我也正好在做这个作业,不过为什么不能超出初一生的思想和知识??????
1 如图,A,B是路边两个新建小区,要在路边增设一个公共汽车站。使两个小区到车站的路程一样长,该公共汽车站应建在什么地方?2. 一位饱经苍桑的老人,经过一辈子的辛勤劳动, 到晚年的时候,终于拥有了一块平行四边形的土地,由于年迈体弱,他决定把这块土地分给他的四个孩子,他是这样分的: 当四个孩子看到时,争论不休,都认为自己的地少,同学们,你认为老人这样分合理吗?为什么? 故四人的土地面积相同,老人分地合理。3. 小明家有一块平行四边形菜地,菜地中间有一口井,为了浇水的方便,小明建议妈妈经过水井修一条路,可以把菜地分成面积相等的两部分. 同学们,你知道聪明的小明是怎么帮妈妈分的吗? 4. 教练的烦恼甲,乙两名射击手现要挑选一名射击手参加比赛.若你是教练,你认为挑选哪一位比较适宜?甲,乙两名射击手的测试成绩统计如下: 第一次 第二次 第三次 第四次 第五次甲命中环数 7 8 8 8 9乙命中环数 10 6 10 6 8⑴ 请分别计算两名射手的平均成绩; ⑵ 请根据这两名射击手的成绩在下图中画出折线统计图; ⑶ 现要挑选一名射击手参加比赛,若你是教练,你认为挑选哪一位比较适宜?为什么?甲射击成绩与平均成绩的偏差的和:7-8)+(8-8)+(8-8)+(8-8)+(9-8)=0乙射击成绩与平均成绩的偏差的和:(10-8)+(6-8)+(10-8)+(6-8)+(8-8)=0谁的稳定性好?应以什么数据来衡量?甲射击成绩与平均成绩的偏差的平方和:(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2=2乙射击成绩与平均成绩的偏差的平方和:(10-8)2+(6-8)2+(10-8)2+(6-8)2+(8-8)2=16上述各偏差的平方和的大小还与什么有关?——与射击次数有关! 还有一些图,你要的话,发邮件给我
上教育网或学习网有范文
著名数学家华罗庚说过:"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学."特别是二十一世纪的今天,数学的应用更是无所不在.那么,我们如何从小打下坚实的数学基础,究竟什么样的课堂教学才适合新一代的学生呢 我认为,在课堂中,由学生去担任学习的主角,才是我们的心愿.那么,数学活动课就是让我们充分体现自主学习的一种教学方式. 活动课上,在老师的指导下,我们分成小组,通过自己动手去测量,拼凑,剪切,计算,去探索发现的规律,掌握数学知识.这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增. 例如,我们上《平行四边形面积得计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴,拼凑变成一个我们已经会计算面积的图形呢 大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形.同学们通过观察,思考,认识到拼成的长方形的"长"和"宽",分别就是原来平行四边形的"底边"和"高".由此,大家终于自己找到了平行四边形面积公式为:S=ah.再比如,上《有余数的除法》这节课时,老师采用让同学们玩扑克牌的游戏,使大家很快理解和掌握了有余数的除法的计算规律,让大家在轻松愉快的活动中学到知识. 我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快.可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对. 今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析.这道题目是这样的:求3333333333的平方中有多少个奇数数字 分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变.使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字.这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数.即3×3=9→积中有1个奇数数字.33×33=1089→积中有2个奇数数字.333×333=110889→积中有3个奇数数字.3333×3333=11108889→积中有4个奇数数字.…… 从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面.积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字. 做了这道题,我知道做数奥不能求快,要求懂它的方法.总之,我认为用活动课的方式上数学课,是我们小学生非常喜欢的.在课堂上,每个同学对知识的探索过程充满了好奇心,都迫切渴望通过自己的实验活动,去找到解决问题的方法.学习中,我们充分体验套了做学习的主人的快乐和自豪.希望老师们能多用活动课的方式来上数学课.这样,我们将会学的更扎实,更轻松,更灵活,更优秀
数学是现代生活的重要部分。数学思维影响我们生活的任何一方面,数学知识对我们的生活越来越重要。接下来我为你整理了生活数学小论文,一起来看看吧。
提要:小学数学新课标要求,学习有用的数学,同时运用数学知识解决生活问题。数学知识来源于人类长期的劳动实践活动,而积累起来的。在学习数学时,一定要学生已有的生活体验相结合,增加学习的兴趣。
关键词:数学 生活 运用所学知识
数学来源于生活,又广泛应用于生活。《新课程标准》强调,数学教学要密切联系学生的生活实践,从学生的生活实践和已有的知识出发,创设生动有趣的情境,引导学生观察、猜想、推理、交流等活动,使学生会用数学的眼光来思考问题,并通过动手实践,自主探索,合作、交流的方法解决问题,从而实现了学以致用,体现了数学的实用价值,使数学走进了生活。
一、让学生在生活中感悟数学
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。"因此,数学教学,只有从学生的生活经验出发,让学生在生活中学数学、用数学,数学教学才能焕发生命活力。
在小学数学教学中,从生活实际出发,把教材内容与"数学现实"有机结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时增强数学的应用意识,唤起学生的学习兴趣。,如《钟面的认识》《图形的认识》等,因此,教师要从学生的实际出发,设计学生感兴趣的情境,如讲故事、做游戏、看图等,以激发学生的求知欲,更多体会到数学贴近生活。在教学"10以内各数的认识"时,我让学生观察教室里的环境布置,说说有几扇窗、几块黑板、几盏灯等,指导学生们用规范的语言表达物品的数量。又如在教学认识平均数时,我设计了这样一个情境,在昨天进行的数学比赛中,一小队9人总成绩是810分,二小队8人总成绩是780分。我现在宣布:这次比赛一小队获胜,,二小队的学生有的就说"老师,因为一小队人数比我们多,当然总分就要比我们多了。就这样算成绩,是不是太不公平了?"我赶紧问到"那怎样算就公平了?"......在和孩子自然的对话中,引出了平均数、真正达到了课伊始、趣已生,让孩子们积极的投入到学习中去,通过类似的与生活相贴近的问题,使学生认识到数学与生活的密切关系,从而使学生体会到学习数学用处真大,实现了学习由被动向主动的转化。
二、让数学知识回归学生生活
学习是为了应用。因此,教师在教学中要经常培养学生联系生活实际、运用数学知识,解决问题的意识和能力。知识也只有运用才能被学生真正掌握,也只有在实践运用中才能体现其价值。如在学习"认位置"后,回家观察一下自己的卧室,并用上下、前后、左右描述一下卧室内物体的相对位置关系,然后说给爸爸妈妈听。观察一下自家房屋周围、村庄周围都有些什么,到学校后,和小伙伴交流。在学习了利息后,让学生去银行了解利息、利息税等有关知识,让学生当家长的小参谋:家中多余的钱怎样存最合算?并帮助家长计算利息。如学了三角形的稳定性后,可以让学生观察生活中哪些地方运用了三角形的稳定性。学习了圆的知识,让学生从数学的角度说明为什么车轮的形状是圆的,其它形状的行不行?为什么?又如在学习了"统计"后,问学生你准备统计什么?这一环节充分利用学生已有的生活经验,把所学的知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,从而使学生体会到学习数学的重要性,学而有用的喜悦感,数学与生活的联系得到了最好的体现。
知识来源于实践,又指导于实践。我们经常看到由于学生的感性知识缺乏,出现不符合客观生活实际的数量意识。这就要求我们的课堂教学更要注重联系实际,强化学生的动手操作活动。在学习了米、厘米以及如何进行测量之后,让学生运用掌握的数学知识解决生活中的实际问题。如测量身高,测量手臂伸开的长度,测量一步的长度,测量教室门的宽度以及测量窗户的宽度,通过上述活动,加深学生对厘米和米的理解,巩固用刻度尺量物体长度的方法,同时,学生获得了日常生活中一些常识性数据。在这个活动中提高了学生的学习兴对于这一点,不必多说,生活中处处有数学,处处用数学。
总之,数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。来于生活、归于生活的知识才是有价值的知识。把数学与生活联系起来,使学生在不知不觉中感悟数学的真谛。
《新课程标准》指出:“数学课程应强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”
生活离不开数学,数学离不开生活。数学知识源于生活而最终服务于生活。因此,在教学活动中如何拉近数学与生活的关系,让学生感受到数学来源于生活,体验数学在生活中的应用,成为了教师教学的重要方向。
一、数学来源于生活
数学是生活中的一分子,离开了生活这个集体,数学将是一片死海,没有生活的数学是没有魅力的数学。同样,人类也离不开数学,离开了数学人类将无法生存。有人和学生做了这样一个实验,约定星期天一天不使用数学中的数字及方向和位置,看是否能度过这一天。我也采用了同样的实验,果然实验后,我让学生交流体会,他们大部分都是实验的失败者,因为他们在生活中随时都在用数学,如有的学生说,打电话、看电视、玩游戏时要用到数字,到商场买东西付钱时也要用到数字;还有的说,放学回家要知道准确的方向和位置……。为了使学生切实体会到数学源于生活,我提倡学生写数学日记,记录生活中发现的数学问题,达到了很好的效果,学生的日记中体现着他们对数学的应用与理解。
二、数学是生活的一部分
例如:①你要去文具店买5本练习本,每本3角钱, 一共要用多少钱?②47位师生去游乐场游玩,门票每人5元,带250元够不够?③家里要装修,估算要用多少块瓷砖?在生活中,不管是大事还是小事,都与数学息息相关。
应用数学知识解决日常生活、学习、工作中的各种实际问题的过程,体现了解决问题的基本策略。它不仅包括数、式的运算,还包括推理、分析、判断、选择、估算、统计、绘制图表、数据分析、及空间与图形、优化方案等诸多方面。如设计活动方案过程中考虑的乘车路线的选择、时间安排、人员分配、资金运用等,都蕴涵着丰富的数学思想和方法,这些都离不开数学的应用。
因此,我们在教学中一定要使学生树立正确的数学应用观,让学生了解并掌握解决实际问题的一般思想方法,形成科学的思维习惯,并具有自觉、主动地应用数学的意识。
三、如何实施数学教学“生活化”
(一)教师要不断更新教学形式
1.做一做,指导学生利用数学知识学会生活。
如在学习了“普通计时法”和“24时计时法”的互换后,我让学生用两种计时法记录自己双休日中一天的活动情况,再尝试为自己设计一份合理的作息时间表。在练习中,学生不仅加深了对两种计时法的联系和区别,并且在潜移默化中渗透了思想教育,使学生感受到时间的宝贵,学会珍惜时间。作为教师,应坚持提供给学生综合实践的机会,让学生体会学习数学的喜悦,逐步养成从数学的角度认识生活,感受生活,并更加热爱生活。
2.找一找,培养学生从数学角度观察生活的意识。
生活本身是一个巨大的数学课堂,生活中客观存在着大量有价值的数学现象。教学活动中,让学生从买东西、玩、家庭生活等多方面的生活中“找”数学,能促使学生主动地用数学的眼光去观察生活,去思考生活问题。如在购物是计算一下要多少钱;在玩乐时比较一下多少、远近;在家里统计一下家庭开支情况等,都是让数学生活化的体现。
3.加强直观教学,让学生真正感受生活。
例如,在教学“立体图形的认识”时,我让学生带了很多生活中常见的各种立体几何图形的物体,通过分类,找出共同点以及不同点,看一看,比一比,摸一摸,学生很容易就能明白长方体,正方体等等的特征了,而且能再把所学知识再返回到生活中去,告诉爸爸妈妈牙膏的包装盒是个长方体了。
另外,我使用适当的教具辅助教学,充分利用直观教学的各种手段,“直观”具有看的见,摸得到的优点,“直观”有时能直接说明问题有时能帮助理解问题,会给学生留下深刻的影响,使学生从学习中得到无穷的乐趣,也能将枯燥的数学寓于情景之中,吸引学生积极思考问题,从而使学生主动地获取新知识。
(二)教师要不断更新教学语言、素材
在教学过程中,教师要针对他们的特征,选择适当的素材,采用贴切的语言才能收到预期的效果。比如讲“一个三角形任意两边之和一定大于第三边”。我就用一个生活中最常见的例子:为什么人人都想走近道儿,可以画几种走法让学生们选,然后问他们为什么都选那个最直接的路呢?他们会说那条路最近。为什么它最近呢?怎么证明呢?联系到学生生活中最常见到的、应用到的东西,他们才容易理解,也容易思考,甚至能很快地举一反三。有学生举这样的例子,一条狗见到前面的骨头总是沿直线向骨头跑去,而不会绕几个圈,或走曲线去吃骨头,除非它是一条疯狗。
在教学活动中,教师要善于发现、挖掘生活中的数学问题,利用学生已有的生活经验,感悟所学习的知识。
(三)教师充分利用多媒体的先进的教学设备
新课标下的数学教学只靠传统的粉笔加黑板是无法完全达到要求的。有许多图片、图象需要多媒体展示,许多知识的发生发展过程需要电脑演示。在教学中我们会经常遇到用较多的语言说明一些概念、算理、公式等现象,而且它往往又是教学的重点和难点,借助多媒体辅助教学,可以活化这些现象,而且特别直观、形象,从中不需要教师多言语学生就可以自己感悟到数学知识。教师必须掌握现代化教学手段,才能为学生提供丰富的知识和素材。只有当学生体会到数学的乐趣学生才会主动感悟数学,数学教学才能为学生的未来发展服务。
总之,数学知识来源于生活,在数学教学中教师要积极的创造条件,充分挖掘生活中的数学,为学生创设生动有趣的生活问题情景来体验学习数学的乐趣。还要鼓励学生善于去发现生活中的数学问题,并主动运用数学知识解决生活问题。最终目的是使学生感受数学与生活中的联系,令数学教学生活化,令数学学习充满生机。
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。
自己去百度找找
百度文库里有不少这样的。可以去看看
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
在实际生活中运用所学数学知识,处理实际问题是小学生的数学素养之一。下面是关于生活中的数学论文的内容,欢迎阅读!
最近,我们学习了圆柱、圆锥体积和表面积的计算方式。我认真学习了课内知识,并做了一些课外练习巩固所学知识。综合学习和练习情况,我对相关知识进行了总结和归纳:此方面的考好主要有一线六个方面:
一是卷。就是把一个长方形形状的纸卷成圆柱的形状,然后算圆柱的最大体积。例如:一个长12,56米、宽9。42米的长方形,卷成一个圆柱,重叠部分忽略不计,求圆柱的最大体积。这种题目有两种可能,以长为圆形或以宽为圆形。因此,要把这两种可能都算出来,然后比较。这种题目要注意的是:必须看清楚是用长方形的长和宽分别卷成圆形。
二是转。就是把一个长方形的纸,延一条边旋转3600,求所得形状的体积或面积。举个例子:一个长方形长8厘米,宽5厘米,以长为轴旋转一周,算得到的形状的体积。一个长方形的纸,旋转一周得到的形状是圆柱体,然后利用圆柱体体积的计算公式,就能得到答案。这种题目要注意是用什么形状的纸旋转的。
三是削。就是一种形状的物体,按一定规则消除一些部分,计算剩下形状的体积或表面积,这种题目要注意的是:要把所有的可能全部计算出来,不能偷懒只计算一种。
四是铸。就是把一种形状的物体融化成液体,然后重新浇铸成另一个形状的物体。这种题目要抓住形状虽然变化,但体积不会这一关键点来考虑。
五是增。就是在一种形状上再继续增加一种形状。这种题目路要注意增加的形状是什么样的。
六是切。就是吧把一种形状切成几段,然后告诉你增加了什么,增加了多少,让你计算原理的,这种题目要看清楚是怎么切的,切了以后有什么变化,面积如何增加,等等。
以上是我对近期学习内容的总结和思考,大家说数学是不是很神秘而又充满趣味呢?
数学源于生活,又广泛应用于生活。在实际生活中运用所学数学知识,处理实际问题是小学生的数学素养之一。新课程标准强调数学教学要“从学生已有的生活经验出发”,“使学生获得对数学知识的理解”。数学知识的生活化,就是通过将数学教材中枯糙、脱离学生实际的数学知识还原,取之于学生生活实践并具有一定真实意义的数学问题,以此来沟通“数学与现实生活”的联系,激发学生学习数学的兴趣。
一、让学生在生活中感悟数学。
“数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。”因此,数学教学,只有从学生的生活经验出发,让学生在生活中学数学、用数学,数学教学才能焕发生命活力。
1、在小学数学教学中,从生活实际出发,把教材内容与“数学现实”有机结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时增强数学的应用意识,唤起学生的学习兴趣。例如:如教学循环小数概念时,我先给学生讲永远讲不完的故事:“从前,山上有座庙,庙里有个老和尚在说从前山上有座庙……”,通过实例让学生初步感知“不断重复”,再举出自然现象“水→汽→云→水”的循环引出“循环”的概念,使学生产生浓厚的兴趣。
2、小学数学中的许多概念和法则都是在现实生活中抽象出来的,因此概念法则的`教学也就必须在生活实际中找到相应的实例,并引导学生从直观入手从而抽象出来,逐步加深理解和运用。例如:在教学应用题常见的数量关系时,学生对于“工作效率×工作时间=工作总量”中的“工作效率”不易理解。为此,我在教学前,在班里举行了一次口算比赛和跳绳比赛。教学新课时,联系两次比赛活动,学生就非常容易理解“工作效率”这一抽象而又陌生的概念:即指单位时间内所作的工作量。又如在学习“接近整百整十数加减法的简便算法”中,有这样一题:128-96=128-100+4,学生对减100时要加上4 难以理解。我便设计了一个“买东西找零钱”的生活实际:我要过生日了,妈妈带了128元钱去商店买一个96元的布娃娃准备送给我。妈妈付给营业员一张百元钞票(应把128元减去100元),营业员找回4元,(应加上4元)。所以,多减去的4应该加上。
这样的“生活教学”例子,通过生活经验验证了抽象的运算,而具体的经验更提炼上升为理论(简便运算的方法),学生容易理解且不易忘记。
让数学回到生活,使学生感到数学就在身边,学习数学是有用的、有必要的,从而激发学好数学的愿望。
二、让数学知识回归学生生活。
学习是为了应用。因此,教师在教学中要经常培养学生联系生活实际、运用数学知识,解决问题的意识和能力。知识也只有运用才能被学生真正掌握,也只有在实践运用中才能体现其价值。
1、创设情境,培养学生解决实际问题的能力
学生掌握了某项数学知识后,可以有意识地创设一些把所学知识运用到生活实际中的情境。例如,在学习了利息后,让学生去银行了解利息、利息税等有关知识,让学生当家长的小参谋:家中多余的钱怎样存最合算?并帮助家长计算利息和利息税。
2、联系实际,增强学生的数学意识
数学知识在日常生活中有着广泛的应用,生活中处处有数学。例:如学了三角形的稳定性后,可以让学生观察生活中哪些地方运用了三角形的稳定性。学习了圆的知识,让学生从数学的角度说明为什么车轮的形状是圆的,其它形状的行不行?为什么?
3、加强操作,培养学生把所学知识运用于实际的能力。
知识来源于实践,又指导于实践。我们经常看到由于学生的感性知识缺乏,出现不符合客观生活实际的数量意识。这就要求我们的课堂教学更要注重联系实际,强化学生的动手操作活动。在学习了米、厘米以及如何进行测量之后,让学生运用掌握的数学知识解决生活中的实际问题。如测量身高,测量手臂伸开的长度,测量一步的长度,测量教室门的宽度以及测量窗户的宽度,通过上述活动,加深学生对厘米和米的理解,巩固用刻度尺量物体长度的方法,同时,学生获得了日常生活中一些常识性数据。在这个活动中提高了学生的学习兴趣和实际测量的能力,让学生在生活中,在生活中用。
学习了平均数问题后,让学生以小组为单位,自选专题,展开活动,如:测量计算班级同学的平均身高、平均体重、平均年龄,全校各班的平均人数、教师平均年龄,附近菜场某一蔬菜的平均价格等。学生在互相协作活动中,自然而然地锻炼了他们解决实际问题的能力。
运用数学知识解决生活实际问题,能实现数学与生活的紧密结合,帮助学生学会用数学的眼光观察生活,从而不断体验数学的价值与魅力。
大千世界,无奇不有,在我们的日常生活里也有许多有趣的数学问题哦。
一天,我的家人带着我一起去超市买东西,我一路上蹦蹦跳跳的,十分兴奋。
进入后,逛了一段时间,我们就拿了四袋洗衣液。在走到文具区时,奶奶问我需不需要些什么文具。我走到货架前看了看……
到了收银台,我们一共买了如下商品:四袋洗衣液,一袋18。5元;十包卫生纸,一包4。5元;一支自动铅笔,一支2。5元;三支钢笔,一支5。5元。
突然,在结账后,我的爷爷问我:“你最近不是学了关于小数的知识么?能不能先用笔算出今天买的每种商品的总价,再算出一共花了多少元?”
“能,怎么不能?一定不会错的!”我胸有成竹的回答他。
说干就干。我拿了一张超市的广告纸,再拿出随身携带的笔,立即在空白处算了起来。
我的思路是这样的:洗衣液一共四袋,每袋18。5元,所以直接用乘法就行了;卫生纸一共十包,每包4。5元,只需要把这个小数的小数点向右移动一位来算便行了;自动铅笔只有一支,在最后时加上便可以了;还有三支钢笔,也用乘法来算。
于是,我算了起来。我先用4×18。5=74元(老师说过,整数乘一位小数等于一位小数,但如果两数末尾相乘的得数末尾是零,那么结果就是整数)算出洗衣液的总价;接着,用10×4。5=45元(一个小数乘10,把这个小数的小数点向右移动一位就是这道算式的结果)算出卫生纸的总价;然后,又用3×5。5=16。5元算出钢笔的总价。今天买的每种商品的总价都算出来了,该算一共花的钱了。一道综合算式74+45+16。5+2。5=138(元)(在讲小数加法时,老师特别强调过,列竖式时,相同数位要对齐)便算出了所有花的钱。
当我把纸递给爷爷并讲了我的思路后,他直夸我聪明,我也乐开了花。
我真诚地对大家说:“你们也好好学数学吧,难道不会受益终生么?”我想:学数学,真有用啊,我以后肯定会好好学数学的!
数学来源于生活,生活中的数学知识比比皆是,我们平时走路、乘车、购物……等,其中都包含着数学问题和知识,只要注意观察就能发现,连航空、航海、航天都与数学有着密切的关系。
数学可以锻炼我们的思维体操,我们不仅能从数学中学到知识,还能从数学中找到一些乐趣。
在我过去的记忆中,发生过有关数学的趣事。有一天在奶奶家,当时有爷爷、奶奶、姐姐和我共四个人在看电视,奶奶到厨房拿来洗好的三个苹果说:“只有这三个,你们一人一个吧。”爷爷说:“那怎么行,叫他俩分,每人一份。”这下我傻眼啦!我说:“少一个怎么分?姐姐说:”我来分。“她拿起刀,把每一个苹果十字切开,切成了12块,三块一份,正好四份,当时我边吃边想,怎么也没想到分苹果还有学问,这件事给我留下深刻的印象。
我学奥数做题时有次遇到了难点,题目是:徐师傅锯木头锯了五次,每段一百二十厘米,问原来这根木头长多少厘米?看题后我想锯五次是五段吗?这样理解对不对?突然想到老师教的画圈法,于是用尺子先画一条直线,用笔在直线上画五个段点,表示锯了五次,一看是六段,用120乘6结果是720厘米,这是十我的心情很轻松自信,对老师教的线段图解法印象深刻,非常高兴。
“免费午餐”的故事,爷爷听人讲,过去有个饭店开业这天,为了吸引顾客,在门口的招牌上写有“免费午餐”四个大字引来很多人围观,前面的人还看见四个大字下面有几行小字,上写着“答题正确免费午餐”,题目是:“饭店来了一群人,一人一碗饭,两人一碗菜,三人一碗汤,一共用了55只碗,饭店来了多少人?”爷爷让我算算饭店来了多少人,我想了很久才想到人数必须被2、3整除,用能被2、3同时整除的数6试算,6人6+3+2=11不行,用12人,24+12+8=22不行,用18人,18+9+6=33也不行,用24人,24+12+8=44不对,用30,30+15+10=55对了。我终于算出来了。饭店来了30人。爷爷高兴的问我:做题时你是怎么想的?我说:求的是人数,那有一半的人呀!所以想到被2、3整除。爷爷说:这是解题的关键被你找到了,加上多次试验做出来的,你可别忘啦!我说分苹果的事我还记住那!
生活中的数学“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了300元券买了一件298元藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在!
对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了300元券买了一件298元藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在!
初中学生的七年级数学学习随着我国新课程标准的实施以及素质教育的不断深入,初中七年级数学处于数学学习的过渡阶段,培养学生的自主学习能力对其未来的学习与发展具有重要意义。下面是我为大家整理的,供大家参考。
摘要:对刚进入七年级的学生来说,这个时段是适应中学数学教学、缩短小学学习与中学学习距离的过渡期。如果一开始学生就对数学不感兴趣,甚至害怕数学,那么会直接影响到今后的学习。要让七年级新生爱上数学课,就要求教师做学生喜欢的教师,要教给学生正确的学习方法,课堂教学要有更高的艺术性,在课堂上能吸引学生,让学生产生浓厚的兴趣,才能达到预期的教学效果。
关键词:生活教育;喜欢;第一节数学课;学习乐园
中图分类号: 文献标识码:A 文章编号:1992-7711***2014***01-0007
著名的人民教育家陶行知说:“治学以兴趣为主,兴趣愈多,则从事弥力,从事弥力则成效愈著。”《数学课程标准》也明确指出,数学教学要重视激发和培养学生学习数学的兴趣,学生一旦对数学产生浓厚的兴趣,就乐于接触它,变“苦学”为“乐学”。下面,结合工作实践,笔者就如何让七年级新生喜欢上数学课问题谈点浅见。
一、做一名学生喜欢的数学教师
陶行知先生说:“真教育是心心相印的活动,唯独从心里发出来,才能打动心灵的深处。”只有师生情感融洽,学生才会敢想、敢问、敢说,才会愿学,才会学有所成。在课堂教学中,笔者总是微笑地面对学生,从不板著脸上课,更不对学生大声训斥,把他们当成自己的朋友或孩子来看待,力求做到尊重每一位学生。
在数学教学中,笔者十分强调理论联络实际。例如,学习有理数加减混合运算,笔者举这样的例子:现在老师存摺上有100元,下午存入300元,明天取出50元,后天取出100元后,存摺上还有多少元?通过这道题的计算,你知道存摺上的余额是如何计算吗?若余额为负数说明什么?让学生去计算、去思考,培养他们的数学学习兴趣,激发他们的数学学习热情,让他们感受到生活中处处有数学知识,学习数学知识充满著无穷的乐趣。
陶行知先生说:“待学生如亲子弟”。教师要得到学生的爱,她必须爱她所教的每一位学生,将其当作自己的孩子;教师要有宽广的胸怀、积极的情绪、平易近人的态度、笑容可掬的表情,要善于营造一种和谐、愉快、亲切、友好的气氛;要爱学生成长过程中的每一微小“闪光点”,要爱他们具有极大的可塑性,要爱他们在教育过程中的主体能动性,要爱他们成长过程中孕育出来的一串串教育劳动成果。教师的爱要一视同仁,持之以恒;爱要以爱动其心,以严导其行;爱要以理解、尊重、信任为基础。只有这样的爱,才能爱出师生间的“师生谊”,才真正得到学生的喜爱。
二、上好开学的第一节数学课
俗话说:“良好的开端是成功的一半。”小学生进入中学后,数学不再是单纯的计算,而是数学进一步内容拓宽、知识更一步深化,加上部分学生还未脱离教师的“哺乳”时期,没有自觉“摄取”的能力,致使有些学生因不会学习或学不得法而成绩逐渐下降,久而久之失去学习信心和兴趣,开始陷入厌学的困境,因此设计好开学第一节数学课非常重要。
第一,课前,教师最好是修饰一下自己,着装大方得体,有亲和力。第一节课最好不要多讲正课,可以讲一些和正课相关联的知识及其生活实用性,让学生产生一种急切求知的欲望。若教师进入课堂就讲课,因为学生还不熟悉教师,对教师还有很多的神秘感,上来就讲课,学生也会因为对教师感兴趣的程度大于对教学内容的程度,导致教学效果不佳。上第一节课要做自我介绍,要有一个漂亮的出彩的亮相,可以介绍自己的过人之处和自认为是闪光点和值得骄傲的地方。这个开场白是最吸引学生的,有助于学生了解教师的过去、教师的长处,促进师生友谊的建立。让学生在你的自我介绍里,感受智慧之美,拼搏之美,进取之美。要让学生感觉教师是一个博学的教师,聪慧的教师,从心里敬佩的教师。
第二,要让学生掌握初中数学学习方法,首先,七年级学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,粗略地看一遍,看不出问题和疑点。笔者要求学生预习时应做到:一粗读,先粗略浏览教材的有关内容,知道本节所要讲的内容。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作标记,以便带着问题去听课。三做练习,通过练习检验预习效果。
其次,在小学,教师一般采用直观形象到抽象概括的教学方法,通过讲解、演示、操作等过程建构新知,节奏慢、坡度小。很多学生认为学数学就是做作业,多做练习,课本成了“习题集”。到初中后,由于学科的增加和学习内容的抽象,课堂知识容量增大,教学进度较快,演示、操作减少,抽象的思维活动增加,很多学生深感不适应。因此,要教会学生处理好课堂“听”、“思”、“记”的关系。“听”每节重点、难点剖析***尤其是预习中的问题***,“听”例题解法的思路和数学思想方法的体现。“思”是指多思、勤思,随听随思,并善于大胆提出问题。“记”就是记要点、记疑问、记解题思路和方法;记小结、记课后思考题。可以说“听”是“思”的基础,“思”是“听”的深层次掌握,是学习方法的核心和本质的内容,会思考才会学习,“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。
三、让数学课堂变成学生学习的乐园
陶行知曾以《假如我重新做一个小孩》为题,阐明儿童教育应该包括的内容,其中有句发人深思的话,“我要多玩玩”。七年级学生活泼好动,不喜欢单调的重复和机械的练习。我们要传承陶行知先生的教育思想,尊重学生的年龄特点、心理特点,灵活地运用教法,把枯燥的数学学习变成了学生学习的乐园。
1. 在“做数学”中体验数学学习的乐趣。练习是使学生掌握知识,形成技能、发展智力的重要手段。课堂练习设计得好,不仅巩固新知识而且可以增添学生学习数学的兴趣。因此,在设计练习时,笔者力求设计各种情节有趣、形式新颖的练习形式。例如:引入负数后,七年级新生的计算出错,很多是符号出错,笔者就设计了如下快速抢答题,1×***-5***= ;1÷***-5***= ;1+***-5***= ;1-***-5*** = ;-1+***-5*** = ;-1-***-5*** = ;-1×***-5*** = ;-1÷***-5*** = ;***-3***= ;***-2***= -2= -2= 。要求回答对的,就通过。回答错的,教师点拨后,出题再做,对了,就编题给同学做,大受学生喜欢,学习的热情非常高涨。平时笔者还根据不同的教学内容设计不同型别、不同层次的练习题,满足学生不同层次的需求,照顾不同层次的学生,使学生始终保持高昂的学习热情。 2. 在合作交流中体验数学学习的乐趣。充满活力的数学课堂,应该是对学生具有吸引力、亲和力的“磁性”课堂。合作学习的情景来源于教师有目的地创造,在数学课堂教学中教师若能自然地创设合作学习的情境,不仅能让学生产生合作的冲动和交流的愿望,还能激发学生的学习兴趣。例如:在教学“数轴”时,让学生以小组为单位,讨论学校要在校门公路旁植树,每隔3米植一棵树,问在21米长的公路旁植树最多可植几棵树?有学生可能会得出:21÷3=7,可植树7棵;有学生结合数轴就很直观了,可植树8棵。经过大家讨论得到结论为:这类题要结合数轴,要注意考虑线段的端点,否则容易出错。再如,为让学生能找到正方体展开图的相对面,笔者让同桌合作将展开图折起来。在这个过程中,学生始终处于积极的探究性活动中,让同学们感到合作的力量,得到成功体验的机会。感受到学习过程的快乐,同时获得了数学思想和方法,产生学习数学的兴趣,树立学好数学的自信心。
3. 合理评价,让学生体验成功的乐趣。苏霍姆林斯基说过“你在任何时候也不要给学生打不及格的分数,请记住:成功的欢乐是一种巨大的情绪力量。”这启示我们教师在教学中应改变以往的评价方式,以鼓励性评价为主,让每一个学生都能抬起头来学习。例如,有一次笔者出示口算“3+***-6***”,一个学生,回答说:3+***-6***=3。笔者没有直接“宣判”对或错,而是说:“非常接近标准答案,你能再想一想吗?”这位学生放松地想了想,答:“3+***-6***=-3。”“你再编一编类似的题目,考考其他同学。”该生自己改正了自己的错误,体面地坐下了,自尊心得到了保护。每个孩子都有被人赏识的渴望,都希望得到别人的赞扬,宽容和鼓励。在教学中,要多鼓励表扬,让学生尝到成功的喜悦。教师的眼神、笑容、一个手势等对学生都是一种鼓励,让学生感受到自己被尊重,被信任。所以,每次学生回答后,笔者常用“你很聪明,你的回答对了!”“你真了不起,发现了同学出错的地方!”等这些充满 *** 、充满鼓励的语言来评价学生,保护了学生学习的积极性,使他们觉得学数学是快乐的,从而喜爱上数学课。
此外,教师还可以运用故事、比赛、表演等活动形式,保持学生学习数学的兴趣,陶冶学生情操,使学生愉快学习,从而形成稳定而持久的学习乐趣。
七年级数学是中学数学的基础,如果七年级新生能爱上数学课,就可以提高中学数学教学质量。为了使七年级学生尽快适应中学数学教学、顺利完成学习任务,必须从七年级学生的特点出发,让七年级学生对数学感兴趣,为以后学习奠定基础。
参考文献:
[1] 普天明,黄永明.数学教学方法的更新探索[J].课程教材教学研究***中教研究***,2005***Z1***.
[2] 陈芝红.初中数学教学方法新探[J].浙江教育科学,2007***6***.
【摘 要】常听家长说我的小孩小学数学都要考八十几分九十几分,现在上了初中孩子连及格都成问题。究其原因,学生没能适应初中阶段的学习.有些知识在成人看来很简单,在学生眼里却很难理解,所以我们做教师的,走进孩子的内心,从学生的角度思考问题,帮助孩子们搞好六七年级的衔接,以适应初中阶段的学习
【关键词】适应;衔接;策略
有关策略的含义,目前在学界有着多种不同的表述,其中“策略是旨在达到某种目的而对步骤与方法、技巧等所作的优化组合、精巧安排”。它点出了策略的本质属性,为帮助孩子们顺利度过六七年级的过渡期,根据个人经验,以生为本从孩子的角度出发展开教学,有利于帮助孩子们尽快适应初中阶段的学习.
一、上课适当放慢速度,帮助孩子们适应“课堂容量小到课堂容量大”的过渡
小学阶段教学内容较少,初中阶段教学内容较多,课堂容量显然加大.一般来说,小学老师教态较亲切,课内提问次数较多,有时一堂课内每位学生都可能有被问一次的机会,问题多半讲得较细,有时还可反复讲,反复练.,所以大部分的小学生在老师的帮助下是基本可以掌握好小学的有关知识的.,而初中阶段学习科目和每节课的授课内容都比小学多,课内外的时间都比较紧,课内提问,练习,辅导,讲解都不可能像小学那样频繁,那么细,初一新生基本上还具有小学生的学习心理,跟不上老师的步伐,导致学习掉队,所以我们初一教师开始一段时间不能操之过急,应顺应小学教师的教法,教学的内容少一些,进度慢一些,在具体讲授每节课知识时,做到形象、直观、对比、有趣等,课堂上尽可能多提问,但要提到要害处,,多启发、多表扬、多练习,引导学生逐步进入初中学习轨道。
二、做好翻译工作,帮助孩子们“学会对符号语言的理解认识”
由小学具体的数到初中用字母表示数这一飞跃,也是学生感到困难的地方。学生对表示数的字母作用产生片面认识,老师在教学中必须设法使学生真正理解用字母表示数的意义及目的,让学生知道字母表示数最本质的东西。由于负数的引入引出了绝对值等概念,数的运算出现了符号法则。成为学生学习的又一难点,如何让学生很自然地把有理数的运算与非负有理数的运算统一起来,是老师在教学中必须着力解决的。比如a>0,对七年级的学生不明白是什么意思,老师要具体翻译为字母a表示的是正数,a=a这个式子在七年级学生眼里有些茫然,老师要具体翻译为一个数的绝对值等于它的相反数,这样学生才明确原来这个数可以是0也可以是负数,诸如这样的符号语言式子较多,老师要不厌其烦的将他们翻译成中文语言让学生逐步学会认识理解,从而学会数学符号语言的认识与表述。
三、用数形结合思想帮助孩子适应“形象思维到抽象思维的过渡”
小学几何中对图形的性质和位置关系没有深入的研究,而初中几何就是通过研究几何图形的性质来研究物体的形状、大小和位置的,几何图形是研究几何命题的必需的直观工具,对于初中生来说,图形的形象思维比抽象思维更容易接受。因此,在几何教学中,要充分利用图形帮助学生克服抽象思维的困难。例如:已知a>0,b<0,a>b,比较a,-a,b. -b的大小。学生认为没告诉具体数值无法比较,聪明一点的孩子可以用特值法,但对结论的正确与否自己没把握,这是一个代数问题,数形结合仍然适用。教师指导学生画出数轴,在数轴上根据a、b的位置标出-a、-b的位置,再根据“数轴上的数从左往右越来越大”进行比较,在直观图形下,学生一目了然,进一步加深了对相反数和有理数比较大小的理解,同时通过具体的例子感受数形结合思想可以转化问题的难度。
刚进入七年级学习的学生,对知识的理解更多地停留在感性认识的层面上,因此,更要重视学生由感性认识向理性认识的过渡。在数学知识的形成与应用上,不要对学生的理解持较高的要求,要尽可能地让学生经历整个知识的发生过程,理解知识的形成过程。有时要动手画图,有时还要让孩子们动手操作拼图,苏霍姆林斯基说“儿童的智慧在他们的手指尖上。”通过动手操作把抽象的东西转化为具体的,学生就理解了,这样就能使学生学习变得自然、轻松、高效。
四、教师规范书写的展示帮助孩子们适应“单纯的数字运算到规范书写”要求的过渡.
小学数学多是单纯的数字运算,对学生的书写格式要求不高,而重庆市近些年的数学中考150分的题目,有80分需要过程表述,可见随着年级的增高对书写格式的要求也在不断增加。初一学生很多时候做解答题只写答案,要么就是几个数字摆在那儿,没有必要的叙述和步骤,只满足于写对答案,而不苛求于解题过程的合理性与逻辑性。所以教师要一步一步把过程详细的展示给学生看,让学生在观摩中逐步学会规范的过程书写。从学生的实际出发,加强对学习困难生的个别辅导,作业的检查和批改做到及时评价,及时矫正。讲课时要有意放慢进度,概念应从学生的生活实际引入,深入浅出地讲,同时,针对七年级学生的注意力不能长时间集中,不适应单一的教学法的特点,方法上要讲练结合,严格统一书写格式。让学生通过感知―---概括―---应用的思维过程加强对知识的理解,从而引导学生发现真理,掌握规律,学会运用,学会书写。
五、进行学法指导,引导学生逐步学会自主学习,帮助孩子们适应“知识难度加大”的过渡
初中生活对七年级新生具有新鲜感,在心理上普遍存在着一种上进的愿望,教师应抓住这个契机,激发学生的学习热情。在学习能力方面,他们的记忆力较强,但理解力较差,习惯于具体思维而不习惯于抽象思维,不善于独立思考,对老师有依赖心理。教师要根据学生的实际认识水平,尽量做到按基本知识、基本技能和基本思想方法三个方面考察学生,使大多数学生学习数学能变被动为主动。首先要指导学生如何听课做笔记,如何搞知识小结,习题归类,以及作业的书写格式,做题规范等等。其次要引导学生学会读数学书,课前读书能使学生找出疑点,抓注重点;课后读书能弥补课堂上探索知识时的不足,还能深化所学知识。再次要教会学生如何订正错题,逐步在较高的层次上学会知识概括等等。通过实际例子的思维过程引导,让学生感悟转化思想。让学生感悟在研究数学问题时,将未解决的问题转化成已解决的问题,将复杂的问题转化成简单的问题,将数量问题转化成图形问题或将图形问题转化成数量问题等等。
作为教师从学生实际出发,了解每个学生的基础知识、学习方法、性格特点和心理活动等多方面的情况,在中、小学数学知识间架起衔接的桥梁,以生为本从学生的角度展开教学,帮助学生顺利过渡。
浅谈生活中的数学0、摘要: 本文通过对生活中的数学问题进行讨论,从日常小事说起,使大家对生活中的数学有一个初步了解,并让我们进一步体味到数学在生活中的重要性。只有我们能够意识到数学存在于现实生活之中,并被广泛应用于现实世界,才能够切实体会到数学的应用价值,当面对实际问题时,才能主动尝试着从数学的角度运用所学知识和方法去寻求解决问题的策略。由于生活中的数学乐趣,才使我们体会到数学中存在着无限的交响乐,存在着优美的诗。关键词:使用频率、生活、标征量、乐趣1、引言:“卖西红柿……,一元钱三斤。”这一句简单的叫卖,就有数学问题。也就是说,在我们生活的周围有很多的数学问题,这些数学问题、现象贯穿于生活的方方面面,不仅有一般生活中的常识,也有生产实践中的不在意,还有生活中的游戏、乐趣等等。总的来说,生活中的数学分为四个方面,一是日常生活中的数学;二是生活与数学的关系;三是生活中的数学乐趣;四是数学对生活的影响。通过这四个方面的论述,可以使我们对生活中的数学有一个比较深层次的了解,从而使我们更加注重生活中的数学。2、日常生活中的数学一日生活中伴随着数学早上一起来,首先是对一天的工作进行一个比较简单的计划,一天中要干哪些工作,需要什么时间完成,这一天的预算支出、收入各多少;有了一个初步的打算以后,开始对一天的工作进行实施;一天的工作进行中伴随着各种各样的计算、预算即数学。一天的工作结束后,接下来的是对一天的工作进行一个小结,小结是通过一个一个的数学运算进行的,运算的结果是一个个比较直观的数字。从以上的例子中可以比较清楚、明显的看出来,一日生活中的每一件事情都伴随着数字问题,也就是说数学问题伴随在生活中的每一件小事情中。日常生活中数学的使用频率高社会的发展带来社会生活方式、内容以及节奏的变化,这样的变化与数学有着怎样的关系,统计结果表明,与人民日常生活联系密切的数学信息按出现频率排列,主要包括:数(大数)、百分数、分数、比例、图形及图表、统计、数学术语这几个方面。这些内容所出现的不同领域包括:政治、军事、经济、科技、教育、文化、卫生、体育、生活、金融保险、广告等。比如,在生活中,一个人如果在刷牙时不关水龙头,那么刷一次牙要浪费7杯水,每班按40人计算一天会浪费多少水?全国一天共浪费多少水?这个数一定是一个很大的数,我们在利用大数的同时也增强了节水的意识。根据统计结果表明,可以得出以下结论:(1)数学的定量化特征越来越多地表现在人们的日常生活中。大数和百分数以相当高的比例出现在经济、科技、政治、生活的新闻及广告中,这说明在以商品经济为主和科技日益发展的社会中,信息的传递和交流更多的好似定量的,而不是定性的。(2)图形图表,尤其是各种各样的统计图、统计表(如直方图、扇形统计图以及一些形象的统计图)出现较多,它们以清楚、明了、信息量大、对比度强等特点出现报刊中。从这些频频出现的直方图、扇形统计图、数据统计表中,我们看到,为了了解信息、看懂报纸,统计的基本知识和方法已必不可少。(3)与生活相关的报道及广告中的数学内容也很丰富。在广告中,这些内容多与保险、房地产、储蓄、旅游等行业有关,如方位图、直方图、数学术语、公式等。随着上述行业的不断发展,不难预计。在未来的社会中,数学必将与经济和人们的日常生活发生越来越密切的关系。而就今天的日常生活来说,一件工程的预算、生活中日用品的买卖、人与人之间的对话、一天中时间的安排、一个阶段中各种事务的安排、一天中的一个小结、一个阶段中各种事务的处理情况、工作程序等等,数学在其中的使用已是非常广泛,从而可以说明数学的使用频率已相当高。 3、生活与数学的关系数学与人们的生活有着非常密切的关系。日常生活中人们离不开数学,购物、估计和计算时间、确定位置等都与数学有关。可以说,数学在人们的生活中是无处不在的,数学是日常生活中必不可少的工具。无论人们从事什么职业,都不同程度地会用到数学的知识与技能以及数学的思考方法。特别是随着计算机的普及与发展,这种需要是与日俱增。而且,数学是和语言一样的一种工具,具有国际通用性。可以说,自然界中的数学不胜枚举,如蜜蜂营造的蜂房,它的表面就是由奇妙的数学图形——正六边形构成的,这种蜂房消耗最少的材料和时间;我们邹梓人行道上,常见到这样的图案,它们分别是同样大小的正方形或正六边形的地砖铺成的,这样形状的地砖能铺成平整无孔隙的地面。这里面竟有一个节约的数学道理在里面呢?再比如,100户人家要安装电话,事实上并不需要1000条电话线路,只要允许有一些时间占线,就能大大节约安装成本,这正体现了数理统计的作用。因此,生活与数学是分不开的,生活中有数学,数学是生活的缩影。生活是以数学做标征量在一年要结束的时候,商人在谈论中说我这一年的收入是多少多少,与去年相比怎么样;农民也在谈论这一年中收入了多少多少,有几项收入如何如何,收入了多少粮食;工人也在谈论我这一年的收入与支出是否相当,有多少存款;军人谈论这一年中训练成绩如何,提高了多少成绩;而学生学习成绩的提供啊则是对一位教师一年来辛苦工作的最好回报;单位也在做这样一个一个的总结。一年的结束是这样的,下一年的开始同样也要有一个预算;一天、一个月、一个季度、一个阶段人们都在做同样的事情;一个人、一个家庭、一个单位、一个组织、一个国家等等,都在用数学的方法对他们在不同时间、地点、空间、人员、事务等等上做一定的运算后,得出一个直观的数字标示量,作为一个目标、结论、预计、程度等。综上所述,数学确实是生活中的一个标征量。 数学催促着生活水平的提高数学推动了数字化社会的发展,推动了科学的纵深发展,它被广泛应用于现实世界的各个领域。无论是我们日常生活的天气预报、储蓄、市场调查与预测,还是基因图谱的分析、工程设计、信息编码、质量监测等等,都离不开数学的支持。在努力把科技成果转化为生产力的今天,主动寻求新知识的实际背景,主动寻求知识的应用领域,开辟出更广阔的应用空间,从而催促着我们生活水平的提高。生活中总有一些数学问题推动着人们的大脑和行动。“本世纪中叶我国赶上中等发达国家水平。”这就催促着我们的大脑在想,我们怎样去发展经济才能在本世纪中叶赶上中等发达国家的人均收入,从而人们在不停地思考我国的经济发展道路,一旦有了发展的新思路,人们就要立即行动起来,为我国的经济发展开启一条新道路,从而推动经济的发展,使人们的生活水平不断提高。另外,在我们进行的各项活动中,要做成一件事情,往往要受到各种主客观条件的限制和制约,一个自然的想法是:如何在现有条件下以最小的代价获得最佳效果。即怎样才能达到“最近、最省时间、最短距离、最佳效益”等优化问题,相应的数学方法就是优化方法。如果优化中的主、客观条件和要实现的目标都可以表现为线性函数,那么对应的优化问题就称为线性规划问题。这类问题虽然简单,但却是各项经济活动中最为常见的,经济、工业、国防、城市规划及交通运输等领域中都有大量的线性规划问题。在我们的日常生活中也总是想法设法以最优的价格来获得最佳产品,以最小的代价获得最高利润,想办法如何使有限的生产资料得到最充分的利用,如何选择出可行的最佳路线,在课堂上以有限的时间获得最佳的课堂效果;等等。再如:到北京四个人的车票要多少钱?乘坐什么样的交通工具最省钱?买一支牙膏给十元钱应找回多少钱?五点出门六点一刻回来用了多少分钟?等等,这些问题都在推动正人们去思考,应用数学的方法分区思考,推动人们去行动,增强生活观,影响着人们的日常生活,所以,我们要与数学交朋友,数学是我们劳动和学习必不可少的工具,能够帮助我们处理各种数据,进行计算和证明以及推理。 4、生活中的数学乐趣多 现在的生活,数学游戏多多,比如说小朋友在打扑克时快算二十四、数学填框游戏,就连赵本山的小品中也有很多这样的数学游戏。如“树上七只猴,地上一只猴,一共几只猴。”等等生活中的例子。这些游戏构成了我们生活中五彩缤纷的画卷。下面我将再通过几个生活中的实例来说明生活数学的乐趣:(1)在一张纸的中心滴一滴墨水,沿纸的中部将纸对折、压平,然后打开看,位于折痕两侧的墨迹图案有什么特征?肯定是对称的,这里面体现了轴对称的数学知识与乐趣。(2)打“斯诺克”台球,当“主球”与“目标球”之间有障碍时,为了击中目标球,主球应先击打台球桌的边,设法反弹后再击中目标球。如下图所示,主球A击打桌边的点B处,反弹后再击中目标球C。(根据入射角等于反射角的原理)图中的∠ABD=∠EBC,目标球从A出发经过点B到点C,即相当于从点A′出发直接击打目标球C。这里,就有图形的轴对称变换的原理。(3)有两杯水都是100克,其中一杯放入糖30克,另一杯放入糖25克,哪杯水更甜些?当然是第一杯更甜些。若两杯水分别是40克和45克,第一杯放入30克糖,第二杯放入35克糖,结果哪杯更甜些?需要运用百分数的知识来比较。(4)当你乘车沿一条平坦的路向前行驶时,你前方的那些高大建筑看起来好像“沉”到了位于它们前面那些矮一些的建筑物后面去了,而当你经过它们之后再回头望,那些“沉”下去的建筑又逐渐“冒”了出来。总之,生活中的数学乐趣多,可以说无处不在。5、数学对生活的影响是比较大的 数学对生活的影响说明了数学在生活中的地位和作用。衣、食、住、行是社会生活的基础,过去人们追求的是吃饱、穿暖、实现小康水平。随着生活水平的提高,人们追求的目标是均衡的营养、设计新颖的服装、土地的合理利用、舒适的房屋等等。事实上,在日常生活中,就学、就业、住房、医疗、退休、养老等模式,都在发生变化,变得可选择性越来越强,越来越需要减少依赖,增强自主,需要百姓运用自己的头脑分析批判,作出决策。在众多的选择面前,有人如鱼得水,有人无所适从。无论你是否习惯,是否能够接受,“降水概率”已经赫然于电视和报端。不久的将来,新闻报道中每一条消息旁都会注明“真实概率”;电视节目的预告中,每个节目旁都会写上“可视度概率”。另外,还有西瓜成熟率、火车正点概率、药效概率、广告可靠概率等。总之,世间万物本来如此,我们只是借助于数学帮助恢复其本来面目。生活中如果没有了数学,不能进行定价,我们的买卖就不能进行下去,经济活动也就无法开展;没有了数学,不能进行科学计算,我们的科学研究也就无法进行;没有了数学,不能进行计数,我们基本的农业生产也会变得混乱不堪;没有了数学,就连最起码的日常生活也无法进行下去,因为没有了数学,我们就不可能进行日常生活中的等价交换。 从上所述,数学严重影响着我们的生活,是生活中的重要条件。只要我们善于适当地把数学应用于现实生活解决实际问题,才能更好地体现数学服务于生活。正是由于善于观察生活中的实际问题和勤于思考,牛顿发现了万有引力,欧拉通过数学抽象成功地解决了“哥尼斯堡七桥问题”,又通过“哥尼斯堡七桥问题”创立了图论与线性规划两门学科。只要我们善于观察、勤于思考,现实生活中出现的许多新问题会不断得到解决,生活中的数学语言也才能通过各种途径为各行各业的人传递大量的信息。6、总结 总上所述,生活中的数学不仅仅是生活中的一种工具,同时也是生活的必需品,而且影响着人们的生活。生活中的数学是人们追求的一个标征量,也是生活中的乐趣。因此,我们不可忽视生活中的数学,要重视它并最大限度地开发、利用它。
为您奉上一部分,请参考:谈谈计算教学的改革小学数学数与计算教学的回顾与思考小学数学教材结构的研究与探讨小学数学应用题的研究(一)改进教学方法培养创新技能21世纪我国小学数学教育改革展望面向21世纪的小学数学课程改革与发展不拘一格育“鸣凤”使学生真正成为学习的主人改革课堂教学的着力点谈素质教育在小学数学教学中的实施素质教育与小学数学教育改革浅谈学生数学思维能力的培养浅议表象积累与培养学生的思维能力也谈学生创新意识培养实施创新教学策略 培养学生创新意识10以内加法整理和复习改良“有余数除法计算”教法给学生创新的时间和空间和谐愉悦 主动探索——一年级《统计》教学片断评析小学数学教育--教师之家--教师培训教学策略A、B、C面向21世纪的数学素质及其培养能被3整除的数的特征年、月、日培养自学能力 推进素质教育浅谈小学数学总复习的“步步反馈,逐层提高”法入情才能入理 激情方能启思实施“生活数学”教育 培养自主创新能力数学作业批改中巧用评语提高元认知水平 培养自学能力“圆的面积”的教案圆柱的认识运用多媒体辅助教学 优化数学教学方法组织课堂讨论 优化课堂教学
毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。
本科数学毕业论文题目
★浅谈奥数竟赛的利与弊
★浅谈中学数学中数形结合的思想
★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学
★中数教学研究
★XXX课程网上教学系统分析与设计
★数学CAI课件开发研究
★中等职业学校数学教学改革研究与探讨
★中等职业学校数学教学设计研究
★中等职业学校中外数学教学的比较研究
★中等职业学校数学教材研究
★关于数学学科案例教学法的探讨
★中外著名数学家学术思想探讨
★试论数学美
★数学中的研究性学习
★数字危机
★中学数学中的化归方法
★高斯分布的启示
★a二+b二≧二ab的变形推广及应用
★网络优化
★泰勒公式及其应用
★浅谈中学数学中的反证法
★数学选择题的利和弊
★浅谈计算机辅助数学教学
★论研究性学习
★浅谈发展数学思维的学习方法
★关于整系数多项式有理根的几个定理及求解方法
★数学教学中课堂提问的误区与对策
★怎样发掘数学题中的隐含条件
★数学概念探索式教学
★从一个实际问题谈概率统计教学
★教学媒体在数学教学中的作用
★数学问题解决及其教学
★数学概念课的特征及教学原则
★数学美与解题
★创造性思维能力的培养和数学教学
★教材顺序的教学过程设计创新
★排列组合问题的探讨
★浅谈初中数学教材的思考
★整除在数学应用中的探索
★浅谈协作机制在数学教学中的运用
★课堂标准与数学课堂教学的研究与实践
★浅谈研究性学习在数学教学中的渗透与实践
★关于现代中学数学教育的思考
★在中学数学教学中教材的使用
★情境教学的认识与实践
★浅谈初中代数中的二次函数
★略论数学教育创新与数学素质提高
★高中数学“分层教学”的初探与实践
★在中学数学课堂教学中如何培养学生的创新思维
★中小学数学的教学衔接与教法初探
★如何在初中数学教学中进行思想方法的渗透
★培养学生创新思维全面推进课程改革
★数学问题解决活动中的反思
★数学:让我们合理猜想
★如何优化数学课堂教学
★中学数学教学中的创造性思维的培养
★浅谈数学教学中的“问题情境”
★市场经济中的蛛网模型
★中学数学教学设计前期分析的研究
★数学课堂差异教学
★一种函数方程的解法
★浅析数学教学与创新教育
★数学文化的核心—数学思想与数学方法
★漫话探究性问题之解法
★浅论数学教学的策略
★当前初中数学教学存在的问题及其对策
★例谈用“构造法”证明不等式
★数学研究性学习的探索与实践
★数学教学中创新思维的培养
★数学教育中的科学人文精神
★教学媒体在数学教学中的应用
★“三角形的积化和差”课例大家评
★谈谈类比法
★直觉思维在解题中的应用
★数学几种课型的问题设计
★数学教学中的情境创设
★在探索中发展学生的创新思维
★精心设计习题提高教学质量
★对数学教育现状的分析与建议
★创设情景教学生猜想
★反思教学中的一题多解
★在不等式教学中培养学生的探究思维能力
★浅谈数学学法指导
★中学生数学能力的培养
★数学探究性活动的内容形式及教学设计
★浅谈数学学习兴趣的培养
★浅谈课堂教学的师生互动
★新世纪对初中数学的教材的思考
★数学教学的现代研究
★关于学生数学能力培养的几点设想
★在数学教学中培养学生创新能力的尝试
★积分中值定理的再讨论
★二阶变系数齐次微分方程的求解问题
★浅谈培养学生的空间想象能力
★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育
★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计
★培养学生学习数学的兴趣
★课堂教学与素质教育探讨
★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施
★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题
★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣
★数学教学中探究性学习策略
★论数学课堂教学的语言艺术
★数学概念的教与学
★优化课堂教学推进素质教育
★数学教学中的情商因素
★浅谈创新教育
★培养学生的数学兴趣的实施途径
★论数学学法指导
★学生能力在数学教学中的培养
★浅论数学直觉思维及培养
★论数学学法指导
★优化课堂教学焕发课堂活力
★浅谈高初中数学教学衔接
★如何搞好数学教育教学研究
★浅谈线性变换的对角化问题
本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。
1数学建模在煤矿安全生产中的意义
在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。
只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。
2煤矿生产计划的优化方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。
基于数学模型的方法
(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。
(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。
基于人工智能方法
(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。
(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。
3煤矿安全生产中数学模型的优化建立
根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。
建立简化模型
模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。
很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式
式中x2---B工作面瓦斯体积分数;
u2---B工作面采煤进度;
w1---B矿井所对应的空气流速;
w2---相邻A工作面的空气流速;
a2、b2、c2、d2---未知量系数。
CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】
式中x3、x4---C、D工作面的瓦斯体积分数;
e1、e2---A、B工作面的瓦斯体积分数;
a3、b3、c3、d3---未知量系数:
f1、f2---A、B工作面的瓦斯绝对涌出量。
系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。
模型的转型及其离散化
因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】
在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。
依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。
模型的应用效果及降低瓦斯体积分数的措施
以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。
综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。
4结语
应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。
参考文献:
[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.
[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.
[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
小学数学课题研究最佳题目数学核心素养下农村小学高年级学生运算能力培养的研究小学数学大班额背景下小组合作学习的有效性研究小学数学教学中培养学生动手实践能力及其评价方式的研究以“智慧放手”的教学特色培养小学生合作学习能力的研究基于核心素养下的小学低年级数学评价模式研究小学生空间观念和几何直观的培养与评价研究核心素养背景下小学数学整理和复习课的研究优化小学数学课堂教学方式的实践研究基于读懂学生错误培养学生反思能力的实践研究依托综合与实践活动教学提升小学生数学素养的研究在小学数学“数与代数”领域开展游戏化教学的实践研究小学数学中培养学生几何直观能力的研究小学数学课堂教学与现代教育技术融合实验与研究小学数学教学中建立模型思想的策略与方法研究基于发展学生核心素养的小学数学作业设计有效性的研究小学中年级数学课堂提问有效性的研究小学数学小组合作学习有效性的研究小学数学课堂教学与信息技术整合的研究优化小学数学教学有效性的策略研究