衰老速度的一个因素,重复基因的一个拷贝受损或选择关闭后,其它拷贝被激活,直到最后一份拷贝用完,细胞因缺少某种重要产物而衰亡。实验证明小鼠肝细胞重复基因的转录灵敏度随年龄而逐渐降低。哺乳动物rRNA基因数随年龄而减少。衰老基因学说统计学资料表明,子女的寿命与双亲的寿命有关,各种动物都有相当恒定的平均寿命和最高寿命,成人早衰症病人平均39岁时出现衰老,47岁生命结束,婴幼儿早衰症的小孩在1岁时出现明显的衰老,12~18岁即过早夭折。由此来看物种的寿命主要取决于遗传物质,DNA链上可能存在一些“长寿基因”或“衰老基因”来决定个体的寿限。 研究表明当细胞衰老时,一些衰老相关基因(SAG)表达特别活跃,其表达水平大大高于年轻细胞,已在人1 号染色体、4号染色体及Ⅹ染色体上发现SAG。 用线虫的研究表明,基因确可影响衰老及寿限,Caenrhabditis elegans的平均寿命仅天,该虫age-1 单基因突变,可提高平均寿命65%,提高最大寿命110%,age-1突变型有较强的抗氧化酶活性,对H2O2、农、紫外线和高温的耐受性均高于野生型。 对早衰老综合症的研究发现体内解旋酶存在突变,该酶基因位于8号染色体短臂,称为WRN基因,对AD的研究发现,至少与4个基因的突变有关。其中淀粉样蛋白前体基因(APP)的突变,导致基因产物β淀粉蛋白易于在脑组织中沉积,引起基因突变。
人类衰老的本质是:随着年龄增加,我们体内干细胞的数量会逐渐减少,活力会逐渐下降。在新生命刚刚出生时,干细胞数量非常充沛;到30岁左右时,干细胞的储存量只剩下出生时的一半;步入60岁以后,干细胞的数量更是明显减少。人体的衰老,说到底是细胞的衰老。抗衰老最根本的途径是修复细胞、改善细胞代谢、激活衰老细胞的功能。干细胞是一类具有自我复制能力的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。人体的衰老,皱纹的出现,究其根源实质上都是细胞的衰老和减少。而细胞的衰老和减少则是由干细胞老化引起的。干细胞是各种组织细胞更新换代的种子细胞,是人体细胞的生产厂。干细胞族群的老化严重减弱了其增殖和分化的能力,新生的细胞补充不足,衰老细胞不能及时被替代,全身各系统功能下降,让人一天天老去。而你的皮肤,也因为皮肤干细胞的衰老而无法及时更新,衰老的皮肤得不到修复,所以,你有了皱纹,失去了青春容颜。干细胞美容是通过输注特定的多种细胞(包括各种干细胞和免疫细胞),激活人体自身的“自愈功能”,对病变的细胞进行补充与调控,激活细胞功能,增加正常细胞的数量,提高细胞的活性,改善细胞的质量,防止和延缓细胞的病变,恢复细胞的正常生理功能,从而达到疾病康复、对抗衰老的目的。“原位培植皮肤干细胞再生新皮肤技术”不仅实现了利用干细胞复制皮肤器官,而且做到了人体原位皮肤器官的复制,从而使人类从干细胞体外培植组织成器官移植治疗,直接跨入了人体原位干细胞复制器官。科学家普遍认为:干细胞的研究将为临床医学提供更为广阔的应用前景。如何让细胞抗衰老?通过大量实验和临床对照研究,使人们逐渐认识到:青春之泉不在别处,而是蕴藏于我们体内,是否年轻态主要取决于体内的细胞,只要细胞健康、有活力,机体才能保住青春。而细胞的状态和命运是由干细胞决定的,干细胞可以修复细胞的损伤,补充细胞的消耗,激活细胞的能量。科学家们发现了一些能延长细胞寿命的方法,那就是补充干细胞能延长细胞寿命。干细胞抗衰老,一方面大量补充新鲜的干细胞,替换衰老、病变细胞、改善人体内环境、提高脏器功能;另一方面,进入体内的干细胞可以唤醒原本沉睡的干细胞,增强细胞活性,修复受损细胞,调理人体各个组织器官,维持机体青春活力。
在生命过程中,人体总是有部分细胞不断衰老死亡同时又有性增殖的细胞代替他们,人体出生以后,生长,发育,成熟衰老与死亡是生命过程的必然规律。机体的衰老是细胞衰老的结果,但机体的衰老死亡与细胞的衰老死亡是不同的,机体的摔倒并不意味着所有的细胞同时衰老,而细胞的衰老与机体的衰老密切相关。细胞衰老与死亡是细胞生命活动中的基本规律,在细胞摔倒的过程中,细胞结构会发生一系列变化,细胞死亡有两种形式,既坏死性死亡和自然凋亡,这是两种截然不同的过程。坏死性死亡可引起炎症反应,而自然凋亡会引起炎症反应对于维持生物体内细胞新陈代谢具有重要意义。
细胞死亡是细胞衰老的结果,是细胞生命现象的终止。包括急性死亡(细胞坏死)和程序化死亡(细胞凋亡)。细胞死亡最显著的现象,是原生质的凝固。事 实上细胞死亡是一个渐进过程,要决定一个细胞何时已死亡是较因难的。除非用 固定液等人为因素瞬间使其死亡。那么,怎样鉴定一个细胞是否死亡了呢?通常 采用活体染色法来鉴定。如用中性红染色时,生活细胞只有液泡系染成红色,如 果染料扩散,细胞质和细胞核都染成红色,则标志这个细胞已死亡。细胞衰老的研究只是整个衰老生物学(老年学,人类学)研究中的一部分。所 谓衰老生物学(biology of senescence)(或称老年学,gerontology)是研究 生物衰老的现象、过程和规律。其任务是要揭示生物(人类)衰老的特征,探索 发生衰老的原因和机理,寻找推迟衰老的方法,根本目的在于延长生物(人类) 的寿命。多细胞有机体细胞,依寿命长短不同可划分为两类,即干细胞和功能细 胞。干细胞在整个一生都保持分裂能力,直到达到最高分裂次数便衰老死亡。如 表皮生发层细胞,生血干细胞等。细胞凋亡(apoptosis)是一个主动的由基因决定的自动结束生命的过程,也常 常被称为程序化细胞死亡(programmed cell death,PCD)。凋亡细胞将被吞噬细 胞吞噬。这一假说是基于Hayflick界限提出的:1961年Hayflick根据人胚胎细胞的传代培养实验提出。指细 胞在发育的一定阶段出现正常的自然死亡,它与细胞的病理死亡有根本的区别。 细胞凋亡对于多细胞生物个体发育的正常进行,自稳平衡的保持以及抵御外界各 种因素的干扰方面都起着非常关键的作用。例如:蝌蚪尾的消失,骨髓和肠的细胞凋亡,脊椎动物 的神经系统的发育,发育过程中手和足的成形过程。
细胞衰老的原因分析
细胞衰老的原因分析。细胞学说是一个庞大的课题,我们都知道人体的衰老就是细胞的衰老,不少人好奇细胞为何会衰老。我已经为大家搜集了细胞衰老的原因分析的相关信息,一起来看看吧。
1、遗传决定学说:
认为衰老是遗传上的程序化过程,其推动力和决定因素是基因组。控制生长发育和衰老的基因都在特定时期有序地开启或关闭。控制机体衰老的基因或许就是“衰老基因”。长寿者、早老症患者往往具有明显的家族性,后者已被证实是染色体隐性遗传病。这些都促使人们推测,衰老在一定程度上是由遗传决定的。
2、氧化损伤学说(自由基理论):
早在20世纪50年代,就有科学家提出衰老的自由基理论,以后该理论又不断发展。自由基是生物氧化过程中产生的、活性极高的中间产物。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂质等大分子物质,造成氧化性损伤,结果导致DNA断裂、交联、碱基羟基化,蛋白质变性失活等胞结构和功能的改变。
正常细胞内存在清除自由基的.防御系统,如超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶等。实验证明,SOD与CAT的活性升高能延缓机体的衰老。
3、端粒钟学说:
端粒是染色体末端的一种特殊结构,其DNA由简单的重复序列组成。在细胞分裂过程中,端粒由于不能为DNA聚合酶完全复制而逐渐变短。科学家提出了端粒钟学说,认为端粒随着细胞的分裂不断缩短,当端粒长度缩短到一定阈值时,细胞就进入衰老过程。
4、转录或翻译差错学说:
随着年龄的增长,机体的细胞内不但DNA复制效率下降,而且常常发生核酸、蛋白质、酶等大分子的合成差错,这种与日俱增的差错最终导致细胞功能下降,并逐渐衰老、死亡。
5、废物累积学说:
由于细胞功能下降,细胞一方面不能将代谢废物及时排出细胞,另一方面又不能将这些代谢废物降解消化,这些代谢废物越积越多,在细胞中占据的空间越来越大,影响细胞代谢废物的运输,以致于阻碍了细胞的正常生理功能,最终引起细胞的衰老。
6、程序性细胞死亡理论:
是衰老的一种假说,该理论认为衰老是因细胞程序性死亡,就是细胞象编好的程序一样,按照设定的程序,到了特定的时间就死亡。
有关衰老的假说还有很多。近年来,用线虫进行的发育程序与衰老关系的研究取得了显著进展。线虫的特殊发育模式关系到发育方向的决定和寿命的延长。
细胞衰老的特征有哪些
主要特征:
研究表明,衰老细胞的核、细胞质和细胞膜等均有明显的变化:
形态变化 总体来说老化细胞的各种结构呈退行性变化。
衰老细胞的形态变化表现有:
1、核:增大、染色深、核内有包含物
2、染色质:凝聚、固缩、碎裂、溶解
3、质膜:粘度增加、流动性降低
4、细胞质:色素积聚、空泡形成
5、线粒体:数目减少、体积增大
6、高尔基体:碎裂
7、尼氏体:消失
8、包含物:糖原减少、脂肪积聚
9、核膜:内陷
分子水平的变化:折叠
1、DNA:从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低。
2、 RNA:mRNA和tRNA含量降低。
3、蛋白质:含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋。
4、 酶分子:活性中心被氧化,金属离子Ca2 、Zn2 、Mg2 、Fe2 等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活。
5、脂类:不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。
没有什么地方比这里更全的了,包括了所有最新收录的。如外面传的中文期刊只有95种,实际上是147种,这里全收录了查询时,甚至可以用中文查询、简称,全称均可以查询,十分方便。
CHINESE MEDICAL JOURNAL《中华医学杂志》(英文版) 月刊 ISSN:0366-6999 影响因子 CELL RESEARCH《细胞研究》(英文版) 双月刊 1001-0602 中西医结合杂志(英文版)中医杂志(英文版)中国药理学杂志
下面是医学类SCI刊列表,分值越低的要求越低ADVANCES IN MEDICAL SCIENCES ISSN: 1896-1126 Index: SCIAIDS CARE-PSYCHOLOGICAL AND SOCIO-MEDICAL ASPECTS OF AIDS/HIV ISSN: 0954-0121 Index: SSCIAMERICAN JOURNAL OF MEDICAL GENETICS PART A ISSN: 1552-4825 Index: SCIAMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS ISSN: 1552-4841 Index: SCIAMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS ISSN: 1552-4868 Index: SCIAMERICAN JOURNAL OF MEDICAL QUALITY ISSN: 1062-8606 Index: SCIAMERICAN JOURNAL OF THE MEDICAL SCIENCES ISSN: 0002-9629 Index: SCIANNALS OF BIOMEDICAL ENGINEERING ISSN: 0090-6964 Index: SCIANNUAL REVIEW OF BIOMEDICAL ENGINEERING ISSN: 1523-9829 Index: SCIARCHIVES OF MEDICAL RESEARCH ISSN: 0188-4409 Index: SCIARCHIVES OF MEDICAL SCIENCE ISSN: 1734-1922 Index: SCIBALKAN JOURNAL OF MEDICAL GENETICS ISSN: 1311-0160 Index: SCIBALKAN MEDICAL JOURNAL ISSN: 2146-3123 Index: SCIBIO-MEDICAL MATERIALS AND ENGINEERING ISSN: 0959-2989 Index: SCIBIOCYBERNETICS AND BIOMEDICAL ENGINEERING ISSN: 0208-5216 Index: SCIBIOMEDICAL AND ENVIRONMENTAL SCIENCES ISSN: 0895-3988 Index: SCIBIOMEDICAL CHROMATOGRAPHY ISSN: 0269-3879 Index: SCIBIOMEDICAL ENGINEERING ONLINE ISSN: 1475-925X Index: SCIBIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS ISSN: 1016-2372 Index: SCIBIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK ISSN: 0013-5585 Index: SCIBIOMEDICAL MATERIALS ISSN: 1748-6041 Index: SCIBIOMEDICAL MICRODEVICES ISSN: 1387-2176 Index: SCIBIOMEDICAL OPTICS EXPRESS ISSN: 2156-7085 Index: SCIBIOMEDICAL PAPERS-OLOMOUC ISSN: 1213-8118 Index: SCIBIOMEDICAL RESEARCH-INDIA ISSN: 0970-938X Index: SCIBIOMEDICAL RESEARCH-TOKYO ISSN: 0388-6107 Index: SCIBIOMEDICAL SIGNAL PROCESSING AND CONTROL ISSN: 1746-8094 Index: SCIBMC MEDICAL EDUCATION ISSN: 1472-6920 Index: SCIBMC MEDICAL ETHICS ISSN: 1472-6939 Index: SCIBMC MEDICAL ETHICS ISSN: 1472-6939 Index: SSCIBMC MEDICAL GENETICS ISSN: 1471-2350 Index: SCIBMC MEDICAL GENOMICS ISSN: 1755-8794 Index: SCIBMC MEDICAL INFORMATICS AND DECISION MAKING ISSN: 1472-6947 Index: SCIBMC MEDICAL RESEARCH METHODOLOGY ISSN: 1471-2288 Index: SCIBOSNIAN JOURNAL OF BASIC MEDICAL SCIENCES ISSN: 1512-8601 Index: SCIBRATISLAVA MEDICAL JOURNAL-BRATISLAVSKE LEKARSKE LISTY ISSN: 0006-9248 Index: SCIBRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH ISSN: 0100-879X Index: SCIBRITISH JOURNAL OF BIOMEDICAL SCIENCE ISSN: 0967-4845 Index: SCIBRITISH MEDICAL BULLETIN ISSN: 0007-1420 Index: SCIBRITISH MEDICAL JOURNAL ISSN: 1756-1833 Index: SCICANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY ISSN: 1712-9532 Index: SCICANADIAN MEDICAL ASSOCIATION JOURNAL ISSN: 0820-3946 Index: SCICHINESE MEDICAL JOURNAL ISSN: 0366-6999 Index: SCICOMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING ISSN: 1025-5842 Index: SCICOMPUTERIZED MEDICAL IMAGING AND GRAPHICS ISSN: 0895-6111 Index: SCICROATIAN MEDICAL JOURNAL ISSN: 0353-9504 Index: SCICURRENT MEDICAL IMAGING REVIEWS ISSN: 1573-4056 Index: SCICURRENT MEDICAL RESEARCH AND OPINION ISSN: 0300-7995 Index: SCIDANISH MEDICAL JOURNAL ISSN: 2245-1919 Index: SCIEUROPEAN JOURNAL OF MEDICAL GENETICS ISSN: 1769-7212 Index: SCIEUROPEAN JOURNAL OF MEDICAL RESEARCH ISSN: 0949-2321 Index: SCIEUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES ISSN: 1128-3602 Index: SCIEXPERT REVIEW OF MEDICAL DEVICES ISSN: 1743-4440 Index: SCIFEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY ISSN: 0928-8244 Index: SCIHONG KONG MEDICAL JOURNAL ISSN: 1024-2708 Index: SCIIEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS ISSN: 1932-4545 Index: SCIIEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING ISSN: 0018-9294 Index: SCIIEEE TRANSACTIONS ON MEDICAL IMAGING ISSN: 0278-0062 Index: SCIINDIAN JOURNAL OF MEDICAL MICROBIOLOGY ISSN: 0255-0857 Index: SCIINDIAN JOURNAL OF MEDICAL RESEARCH ISSN: 0971-5916 Index: SCIINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING ISSN: 2040-7939 Index: SCIINTERNATIONAL JOURNAL OF MEDICAL INFORMATICS ISSN: 1386-5056 Index: SCIINTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY ISSN: 1438-4221 Index: SCIINTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY ISSN: 1478-5951 Index: SCIINTERNATIONAL JOURNAL OF MEDICAL SCIENCES ISSN: 1449-1907 Index: SCIINTERNATIONAL MEDICAL JOURNAL ISSN: 1341-2051 Index: SCIIRANIAN JOURNAL OF BASIC MEDICAL SCIENCES ISSN: 2008-3866 Index: SCIIRANIAN RED CRESCENT MEDICAL JOURNAL ISSN: 1561-4395 Index: SCIIRISH JOURNAL OF MEDICAL SCIENCE ISSN: 0021-1265 Index: SCIISRAEL MEDICAL ASSOCIATION JOURNAL ISSN: 1565-1088 Index: SCIJAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION ISSN: 0098-7484 Index: SCIJAVMA-JOURNAL OF THE AMERICAN VETERINARY MEDICAL ASSOCIATION ISSN: 0003-1488 Index: SCIJOURNAL DE MYCOLOGIE MEDICALE ISSN: 1156-5233 Index: SCIJOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS ISSN: 1526-9914 Index: SCIJOURNAL OF BIOMEDICAL INFORMATICS ISSN: 1532-0464 Index: SCIJOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A ISSN: 1549-3296 Index: SCIJOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS ISSN: 1552-4973 Index: SCIJOURNAL OF BIOMEDICAL NANOTECHNOLOGY ISSN: 1550-7033 Index: SCIJOURNAL OF BIOMEDICAL OPTICS ISSN: 1083-3668 Index: SCIJOURNAL OF BIOMEDICAL SCIENCE ISSN: 1021-7770 Index: SCIJOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES ISSN: 1570-0232 Index: SCIJOURNAL OF CLINICAL PSYCHOLOGY IN MEDICAL SETTINGS ISSN: 1068-9583 Index: SSCIJOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY-MEDICAL SCIENCES ISSN: 1672-0733 Index: SCIJOURNAL OF INTERNATIONAL MEDICAL RESEARCH ISSN: 0300-0605 Index: SCIJOURNAL OF KOREAN MEDICAL SCIENCE ISSN: 1011-8934 Index: SCIJOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING ISSN: 1609-0985 Index: SCIJOURNAL OF MEDICAL BIOCHEMISTRY ISSN: 1452-8258 Index: SCIJOURNAL OF MEDICAL BIOGRAPHY ISSN: 0967-7720 Index: AHCIJOURNAL OF MEDICAL DEVICES-TRANSACTIONS OF THE ASME ISSN: 1932-6181 Index: SCIJOURNAL OF MEDICAL ENTOMOLOGY ISSN: 0022-2585 Index: SCIJOURNAL OF MEDICAL ETHICS ISSN: 0306-6800 Index: SCIJOURNAL OF MEDICAL ETHICS ISSN: 0306-6800 Index: SSCIJOURNAL OF MEDICAL GENETICS ISSN: 0022-2593 Index: SCIJOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY ISSN: 1754-9477 Index: SCIJOURNAL OF MEDICAL INTERNET RESEARCH ISSN: 1438-8871 Index: SCIJOURNAL OF MEDICAL MICROBIOLOGY ISSN: 0022-2615 Index: SCIJOURNAL OF MEDICAL PRIMATOLOGY ISSN: 0047-2565 Index: SCIJOURNAL OF MEDICAL SCREENING ISSN: 0969-1413 Index: SCIJOURNAL OF MEDICAL SPEECH-LANGUAGE PATHOLOGY ISSN: 1065-1438 Index: SCIJOURNAL OF MEDICAL SYSTEMS ISSN: 0148-5598 Index: SCI
SCI 论文发表省钱技巧SCI 论文发表有哪些省钱的技巧?很多作者在投稿时,想让发表率更高一些,又能少花费些。SCI 论文发表,并不难,那么都有哪些省钱技巧呢,下面就给大家具体介绍一下,希望对大家有帮助。 (1) 首先在投稿前,电子版一定要认真的核对,要思路清晰、概念清楚,而且文章中不可以出现太多的空格,因为空格会增加版面费的,许多作者都交过这样的冤枉钱。(2)SCI 论文发表的时候,文章格式可以根据投稿杂志的格式来进行修改,这样审核的编辑会觉得你很用心,可能会比较投机,录取率比较高。(3) 关于科学内容和资料数据一定要正确,你可以找一些专业人士,对文章进行处理,提高成功率。(4) 如果觉得英文翻译做不好,尽量不要用在线翻译,你可以告诉编辑,申请让他们编辑帮助翻译。一般杂志社都会有专业的英文编辑。(5)SCI 论文发表时,最好要注明自己的联系方式,邮箱和电话,方便他人联系。有事情也可以及时与作者沟通,寄发杂志的时候,快递公司也方便联系作者,留下联系方式可以省很多麻烦。(6) 很多作者想了解自己稿件的处理进度,一般好的杂志处理稿件的周期是 3 个月。可以在投稿后一个月打个电话,进行咨询 (一般外审就回来了);在修改的稿件寄回后 2 周,可以打个电话,咨询一下稿件修改是否合格,并询问什么时候可以刊出; 当您收到校样之后,可以给编辑打个电话,告诉他是否有需要有大的改动,这样彼此都了解一下情况 (因为校样的寄发速度有时很慢,万一杂志送印刷厂就很难改动了)。(7)SCI 论文发表投稿的时间,建议您在需要晋升的前 6 个月投发稿件,这样在晋升前刊登的几率会高一些。(8) 在您投稿的时候,最好先对所在科室投稿的情况,进行统计,把那些处理稿件较快,服务态度好,杂志邮寄迅速快,作为衡量一本期刊的标准,并进行准确分类。最后选出好的期刊。(9) 最后,提醒大家,认真按照批注去修改文章,如果您有不同的想法,也可以在旁边用不同颜色的文字标明。 以上就是对 SCI 论文发表技巧的介绍,能够让自己的文章在 SCI 期刊发表,是一种莫大的荣耀。希望您看过之后会对您有帮助。
在一项新的研究中,来自美国普林斯顿大学的研究人员惊奇地发现,他们以为是对癌症如何在体内扩散---癌症转移---的直接调查却发现了液-液相分离的证据:这个生物学研究的新领域研究生物物质的液体团块如何相互融合,类似于在熔岩灯或液态水银中看到的运动。相关研究结果作为封面文章发表在2021年3月的Nature Cell Biology期刊上,论文标题为“TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis”。
论文通讯作者、普林斯顿大学分子生物学教授Yibin Kang说,“我们相信这是首次发现相分离与癌症转移有关。”
他们的研究不仅将相分离与癌症研究联系在一起,而且融合后的液体团块产生了比它们的部分之和更多的东西,自组装成一种以前未知的细胞器(本质上是细胞的一个器官)。
Kang说,发现一种新的细胞器是革命性的。他将其比作在太阳系内发现一颗新的星球。“有些细胞器我们已经认识了100年或更久,然后突然间,我们发现了一种新的细胞器!”
论文第一作者、Kang实验室博士后研究员Mark Esposito说,这将改变人们对细胞是什么和做什么的一些基本看法,“每个人上学,他们都会学到‘线粒体是细胞的能量工厂’,以及其他一些有关细胞器的知识,但是如今,我们对细胞内部的经典定义,对细胞如何自我组装和控制自己的行为的经典定义开始出现转变。我们的研究标志着在这方面迈出了非常具体的一步。”
这项研究源于普林斯顿大学三位教授实验室的研究人员之间的合作。这三位教授是Kang、Ileana Cristea(分子生物学教授,活体组织质谱学的领先专家);Cliff Brangwynne(普林斯顿大学生物工程计划主任,生物过程中相分离研究的先驱)。
Kang说,“Ileana是一名生物化学者,Cliff 是一名生物物理学者和工程师,而我是一名癌症生物学家和细胞生物学者。普林斯顿大学刚好是一个让人们联系和合作的美妙地方。我们有一个非常小的校园。所有的科研部门都紧挨着。Ileana实验室实际上与我的实验室在Lewis Thomas的同一层楼! 这些非常紧密的关系存在于非常不同的研究领域之间,让我们能够从很多不同的角度引入技术,让我们能够突破性地理解癌症的代谢机制--它的进展、转移和免疫反应--也能想出新的方法来靶向它。”
这项最新的突破性研究,以这种尚未命名的细胞器为特色,为Wnt信号通路的作用增加了新的理解。Wnt通路的发现导致普林斯顿大学分子生物学教授Eric Wieschaus于1995年获得诺贝尔奖。Wnt通路对无数有机体的胚胎发育至关重要,从微小的无脊椎动物昆虫到人类。Wieschaus已发现,癌症可以利用这个通路,从本质上破坏了它的能力,使其以胚胎必须的速度生长,从而使肿瘤生长。
随后的研究揭示,Wnt信号通路在 健康 的骨骼生长以及癌症转移到骨骼的过程中发挥着多重作用。Kang和他的同事们在研究Wnt、一种名为TGF-b的信号分子和一个名为DACT1的相对未知的基因之间的复杂相互作用时,他们发现了这种新的细胞器。
Esposito说,把它想象成风暴前的恐慌购物。事实证明,在暴风雪前购买面包和牛奶,或者在大流行病即将到来时囤积洗手液和卫生纸,这不仅仅是人类的特征。它们也发生在细胞水平上。
下面是它的作用机制:惊慌失措的购物者是DACT1,暴风雪(或大流行病)是TGF-ß,面包和洗手液是酪蛋白激酶2(CK2),在暴风雪面前,DACT1尽可能多地抓取它们,而这种新发现的细胞器则把它们囤积起来。通过囤积CK2,购物者阻止了其他人制作三明治和消毒双手,即阻止了Wnt通路的 健康 运行。
通过一系列详细而复杂的实验,这些研究人员拼凑出了整个故事:骨肿瘤最初会诱导Wnt信号,在骨骼中传播(扩散)。然后,骨骼中含量丰富的TGF-b激发了恐慌性购物,抑制了Wnt信号传导。肿瘤随后刺激破骨细胞的生长,擦去旧的骨组织。( 健康 的骨骼是在一个两部分的过程中不断补充的:破骨细胞擦去一层骨,然后破骨细胞用新的材料重建骨骼)。这进一步增加了TGF-b的浓度,促使更多的DACT1囤积和随后的Wnt抑制,这已被证明在进一步转移中很重要。
通过发现DACT1和这种细胞器的作用,Kang和他的团队找到了新的可能的癌症药物靶点。Kang说,“比如,如果我们有办法破坏DACT1复合物,也许肿瘤会扩散,但它永远无法‘长大’成为危及生命的转移瘤。这就是我们的希望。”
Kang和Esposito最近共同创立了KayoThera公司,以他们在Kang实验室的合作为基础,寻求开发治疗晚期或转移性癌症患者的药物。Kang说,“Mark所做的那类基础研究既呈现了突破性的科学发现,也能带来医学上的突破。”
这些研究人员发现,DACT1还发挥着许多他们才开始 探索 的其他作用。Cristea团队的质谱分析揭示了这种神秘细胞器中600多种不同的蛋白。质谱分析可以让科学家们找出在显微镜玻片上成像的几乎任何物质的确切成分。
Esposito说,“这是一个比控制Wnt和TGF-b更动态的信号转导节点。这只是生物学新领域的冰山一角。”
Brangwynne说,相分离和癌症研究之间的桥梁仍处于起步阶段,但它已经显示出巨大的潜力。
他说,“生物分子凝聚物在癌症---它的生物发生,特别是它通过转移进行扩散---中发挥的作用仍然不甚了解。这项研究为癌症信号转导通路和凝聚物生物物理学之间的相互作用提供了新的见解,它将开辟新的治疗途径。”(生物谷 )
参考资料: Esposito et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nature Cell Biology, 2021, doi:. D. Patel et al. Condensing and constraining WNT by TGF-β. Nature Cell Biology, 2021, doi:.
细胞培养技术是细胞生物学研究的基础,在生物技术研究领域占有十分重要的位置。下面是我为大家整理的细胞培养论文,供大家参考。
细胞工程课程教学改革初探
细胞培养论文摘要
摘 要 细胞工程是我国本科院校生物技术专业的一门专业必修课。针对该课程特点,本文从优化理论教学和强化实践教学等方面进行了积极的探索,以便为细胞工程课程的教学改革提供参考。
细胞培养论文内容
关键词 生物技术 细胞工程 教学改革
中图分类号:G424 文献标识码:A
Discussion on Teaching Reform of Cell Engineering Course
LI Anzheng
(Teaching and Research Section of Biotechnology, Hubei University of Chinese Medicine, Wuhan, Hubei 430065)
Abstract Cell engineering is a professional required course for undergraduate biotechnology major of universities and colleges in china. In this paper, according to the characteristics of this course, positive exploration was carried on to optimize the theory teaching and strengthen the practice teaching, which may provide references to teaching reform of cell engineering course.
Key words biotechnology; cell engineering; teaching reform
21世纪是生命(生物)科学的世纪。生物技术是应用生命科学研究成果对生物或生物的成分进行改造和利用的综合性技术体系,包括细胞工程、基因工程、酶工程、发酵工程和生化工程五大技术范畴。其中细胞工程是应用运用生物学研究所积累的知识和技术,在细胞水平上开发利用生物材料或生物系统,并以一定的工艺获得产品(细胞系、细胞株,生物体或其次生代谢产物)的有关理论和技术的学科。
我校生物技术专业于2005年开始招生,经8年的专业建设,目前已经形成较为完善的理论和实践教学体系。目前细胞工程已经成为高等院校生物技术专业的主干课程之一。学好这门课程, 将为学生今后从事生物学领域的相关研究及与细胞工程有关的生物技术产业工作莫定良好的理论和技术基础。贯彻“以学生为主体”的教学理念,提高教学质量、培养高素质应用型人才是包括我校在内的诸多院校孜孜追求的目标。结合细胞工程课程特点以及本校的实际情况,生物技术教研室对该课程教学内容、 教学 方法 、实验教学等进行了一系列的改革探索。
1 理论教学改革
优化教学内容
教学内容决定了学生的基本知识结构,影响学生基本能力的形成,教学内容是否充实与新颖,对教学质量的提高具有重大影响。鉴于精品课程是具有一流教师队伍、一流教学内容、一流教学方法、一流教材、一流教学管理等特点的示范性课程,在细胞工程这门课程的教学中,结合中医药院校的中医药特色以及生物技术教研室教师队伍的实际,我们引进了由“211”高校华中农业大学创建的国家精品课程——细胞工程学的内容。
在教材的选用上,以高等 教育 出版社出版的柳俊教授主编的《植物细胞工程》作为教学参考书,该书系统地介绍了植物组织细胞培养技术,既说明了操作方法,也论述了其中的理论原理,比较适合于本科生的学习。同时,在教学中补充关于动物细胞工程的内容,并向学生推荐了一些参考书。
同时完善教学大纲,对教学内容作适当增减。细胞工程与其他生物科学密切相关, 如作为先修课程的植物生物学、动物生物学、细胞生物学和分子生物学等,因此在内容上有些章节会有重复,对此可以略讲或加以提问以示复习。如植物胚乳培养中涉及胚乳发育的三种途径(核型胚乳、细胞型胚乳和沼生目型胚乳),该内容在植物生物学中已经学习,在此可略讲。
此外,进入新世纪后包括细胞工程在内的生物技术各领域的新成果日新月异,因此对教师而言,不仅要教授给学生这个领域的基本原理、基本方法和基本技术,而且也要把最新研究进展融入到教学中来。这就要求教师必须能够随时关注该领域发展的最新动态(查阅国内外权威文献),并及时把相关内容补充到教学内容中,从而激发学生学习的兴趣,增强学生学习的自觉性和创造性。要求认真细致地备好每每一节课(包括实验课),并在课后进行教学 反思 ,所以尽管课程每年基本是重复的,但每年都有新的体会,需要花大量时间认真备课。
改革教学方法
激发学生的学习兴趣,发挥其主观能动性。所谓兴趣是最好的老师,带着兴趣学习,可以发挥学生的主观能动性,对教学效果的提高无疑是大有裨益的。大学传统的教学模式往往是灌输式的,老师是知识的传输者;新的教学模式比如启发式教学则要求老师由知识的传输者转变为学习的引导启发者,激发学生的学习兴趣,调动学生学习的主动性和积极性。因此在教学过程中,可以选择细胞工程的某一章节或者某一知识点的内容,尝试让学生体验课堂教学,以培养学生的独立思考能力、查阅文献能力、 总结 归纳能力及语言表达能力。
注重师生互动,积极引导学生学习。一般上新课之前会花几分钟时间复习旧课,即对上次课的内容提出几个问题,让学生思考回答。这样既可以巩固已学内容,又可以衔接新课内容,可谓承上启下,一举两得。另外在授课过程中也需要观察同学们对某一知识点的掌握情况,尤其是涉及一些先修课程的内容,也会随时提问并做解答。所有的提问,要兼顾到每一位同学,即每一个同学都有回答问题的机会;对回答得好的同学要大力表扬,对回答不上来的同学也要加以鼓励。 认真制作多媒体课件,优化多媒体教学。随着社会经济水平的提高和科技水平的进步,充分利用多媒体等现代教学手段也是对专任教师的必然要求。目前我校绝大多数教室都配备了多媒体教学系统,细胞工程这门课程也采用了多媒体授课。如何将传统板书教学的提纲挈领与多媒体教学的大信息量实现有机结合,是教学过程中需要用心思考的问题。在多媒体课件(PPT幻灯片)的制作过程中,坚持“文字少而不缺,图表多而不杂”的原则,将传统的板书的要点集中体现在其中某一张幻灯片上,然后添加一些超级链接用图表对每一要点作详细说明,做到既要发挥多媒体教学的优势,又不失传统教学的效果。同时还可以在多媒体课件上完善外文(英语)专业词汇,增加学生 专业英语 的基础。
2 实践教学改革
细胞工程是一门实践性很强的学科。在实验内容的设置上,本着整合教学资源,优化教学内容的原则,在我校生物技术专业培养方案中将包括细胞工程在内的数门专业课的实验加以整合,开设了生物技术综合实验。其中有对应的细胞工程部分以动物细胞培养和植物组织培养过程为基本内容。在实验过程中前一个实验为后一个实验做准备,后一个实验是前一个实验的深入。实验过程从培养基的制备到材料的消毒灭菌接种,到实验结果的观察,学生需要全程参与。考虑到因为污染等原因导致某一次实验失败而导致后续实验无法开展的问题,在实验过程中指导老师要随时关注培养情况并采取预防 措施 ,比如多准备一些实验材料;或者指导老师除演示实验过程外,每次也作为其中的实验小组参与实验。实验 报告 的书写上要求同学们如实报告实验结果,即使是失败的结果也要求写上并分析原因。
3 结语
课程教学是实现教育培养目标的重要手段。在细胞工程课程教学过程中, 我们优化教学内容,引入了“211”高校的精品课程并加以消化,把最新的科研成果融入到教学内容中;采用了灵活多样的教学方法和多媒体教学手段,使教学质量得到了相应的提高。在今后的教学过程中将与时俱进,不断总结 经验 ,进一步完善教学内容、教学方法,尤其要加强细胞工程实验的开设,丰富实验内容,把细胞工程课程教学水平提高到一个新的层次。
细胞培养论文文献
[1] 柳俊,谢从华.植物细胞工程(第2版)[M].北京:高等教育出版社,2011.
[2] 姜振华,周大祥.地方本科院校细胞工程教学改革探索[J].教育教学论坛,2013(27):52-53.
[3] 王义,刘思言,孙春玉等.在《植物细胞工程》课程教学中培养学生科研能力的思考与实践[J].中国校外教育(理论),2008(9):85-86.
[4] 杨清玲,章尧,陈昌杰等.生物技术综合实验建设的研究[J].蚌埠医学院学报,2009(34):166-168.
细胞工程教学改革与探索
细胞培养论文摘要
摘要根据细胞工程教学实际,从师资队伍、教学内容、教学方法及考核方式等方面进行探讨,以为细胞工程教学改革提供新思路。
细胞培养论文内容
关键词细胞工程;教学改革;考核方式
细胞工程是理论与实践结合的综合性很高的一门学科,是应用细胞生物学和分子生物学的原理方法,在细胞水平上研究、改造生命遗传物质,以获得具有目的性状的细胞系或生物体的理论和技术的学科,它既是现代生物技术的重要组成部分,也是现代生物学研究的重要技术工具,在高校生命科学及相关学科的课程设置中占有重要地位[1-2]。学好这门课程,将为学生今后从事生物学领域的相关研究及与细胞工程有关的生物技术产业工作奠定良好的理论和技术基础。授课教师必须充分发挥自身专业优势,适应学科发展需要,积极引导学生科学认知并对该领域产生兴趣,系统把握相关原理、方法、技术和进展;同时培养学生综合能力,增强教学效果。在不断探索的过程中,结合细胞工程的特点,就提高细胞工程教学的质量进行探讨。
1加强师资队伍建设
组建教学团队
为了解决教学内容学科跨度大、背景不同的问题,打破传统的一人一课的教学模式,组建教学团队,将教学内容分为不同的教学模块。每一模块由具有相应专业背景的教师承担,力争紧跟各教学内容的学科前沿。
提高教师教学水平
为了提高教学水平,课题组成员定期进行现代教学思想和现代教学方法的学习与讨论;定期组织在教学方法上有建树的专家进行听课和有针对性的评课;督促教师认真备课,业务上要精益求精,特别要求教学内容要紧跟学科前沿,使自己成为本专业的真正专家和学者,站在本专业知识发展前沿。同时不定期展开自评和互评,以促进整体教学水平的提高。
2融合科技发展,改革、更新教学内容
细胞工程是一门涉及面较广的综合性学科,无论是教师的教,还是学生的学都具有一定的难度,这就要求在授课内容的选择上,即要注意内容的系统性与完整性,又要保证授课内容的全面、趣味、实用。结合生物技术专业的教学目的和现有教材,在课程内容上,主要围绕以下几个方面展开:一是细胞工程基础,包括基本概念,主要研究内容,细胞培养的基本设施、条件、方法和技术等;二是植物细胞工程,包括植物组织培养、脱毒与快繁、单倍体诱导与育种、胚胎培养、体细胞胚胎发生和人工种子技术、原生质体融合、染色体工程、转基因技术等;三是动物细胞工程,包括动物细胞培养、细胞融合、染色体工程、细胞重组与克隆、转基因动物与生物反应器等;四是细胞工程的实践与应用,包括细胞工程及其相关技术的发展现状与应用进展,及其产业化发展前景等。
此外,由于当今世界科学技术突飞猛进,知识信息量增长迅速,细胞工程的研究内容也日新月异,新技术、新方法不断涌现。这就要求任课教师在教学中要适时地调整并更新教学内容,站在现代科技发展的前沿,掌握生物工程领域科技发展的最新动态,及时把这些动态、研究成果以及有待攻关的重大课题融入教学内容,激发学生学习探索新知识的兴趣,提高学生的综合能力。如在讲解“克隆技术”时,及时把国内外最新的成果向学生传播,包括2007年12月14日韩国孔一根教授通过一只成年雌性土耳其安哥拉猫的表皮细胞克隆出3只含荧光蛋白的白色小猫;2009年1月Cloning and Stem Cells杂志网络版报道,山东省干细胞工程技术研究中心、烟台毓璜顶医院成功获得人体细胞克隆胚。又如在讲解“染色体工程”时,结合2009诺贝尔生理医学奖的最新成果进行阐述。
3改革教学方法
采用启发式、探究式教学方法
作为综合技术课程,细胞工程的各章节逻辑性不强,理论表述较少,应用技术细节较多,给欠缺基础知识的学生在理解、记忆课本内容时带来较大的难度。因此,在教学过程中,要大力提倡启发式、问题探究式、讨论式、训练与实践式教学方法,鼓励学生大胆质疑、自由探索,最大限度地发挥学生学习的主动性、积极性和创造性。例如在讲授细胞重组与克隆过程中,只讲解细胞重组和克隆相关原理,而克隆的最新进展则由学生在查阅资料后,对其做讲解和归纳总结,由教师和其他学生给予评价和修正。
应用 现代教学手段,提高教学质量
细胞工程是一个基础性和实践性很强的学科,课程的信息量大,内容基本是微观水平,传统的的教学模式无法为学生呈现如此大信息量的课程内容,而且也很容易引起学生对课程的懈怠,降低学习兴趣,影响教学效果。为了提高教学效果,以 计算机为工具,通过多媒体、教学录像、 网络资源、CAI课件等现代化教学手段,不仅可以向学生提供丰富多彩的教学信息,还可以提供更加美观的人机交互界面,充分调动学生的情绪、情感、注意力和兴趣[3]。这样就可以使那些抽象的、在普通条件下难以观察到的过程直观而形象地展示出来,有利于增长学生独立灵活地分析问题、解决问题的能力,提高教学质量,同时激发学生的学习兴趣。
开展各种教学活动
在正常的授课之余,还尝试打破常规的教学方式,开展丰富多彩的教学活动,对于培养学生学习兴趣、充分调动学生学习积极性有着很好的效果[4]。如在期中时,给学生布置写一篇综述的任务,题目和内容自定,只要是学生自己感兴趣、与本学科内容相关的即可。学生通过查找资料,对生物学科产生了浓厚的兴趣,甚至产生了以后从事这方面工作的愿望,有的还主动找到教师,申请提前进入实验室。又如在教学过程中,尝试让学生在学完每章内容后自己试编题并给出答案,然后以作业的形式上交,教师综合学生编写的题目和各方面资料建立题库。这种形式,一方面,体现尊重学生、信任学生的教学原则,同时极大地调动了学生学习细胞工程的积极性和主动性;另一方面,学生编题的过程也是学习掌握的过程,让学生的学习达到事半功倍的效果。
4改革考核方式
目前,大多大学生对期末 考试“一考定终身”不满,因此,制定 科学可行的考核办法对提高学生的学习积极性和改进教学效果都具有重要的作用。为了引导学生全面 发展,科学评价学生的学习情况,该课程针对目前考试中存在的问题,从以下几个方面进行了考试模式的改革探索:一是在考试内容上除了包括课程的基础理论、基本知识、基本技能等,同时也考察学生的在融会贯通基础上分析问题、解决问题的能力;二是加强平时成绩考核,将课堂的出勤、回答问题、作业、讨论及课堂讲述等情况记入平时成绩;三是最后总评分时按平时成绩占30%(作业、出勤、课堂的参与程度等),平时的课堂活动、创新活动占10%(包括撰写研究综述、运用细胞工程技术手段、设计方案解决实际问题、成立兴趣小组、参与课题研究、课堂讲课等),期末考试占60%(注重考查运用理论知识解决实际问题的能力)。
5结束语
在科技竞争、人才竞争、 经济和科学技术迅速发展的形势下,通过研究与探索细胞工程课程教学体系,把最新的科技发展成果融入到教学内容中,采用先进的教学内容和现代化的教学方法与手段,改革考核方式,细胞工程课程教学改革取得了一些成绩。今后,要不断通过学习掌握新的知识、提高自身的理论认知水平,同时每次上课前精心备课,并在教学实践中对课程教学体系不断改进,提高细胞工程的教学质量。
细胞培养论文文献
[1] __勇.细胞工程[M].北京:科学出版社,2003.
[2] 胡尚连,孙短,曹颖.植物细胞工程理论与实践教学体系探索与实践[J]. 中国校外 教育:理论,2008(2):136-137.
[3] 张一春.现代教育技术实用教程[M].南京:南京师范大学出版社,2005.
[4] 梁亦龙,魏进民,张继承.细胞工程教学改革的探索[J].实验室科学,2009(4):25-26.
有关细胞培养论文推荐:
1. 生物学论文范文
2. 生物技术论文范文
3. 生物制药技术论文范文
4. 生物工程论文范文
5. 高中生物小论文范文精选
6. 生物工程毕业论文范文
7. 医学科研课题开题报告范文
一头乌发的人是不会理解头发花白的人痛苦的,特别是少白头,年纪轻轻就要面临求医问药和染发的两个选择,但在白发的背后,我们不能忽视一个重要的健康原因!
为什么会长出白头发?
其实头发变白是一个人自然衰老的过程,头发原来就是半透明的,但正常情况下毛母细胞不断地分裂增殖使头发生长的过程中会在毛囊里染上黑色素,而黑色素则是毛母细胞周围的内色素细胞提供的,两者相互配合,为我们生产出了乌黑发亮的黑头发。
为什么头发会变白?
很简单黑色素细胞生产黑色素的原料中断了,要么就是黑色素细胞直接罢工了,因此未经第二道染色工序加工的半透明头发就穿破了头皮,越来越长,最终在光线的反射下变成了一根白头发,当罢工的黑色素细胞或者中断原料供应的的毛囊越来越多,那么满头银丝就成为了现实!
黑色素细胞中断工作的真正原因是什么?
毛母黑色素细胞大量死亡;
毛发生长是周期性的,分为生长期、退行期和休止期,一般为2~7年,这个周期结束后,这些产生色素的黑色素细胞会受损并死亡,进入一个新的更新周期,但因故未能更新,黑色素细胞就再也无法生产黑色素,当然也无法染色,所以就长出了白头发。
酪氨酸酶生成减少或消失;
黑色素是毛囊的黑色素细胞合成的,合成黑色素需要酪氨酸、维生素C等物质的参与, 同时还需有充足的血液供应与正常功能的黑色素合成系统,它们正常工作使头发变黑, 其中任何一个环节发生问题,比如人体内有酪氨酸酶抑制物质等都会造成黑色素合成障碍而出现白发
真正的原因是什么?
到现在为止我们也不能100%确定哪种因素会造成白发,但一般认为造成黑色素形成障碍的原因有几个:遗传因素、微量元素及维生素、心理及内分泌因素和环境因素等,其中最值得注意的是心理与内分泌因素导致的白发!
2011 年《自然》期刊上发表了一项由诺贝尔奖得主Robert Lefkowitz博士领导的研究。该研究发现,长期的压力和经常出现的“战斗或逃避”应激反应最终会导致DNA损伤,不仅会引发衰老和精神疾病,还会影响控制毛发色素的基因!
而内分泌因素则可能是身体某些部位病变所导致,与突然白发相反的是老年人突然黑发,其实也不是好事,一般就是病变导致的激素分泌失调,特别是同时还伴有皮肤变嫩、性功能亢进等现象,这很可能是垂体肿瘤、肾上腺细胞癌等严重疾病发生的早期信号!必须赶紧求医以确定到底是哪里病变所致。
得了白发还有救吗?
与导致白发的原因扑朔迷离一样,如何黑发同样是一个难题,不过医生一般都都会有一些建议:
保持良好的精神状态和乐观情绪:压力增大的应激反应损伤DNA。
戒烟:吸烟增加氧自由基的生成,氧自由基会破坏黑色素。
加强营养、合理膳食补充各种微量元素
规律的头部按摩增加血液循环
拔掉白头发可取吗?
与白发抗争是一个漫长的经历,所以一些操之过急的朋友会把白头发拔掉,但事实上于事无补,拔掉白头发不会少一根,因为过阵子又会长出来,不过比较幸运的是它不会长两根,因为一个毛囊一根头发,不多不少!但大量拔掉白头发会导致头皮发炎。
科学界最新的方法
2018年法国科学家在《科学》期刊上发表了一篇论文称有方法可以保护或者改善毛囊黑色素细胞免受损伤,其工作原理是模仿多巴色素异构酶的作用。这种酶是毛球中天然存在的抗氧化剂,可以保护黑色素细胞免受氧化损伤。通过复制多巴色素异构酶的作用,黑色素细胞的代谢和存活得到显著改善,而且这种制剂正在被配制成洗发水或者喷剂用于保护黑色素细胞。
2019年4月份,江苏大学李遇梅团队在《Cell Reports》发表了一篇《患者iPS细胞来源的诱导黑素细胞在自体移植治疗中的潜能》的论文,利用白癜风患者色素脱失部位的皮肤细胞生成自体iPS细胞,通过高效独特的三维诱导分化培养技术获得了大量具有高增殖能力和体内整合功能的黑素细胞。不过这种方法还仅仅在大鼠身上取得成功,未来还有很长的路要走。
据科学界的最新进展,白发的解决办法正不断取得进展,未来也许不再有白发烦恼。
1却无情无情
1962 年 9 月 4 日 ,山中伸弥出生于日本大阪府。大一之前,山中伸弥都一直居住在奈良市。高中时,山中因阅读医师德田虎雄的著作《只有生命是平等的》而倍受鼓舞,决定从医。
山中的父亲经营著一个生产裁缝机零配件的小工厂,虽然山中小时候也喜爱分解机械,但常常无法将其恢复原样,受到父母的责备。机械道路上的不顺利,成为山中迈上医学道路的另一个诱因。
在父亲的影响下,他立志认真学习终于考入大阪重点中学--大阪教育大学附属天王寺高中,考入高中后其他学生都在认真学习,只有山中热衷于柔道(据说他有梦想成为日本奥运会代表选手),在高中的3年期间他因为练柔道就受伤了10多次(骨折),很多人都说这个孩子大概走错了学校,应该去考大阪体育大附属高中,而不是在这里学习文化知识,三年时间很快就要过去,这个失败的学生将如何面对人生呢?山中伸弥的父亲告诉他:"你多次受伤,看见医生这么为病人减轻痛苦,你将来要成为医生为人类服务。"于是山中就接受了父亲的提议,在学校的最后阶段认真学习,终于考入了著名的国立神户大学医学部。
1987年 3月:神户大学医学院毕业
1987年7月:国立大阪病院临床研修医
1993年 3月:大阪市立大学医学研究科博士毕业
1993年4月:格拉斯通研究所(Gladstone Institute)博士研究员
1996年 1月:日本学术振兴会特别研究员
1996年10月:大阪市立大学医学部助手(药理学教室)
1999年12月:奈良先端科学技术大学院大学遗传因子教育研究中心助理教授
2003年 9月:升任奈良先端科学技术大学院大学遗传因子教育研究中心教授
2004年10月:京都大学再生医科学研究所(Institute for Frontier Medical Sciences)教授(再生诱导研究分野)
2008年 1月:京都大学物质-细胞统合系统据点iPS细胞研究中心长
2012年10月,获得诺贝尔生理或医学奖。
2012年10月,获得2012年度日本"文化勋章"。
山中伸弥是诱导多功能干细胞(iPScell)创始人之一。2007年,他所在的研究团队通过对小鼠的实验,发现诱导人体表皮细胞使之具有胚胎干细胞活动特征的方法。此方法诱导出的干细胞可转变为心脏和神经细胞,为研究治疗多种心血管绝症提供了巨大助力。这一研究成果在全世界被广泛套用,因为其免除了使用人体胚胎提取干细胞的伦理道德制约。
2006年山中伸弥等科学家把4个转录因子通过逆转录病毒载体转入小鼠的成纤维细胞,使其变成多功能干细胞。这意味着未成熟的细胞能够发展成所有类型的细胞。
山中伸弥从其他科学家已经公布的研究结果中挑选出24种最有希望的转录因子。在试验室中他发现这24种转录因子中的确有4种转录因子可以将人体细胞重组成干细胞。他把4种基因注入皮肤细胞,从而得到"鸡尾酒"iPS细胞。
事实证明这4个转录因子中,其中一个转录因子确实是"一次天大的冒险",因为这一个是与癌症相关的转录因子。数月后他又发现即使不使用这个致癌基因,他仍然能够重组细胞,这样癌变的几率会大大降低。但新创造的干细胞仍然会发生癌变,在他的实验中,121只老鼠中,有20%产生了肿瘤。这说明使用逆转录病毒,可能使基因产生变异,引发肿瘤等副作用。他表示下一步的研究目标是在不使用逆转录酶的情况下实现细胞重组。
2007年 Meyenburg Award(Meyenburg基金会 [Meyenburg Foundation]/德国癌症研究中心 [German Cancer Research Center, DKFZ])(德国)
2008年 《时代》杂志"世界百大影响力人物"(The World's Most Influential People)(美国)
2008年 罗伯特·科赫奖(德国)
2008年 科学技术特别奖(日本)
2008年 邵逸夫生命科学与医学奖
2009年 拉斯克基础医学奖
2011年获得国际最高学术大奖之一的沃尔夫医学奖,与其一起获奖的还有美国怀特黑德研究所的Rudolf Jaenisch。
2012年,山中伸弥与美国软体工程师利努斯·托瓦兹获得芬兰"千年技术奖",二人分别获得60万欧元的奖金。
2012年10月:与英国发育生物学家约翰·格登(John Gurdon)因在细胞核重新编程研究领域的杰出贡献而获得诺贝尔生理学或医学奖。山中因研发出诱导多能干细胞(iPS细胞)而为人所知。
2015年12月,获颁香港中文大学荣誉理学博士。
Shinya Yamanaka念高中时迷上柔道,因为受伤经常上医院,他在爸爸的建议下随后考入国立神户大学医学部,准备以后做一名骨科医生。大学毕业做临床实习期间,他发现自己对手术其实没有什么天分,别人做20分钟的手术他两个小时也未必完成;并且他觉得做医生再优秀也只能帮助少数的病人,而医学研究有成果的话通常可以帮助更多的病人,所以他的兴趣转向基础医学研究。在大阪市立大学博士期间,Shinya的主要工作是研究血压调节的分子机理]。在研究过程中,Shinya对小鼠基因敲除和转基因技术感到震惊,于是他在申请博士后位置的时候联系的都是利用这些技术的实验室。
这位失败的骨科医生最后被加州Gladstone Institute的Thomas Innerarity纳入门下(图一)。Thomas实验室研究的是血脂调节,跟Shinya博士期间的工作有点关系。Shinya的新课题是研究ApoB mRNA的编辑蛋白ApoBEC1。
ApoB是低密度脂蛋白的主要构成成分。ApoB mRNA可以被编辑酶ApoBEC1脱氨提前终止翻译,形成两种不同大小的蛋白:全长的ApoB100和大约一半长的ApoB48。经过编辑的ApoB48在血浆中会被迅速清除。Thomas预测,如果在肝脏中过表达ApoBEC1,那么血脂就可能降低;如果这个模型可行的话,也许未来通过基因疗法可以帮助一些肥胖病人降低血脂。
Shinya一周七天地勤奋工作,花了六个月做成了转基因鼠。有一天早上,帮他维护小鼠的技术员告诉他:Shinya,你的许多小鼠都怀孕了,可是小鼠是公的。Shinya说你不是跟我开玩笑吧。他到老鼠房一看,果真有很多公鼠看起来怀孕了。他杀了其中几只,发现原来是小鼠得了肝癌,肝脏肿大撑大了肚皮。
ApoBEC1过表达后低密度脂蛋白是降低了,但是高密度脂蛋白却升高了,同时还得了肝癌,这买卖不合算啊。Shinya在一次讲座中总结了其中的经验教训:其一,科学是不可预测的;其二,不要尝试在病人身上做新基因的治疗;其三,也许最重要的是,不要相信导师的假说。
Thomas对结果不能符合预期很失望,但是这个预想之外的结果却引起了Shinya的好奇:究竟是什么机理使小鼠得肿瘤的呢?好在Thomas足够开明,他允许Shinya偏离实验室的主要方向,继续探索ApoBEC1的致癌机理。可以想见,ApoBEC1过表达以后也可能会编辑ApoB之外的其它mRNA,找到这些mRNA也许可以解释ApoBEC1为什么能致癌。
由于已知ApoBEC1需识别底物mRNA的特异序列才能编辑,Shinya据此设计引物扩增,找到了ApoBEC1的一个新底物-抑制蛋白翻译的基因Nat1。ApoBEC1过表达后,Nat1蛋白消失。从逻辑上讲,如果编辑Nat1是导致ApoBEC1致癌的重要分子,那么Nat1敲除的小鼠也会长癌。
基因敲除比起转基因要更加复杂,需要把构建的质粒原位整合到体外培养的胚胎干细胞中。基因敲除技术不就是Shinya博士阶段做梦都想学的技术吗?于是Shinya找到所里做基因敲除的专家,当时还是助理教授的Robert Farese,从他的助手Heather Myers那里学了这项技术的每个细节,并成功地获得了Nat1敲除的杂合鼠。Heather Myers是Shinya的终生好友;Shinya发现iPS以后,也公开表达了对Heather Myers的感激,因为是她告诉Shinya,胚胎干细胞不仅仅是做敲除小鼠的手段,其本身也可以是非常有趣的研究对象。
在Shinya兴致勃勃地继续追问Nat1的功能时,他的妻子带着女儿离开他回到了日本。半年后他决定中断研究带着三只珍贵的Nat1杂合鼠,也跟随家人回国。
毛毛虫阶段
凭借他在博士后期间发表的四篇高质量的一作论文,1996 年Shinya在母校大阪市立大学找到了助理教授的职位,继续他的Nat1研究。
再一次地与预测出现偏差:Nat1敲除后,纯合子小鼠在胚胎发育早期就死了,根本无法观察到成鼠是否得肿瘤。Shinya进一步研究发现,敲除Nat1的胚胎干细胞在体外根本不能像正常干细胞一样分化。此时他想起了Heather Myers的话:胚胎干细胞不仅是研究的工具,它本身也可以是非常有趣的研究对象。他的关注点开始转移到胚胎干细胞上来。
在刚回大阪的头几年,Shinya由于刚起步,只能得到少量的研究资助,他不得不自己一个人养几百只小鼠,日子过得非常艰苦。同时大阪市立大学医学院的基础研究很薄弱,周围的人不理解Shinya研究Nat1在胚胎干细胞中的功能有什么意义,总是劝说Shinya做一些更靠近医药临床方面的研究。而Nat1的研究论文提交给杂志后一直被拒稿。种种压力与不得志,Shinya因之得了一种病叫PAD(Post America Depression,离开美国后的抑郁症;自创的玩笑话),几乎要放弃科研回国做骨科医生。
在他最低谷的时候,有两件事情把他从PAD中挽救了回来。其一是James Thomson(俞君英的导师,2007年几乎与Shinya同时宣布做出了人的iPS) 在1998年宣布从人的囊胚中采集并建立了胚胎干细胞系:这些干细胞在体外培养几个月后还可以分化成不同胚层的细胞,比如肠上皮细胞,软骨细胞,神经上皮细胞等。这给了Shinya巨大的鼓舞,他开始更加坚信胚胎干细胞研究是有意义的,将来必然有一天会用于临床。第二件事是条件更加优越的奈良先端科学技术研究生院看上了他的特长,招聘他去建立一个做基因敲除小鼠的facility,并给他提供了副教授的职位。
成蛹阶段
千辛万苦脱了几层皮后,Shinya终于拥有了自己独立的实验室。第一次可以招帮手,好爽啊。但是问题又来了:研究生的生源是有限的,学生会倾向于选择资历更老条件更好的实验室,而不一定会选择刚起步的实验室;你想招但人家不来啊。为了吸引学生到他实验室,Shinya冥思苦想了好一阵,提出了一个雄心勃勃的计画,声称实验室的远景目标是研究怎么从终末分化的成体细胞变回多能的干细胞。
当时科学界的主流是研究怎么把胚胎多能干细胞分化成各种不同组织的细胞,以期用这些分化的功能细胞取代受损的或者有疾病的组织细胞。Shinya认为自己的实验室没有实力跟这些大牛竞争,那不如反其道而行之,研究怎么从分化的细胞逆转为多能干细胞。
当时科学界的主流观点认为,哺乳动物胚胎发育过程中的细胞分化是单向的,就像是时间不可逆转。这个观点也并非没有破绽,比如植物组织就具有多能性,一些植物的茎插入土壤会重新长出一棵植株,也即已经分化的茎细胞可以改变命运分化出新的根茎叶细胞。而早在1962年,也即Shinya出生的那一年,英国的John Gurdon爵士(与Shinya共享诺贝尔奖)报导了他的惊人发现:把蝌蚪的肠细胞核移植到去核的蛙卵中,新细胞可以发育成蝌蚪。如果把杂合细胞发育到囊胚期,用囊胚期的细胞核再做一次核移植,那么就可以发育出可生育传代的成蛙。进一步地,为了说服人们接受终末分化的细胞核也具有多能性,他把成蛙不同组织的细胞进行体外培养,发现核移植后来源不同的杂合细胞都可以发育到蝌蚪阶段。1997年,Ian Wilmut和Keith Campbell基于同样的原理,把羊的乳腺细胞核移植到去核的羊卵中,成功地培育出了克隆羊多莉。2001年,科学家发现,通过与 干细胞融合,胸腺细胞核获得了很大程度的重编程。
Shinya计画的第一步是找到尽可能多的,类似于Nat1参与维持干细胞功能的因子(维持因子的意思是这些因子是胚胎干细胞在体外培养维持多能性所必需的)。他大胆推测,如果过表达这些维持因子也许可以让终末分化的细胞变回多能干细胞。一旦成功,诱导的多能干细胞会有着胚胎干细胞所不具备的优势:它不仅可以绕开胚胎干细胞引起的伦理问题,病人本身的诱导干细胞改造后重新植入病人时,由于是自身的细胞,将不会有免疫排斥的难题。
在这个远大前景的感召下,Shinya果然"忽悠"了三个学生加入他实验室。很快地,他们鉴定出一系列的在胚胎干细胞特异表达的基因。其中一个基因就是Fbx15。Shinya的学生Yoshimi Tokuzawa发现Fbx15除了特异表达于胚胎干细胞外,它还能被另外两个胚胎干细胞维持因子Oct3/4和Sox2直接调控。Shinya跟Yoshimi说:Fbx15应该参与维持干细胞多能性和胚胎的发育,我猜你没有办法得到Fbx15敲除的纯合鼠。Yoshimi构建质粒做了基因敲除小鼠,把染色体上的Fbx15基因通过同源重组替换成抗G418药物的基因neo。
复杂的生命又一次愚弄了Shinya:Fbx15敲除的纯合鼠活得很健康,没有显见的表型。Shinya又挑战他的学生说:好吧,Fbx15也许不是小鼠胚胎发育所必需的,但是它应该是维持体外胚胎干细胞所必需的,我打赌你没有办法在胚胎干细胞中彻底敲除这个基因。勤快的Yoshimi于是用较高浓度的G418从干细胞中筛到了纯合的敲除株,还是活得好好的,没有表型。Shinya后来在回忆的时候打趣到:小鼠很happy,细胞也很happy,唯一不happy的就是可怜的学生Yoshimi了。
但是花这么多精力做的敲除小鼠不能就这么算了吧。Shinya又一次开动脑筋,想要废物利用。他发现由于Fbx15只在胚胎干细胞表达,Fbx15 promoter操控的抗药基因neo在成体的成纤维细胞里不表达,所以细胞对药物 G418敏感;而敲除鼠里得到的胚胎干细胞却可以在很高浓度的 G418中生长。如果终末分化的成纤维细胞能诱导成胚胎干细胞,那么它就会产生对 G418的 抗药性。即便成纤维细胞只是获得了部分胚胎干细胞的特性,那么它也应该能抗低浓度的 G418 。Fbx15敲除鼠实际上提供了很好的筛选诱导干细胞的系统!
凭借他鉴定胚胎干细胞维持因子的出色工作,2004年Shinya在名气更大的京都大学找到新的职位。除了Fbx15敲除鼠的筛选系统,Shinya还积累了他鉴定的加上文献报导的24个维持因子。Shinya跃跃欲试,他准备破壳而出,拍翅成蝶了!
Shinya的另一位学生Kazutoshi Takahashi此前已经发表了一篇关于干细胞致癌性的Nature文章。Shinya决意让他来承担最大胆的课题-逆分化成体细胞,因为他知道,有一篇Nature文章保底,即便接下来的几年一无所获,他的学生也能承受得了。
即便有很好的筛选系统,这个课题在当初看来也是非常冒险甚至是不可行的。当时的人们普遍认为成体细胞失去了多能性,也许成体细胞本身就是不可逆转的,你做什么也没有用。即便通过转核技术实现了成体细胞核命运的逆转,那也只是细胞核,不是整个细胞。胚胎细胞和成体细胞的染色体是一样的,细胞核具有全能性,尚可理解。而且要实现细胞核的逆转还需要转到卵细胞,让卵细胞质帮助它重编程,而卵细胞质中的蛋白不计其数。如果要实现整个细胞命运的逆转需要让细胞质中所有的蛋白重新洗牌。即便细胞可以重新编程,那也应该是很多蛋白共同参与的。Shinya当年在手上的仅仅是24个因子。也许有另外几百几千种因子被遗漏,缺少其中一种都无法实现重编程。用这24个因子异想天开要实现细胞重编程,根据已有的知识从逻辑上讲可能性几乎为零。
Kazutoshi这个愣头青不管这些,他给成纤维细胞一一感染过表达这些因子的病毒,结果当然没有筛选到任何抗 G418的细胞。Shinya知道如何保持学生的斗志,他故作镇定地说:你看,这说明我们的筛选系统很好啊,没有出现任何假阳性。
在试了一遍无果后,Kazutoshi大胆提出想把24个病毒混合起来同时感染细胞。Shinya觉得这是很愚蠢的想法:没人这么干过啊同学,不过死马当作活马医,你不嫌累的话就去试吧。
等了几天,奇迹竟然发生了。培养板上稀稀疏疏地竟然出现了十几个抗 G418的细胞克隆!一个划时代的发现诞生了。
关键实验取得突破以后,其后的事情就按部就班了。Kazutoshi每次去掉一个病毒,把剩下的23个病毒混合感染成体细胞,看能长多少克隆,以此来鉴别出哪一些因子是诱导干细胞所必需的。最后他鉴定出了四个明星因子:Oct3/4, Sox2, c-Myc,和 Klf4。这四个因子在成纤维细胞中过表达,就足以把它逆转为多能干细胞!
那抗 G418的细胞克隆就一定是多能干细胞吗?他们通过一系列的指标,比如基因表达谱,分化潜能等,发现这些细胞在相当大的程度上与胚胎干细胞相似。
2006年Shinya报导了小鼠诱导干细胞,引起科学界轰动[13];2007年,他在人的细胞中同样实现了细胞命运的逆转,科学界沸腾了[14]。
回过头来,种种不可能,Shinya怎么就幸运地成功了呢?通过更多的研究,我们知道,干细胞特性的维持是由一个基因网路来共同作用的,通过上调某些关键基因就可以重建这个网路,逆转细胞的命运;山中伸弥最后鉴定的四个因子也不是必须的,用24个因子以外的其它因子进行组合可以达到同样的目的。这好比是一张大网,你只要能撑起其中的几个支点,就可以把整张网撑起来。
iPS的发现有着不同寻常的意义。首先,它更新了人们的观念,从此之后人们不再认为细胞的命运不可逆转,不单可以逆转,细胞其实还可以实现不同组织间的转分化(Transdifferentiation)。其次,iPS细胞绕过了胚胎干细胞的伦理困境,很多实验室都可以重复这个简单的实验得到iPS,开展多能干细胞的研究。其三,iPS细胞具有很多胚胎干细胞所没有的优势:来自于病人自身的iPS细胞体外操作后重新植入病人体内,免疫反应将大大减少;如果将病人的体细胞逆转为ips细胞,在体外分化观察在这个过程中出现的问题,就可以实现在培养皿里某种程度上模拟疾病的发生;疾病特异的iPS在体外扩增和分化以后,还可以用于筛选治疗该疾病的药物,或者对药物的毒性进行检测。
但是这仅仅是新的开始,生命科学如此复杂和不可预测,要把这些愿景变成现实,让iPS真正造福人类,这其中还有重重的困难。Shinya Yamanka,这位科学的宠儿,怀着最初帮助更多病人的理想,无畏地踏上了新的征程。
头发突然变黑,说明自己的头发质量是好的。如果头发突然变白,那肯定就不是一件什么好事。头发肯定是黑色的,如果是变白色,肯定象征着自己的身体不太健康。