首页 > 学术期刊知识库 > 甲醇合成毕业论文

甲醇合成毕业论文

发布时间:

甲醇合成毕业论文

四塔甲醇精馏工艺流程及原理粗甲醇通过预塔给料泵、粗甲醇预热器送到预塔脱除轻组份。预精馏塔(脱醚塔)冷凝器采用二级冷凝,系统中增设了排气冷凝器,用以脱除二甲醚等低沸点的杂质,控制冷凝器气体出口温度,并回收夹带的部分甲醇。在该温度下,几乎所有的低沸点馏份都在气相,并排出系统,不再冷凝回流到预精馏塔。 充分脱除低沸点组分后的甲醇溶液,通过加压精馏塔给料泵送往加压精馏塔。主要是提高甲醇气体的分压与沸点,使加压精馏塔的塔顶气有足够的热量供常压精馏塔的再沸器使用。常压精馏塔就不再需要蒸汽加热,减少装置的能耗。加压塔和常压精馏塔分别采出一般要求的甲醇产品。如特殊需要,可再经常压精馏塔进一步提纯。两塔的混合液都达到国家优级标准以上,能满足甲醇羰基化所需要的工艺指标要求。 从常压精馏塔底部排出的占甲醇产量20%左右的残液,被回收塔给料泵送往回收塔进一步回收,最终从底部排出装置。

甲醇的生产,主要是合成法,尚有少量从木材干馏作为副产回收。合成的化学反应式为: H2 + CO → CH3OH 合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)或气体(如天然气及其他可燃性气体)为原料,经造气净化(脱硫)变换,除去二氧化碳,配制成一定的合成气(一氧化碳和氢)。在不同的催化剂存在下,选用不同的工艺条件。单产甲醇(分高压法低压和中压法),或与合成氨联产甲醇(联醇法)。将合成后的粗甲醇,经预精馏脱除甲醚,精馏而得成品甲醇。高压法为BASF最先实现工业合成的方法,但因其能耗大,加工复杂,材质要求苛刻,产品中副产物多,今后将由ICI低压和中压法及Lurgi低压和中压法取代。

毕业论文还是自己写吧。。。

甲醇生产项目的危险性分析:1 火灾、爆炸 甲醇是易挥发性液体,属于甲类火灾危险性物质,贮存不好或发生泄漏都可能发生燃烧、爆炸。原料液体甲醇经蒸发器加热蒸发后变成甲醇蒸气,蒸发系统不得泄漏,否则在压力作用下甲醇气体以高速喷出,产生静电或遇明火,极易发生火灾爆炸。气态甲醇与空气混合能形成爆炸性混合气体,一旦遇有明火、高温或静电火花就有爆炸、燃烧的危险。 1m3 气态甲醇完全燃烧,发热量高达数万千焦,爆炸所产生的冲击波超压与同能量的TNT 爆炸产生的超压相似。由于它燃烧热值大,爆炸速度快,瞬间就会完成化学性变化,破坏性特别强。 甲醇气与空气混合进入氧化器进行催化氧化反应和脱氢反应,反应温度在6 20℃~650℃,反应的总热效应属于强放热反应,氧化器径向和轴向都存在温差。催化剂的载体往往是导热欠佳的物质,如果催化剂的导热性能良好,且气体流速又较快,则径向温差较小。一般沿轴向温度分布都有一个最高温度,称为热点,热点温度过高,使反应选择性降低,催化剂作用变慢,甚至使反应失去稳定性或产生飞温。生产甲醛的氧化器属于固定床反应器,床层温度分布受到传热速率的限制,可能产生较大温差,甚至引起飞温,导致火灾爆炸事故。 反应过程应中应控制好氧醇比(即氧气和甲醇的摩尔比)和水蒸气配比,防止超温。随着温度升高,反应速度加快,转化率增加,放出的热量也随之增加,如不及时移走反应热,就会导致温度难以控制,产生飞温现象。 甲醛生产中有90%以上的甲醇参加氧化反应和脱氢反应,其余部分发生燃烧反应及甲醛的深度氧化等副反应,生成CO、CO2、H20、CH4 和H2 等,都是放热反应,增加了反应过程的总热量,有可能产生飞温,当温度达到甲醇或甲醛的自燃点时,就可能发生燃烧爆炸。 甲醇、甲醛的蒸气都能与空气形成爆炸性混合物,但温度对爆炸极限影响较大,不同温度的爆炸极限可根据25℃的爆炸极限进行修正。修正后的甲醇和甲醛的爆炸极限如附表1-4 所示。 附表1-4 经温度修正的爆炸极限 物料 温度℃ 爆炸下限(%) 爆炸上限(%) 甲醇 25 600 700 甲醛 25 73 600 700 正常情况下,控制甲醇与空气的体积比为~,对照表2,虽然反应不在爆炸范围之内,但如果操作不慎,如氧醇比过低,就有可能使反应处于爆炸极限范围之内。 过热器到氧化器的入口,存在甲醇和空气两种成分,系爆炸性混合物;氧化器出口存在甲醇、甲醛、H2,CO,CH4 和02 等6 种成分,也系爆炸性混合物。因此,无论在氧化器的进口或出口,只要遇火源,就会立即发生燃烧、爆炸事故。 吸收操作是在吸收塔中将反应气中的绝大部分甲醛用水吸收下来,未被吸收的尾气送至尾气锅炉进行燃烧处理。在该操作过程中所涉及的气体系爆炸性混合物,如果设备发生泄漏,可能引起燃烧、爆炸事故。 在装卸甲醇、甲醛以及清罐等作业过程中,若违章操作或由于设备、管道腐蚀、制造缺陷、法兰未紧固等原因造成储罐、管道渗漏,甲醇或甲醛暴露在空气中,形成爆炸性混合物,达到爆炸极限时,遇火源易发生爆炸燃烧事故。 (1)将甲醇或甲醛装入储罐中 A 储罐漫溢 装卸时对液位检测不及时易造成甲醇或甲醛跑冒,甲醇或甲醛溢出罐外后,周围空气中甲醇或甲醛的浓度迅速上升,达到或超过爆炸极限,遇到火星即发生爆炸燃烧;在甲醇漫溢时,使用金属容器刮舀,开启电灯照明观察,均会无意中产生火花,而引起爆燃。 B 甲醇滴漏 由于装卸时,胶管破裂、密封垫破损、接头紧固栓松动等原因,使甲醇滴漏至地面,遇火花立即发生燃烧。 C 静电起火 由于输送管道无静电连接、采用喷溅式装卸、罐车无静电接地等原因,造成静电积聚放电,点燃可燃蒸气。 D 装卸过程中遇明火 在非密闭装卸中,大量可燃蒸气从装卸口逸出,当周围出现烟火、火花时,就会产生爆炸燃烧。 (2)储罐、管道或法兰渗漏,没有及时发现,导致甲醇或甲醛暴露在空气中,甲醇或甲醛蒸气遇明火燃烧爆炸。 安全防火间距不足 生产区域内或生产区域外建(构)筑物为有可能出现明火的场所,若建构筑物与生产区域内危险设施的间距不足,易造成火源与合适浓度的可燃性气体相遇,引发事故。另一方面,当一个设施设备出现火灾,若防火间距不足时,易诱发另一 个设施设备火灾;或当生产区域内发生火灾事故,若防火间距不足时,易诱发生产区域外建构筑物火灾,造成更大的损失。 该车间生产过程与储存过程中存在甲醇、甲醛、氢气等易燃易爆物质,该生产区域和储罐区域属于爆炸和火灾危险环境,在此区域内的电气设备如果不能满足防火防爆要求,可能会引起火灾爆炸事故。 电气线路老化、绝缘破损、短路、私拉乱接、超负荷用电、过载、接线不规范、发热、电器使用管理不当等易引起火灾。 雷击引起火灾。由于没有采取可靠的防雷措施,导致雷击直接击中储罐或装卸设施,或者在储罐或装卸设施上产生感应电荷积聚放电,都会导致甲醇、甲醛燃烧或甲醇、甲醛与空气混合气爆炸。 生产区域内建(构)筑物耐火等级达不到要求,一旦明火管理不当,用火失控,就容易导致火灾。2 容器爆炸在生产装置中存在压力容器,这些压力容器如果本身设计、安装存在缺陷;安全附件或安全防护装置存在缺陷或不齐全;在使用过程中如发生侵蚀、腐蚀、疲劳、蠕变等现象;未按规定由有资质的质检单位检验或办理安全准用证;人员误操作等原因,均有可能发生容器爆炸事故。3 中毒 甲醇对中枢神经系统有麻醉作用;对视神经和视网膜有特殊选择作用,引起病变;可致代谢性酸中毒。对粘膜、上呼吸道、眼睛和皮肤有强烈刺激性。接触其蒸气,引起结膜炎、角膜炎、鼻炎、支气管炎;重者发生喉痉挛、声门水肿和肺炎等。肺水肿较少见。对皮肤有原发性刺激和致敏作用,可致皮炎;浓溶液可引起皮肤凝固性坏死。口服灼伤口腔和消化道,可发生胃肠道穿孔,休克,肾和肝脏损害。因此在操作过程中,如防护措施不到位或无防护,有可能对人体造成甲醇中毒事故。 短时大量吸入甲醛会出现轻度眼上呼吸道刺激症状(口服有胃肠道刺激症状);经一段时间潜伏期后出现头痛、头晕、乏力、眩晕、酒醉感、意识朦胧、谵妄,甚至昏迷。视神经及视网膜病变,可有视物模糊、复视等,重者失明。代谢性酸中毒时出现二氧化碳结合力下降、呼吸加速等。因此在操作过程中,如防护措施不到位或无 防护,有可能对人体造成甲醛中毒事故。4 高处坠落该车间生产厂房为三层厂房,在二层以上的楼层作业,若防护栏杆设置不规范、防护栏杆腐蚀损坏等原因,在储罐上进行检修工作,防护措施不到位等原因,均有可能造成高处坠落事故。5 机械伤害各种泵的运转部位,如果没有设置防护罩等防护措施,人体触及运转部位,可能造成机械伤害事故。6 触电各带电设备若因防护措施不到位(如触电保护、漏电保护、短路保护、过载保护、绝缘、电气隔离、屏护、电气安全距离等方面不可靠),均有可能造成人员触电。7 灼烫蒸汽管道或法兰连接处出现破损,使中压蒸汽喷出,可能喷至人体,造成人员高温灼烫事故。8 车辆伤害车间内行走的车辆,若车间内设施防护不当,易造成车辆冲撞装置内设施,另一方面也易对人员造成碰撞伤害。9 噪声项目中存在的罗茨风机、泵等,这些设备会产生噪声,噪声是一种物理危害因素,长期在高噪声的环境下工作,接触者的听力将受到损害,引起噪声耳聋,并妨碍 操作人员正常的感觉能力,使人烦躁不安,还会影响通讯,甚至成为诱发事故的原因。10 毒物长期接触低浓度甲醛可有轻度眼、鼻、咽喉刺激症状,皮肤干燥、皲裂、甲软化等。慢性影响:长期吸入低浓度甲醇,可能会导致神经衰弱综合征,植物神经功能失调,粘膜刺激,视力减退等,皮肤出现脱脂、皮炎等。

甲醇的合成毕业论文

甲醇生产项目的危险性分析:1 火灾、爆炸 甲醇是易挥发性液体,属于甲类火灾危险性物质,贮存不好或发生泄漏都可能发生燃烧、爆炸。原料液体甲醇经蒸发器加热蒸发后变成甲醇蒸气,蒸发系统不得泄漏,否则在压力作用下甲醇气体以高速喷出,产生静电或遇明火,极易发生火灾爆炸。气态甲醇与空气混合能形成爆炸性混合气体,一旦遇有明火、高温或静电火花就有爆炸、燃烧的危险。 1m3 气态甲醇完全燃烧,发热量高达数万千焦,爆炸所产生的冲击波超压与同能量的TNT 爆炸产生的超压相似。由于它燃烧热值大,爆炸速度快,瞬间就会完成化学性变化,破坏性特别强。 甲醇气与空气混合进入氧化器进行催化氧化反应和脱氢反应,反应温度在6 20℃~650℃,反应的总热效应属于强放热反应,氧化器径向和轴向都存在温差。催化剂的载体往往是导热欠佳的物质,如果催化剂的导热性能良好,且气体流速又较快,则径向温差较小。一般沿轴向温度分布都有一个最高温度,称为热点,热点温度过高,使反应选择性降低,催化剂作用变慢,甚至使反应失去稳定性或产生飞温。生产甲醛的氧化器属于固定床反应器,床层温度分布受到传热速率的限制,可能产生较大温差,甚至引起飞温,导致火灾爆炸事故。 反应过程应中应控制好氧醇比(即氧气和甲醇的摩尔比)和水蒸气配比,防止超温。随着温度升高,反应速度加快,转化率增加,放出的热量也随之增加,如不及时移走反应热,就会导致温度难以控制,产生飞温现象。 甲醛生产中有90%以上的甲醇参加氧化反应和脱氢反应,其余部分发生燃烧反应及甲醛的深度氧化等副反应,生成CO、CO2、H20、CH4 和H2 等,都是放热反应,增加了反应过程的总热量,有可能产生飞温,当温度达到甲醇或甲醛的自燃点时,就可能发生燃烧爆炸。 甲醇、甲醛的蒸气都能与空气形成爆炸性混合物,但温度对爆炸极限影响较大,不同温度的爆炸极限可根据25℃的爆炸极限进行修正。修正后的甲醇和甲醛的爆炸极限如附表1-4 所示。 附表1-4 经温度修正的爆炸极限 物料 温度℃ 爆炸下限(%) 爆炸上限(%) 甲醇 25 600 700 甲醛 25 73 600 700 正常情况下,控制甲醇与空气的体积比为~,对照表2,虽然反应不在爆炸范围之内,但如果操作不慎,如氧醇比过低,就有可能使反应处于爆炸极限范围之内。 过热器到氧化器的入口,存在甲醇和空气两种成分,系爆炸性混合物;氧化器出口存在甲醇、甲醛、H2,CO,CH4 和02 等6 种成分,也系爆炸性混合物。因此,无论在氧化器的进口或出口,只要遇火源,就会立即发生燃烧、爆炸事故。 吸收操作是在吸收塔中将反应气中的绝大部分甲醛用水吸收下来,未被吸收的尾气送至尾气锅炉进行燃烧处理。在该操作过程中所涉及的气体系爆炸性混合物,如果设备发生泄漏,可能引起燃烧、爆炸事故。 在装卸甲醇、甲醛以及清罐等作业过程中,若违章操作或由于设备、管道腐蚀、制造缺陷、法兰未紧固等原因造成储罐、管道渗漏,甲醇或甲醛暴露在空气中,形成爆炸性混合物,达到爆炸极限时,遇火源易发生爆炸燃烧事故。 (1)将甲醇或甲醛装入储罐中 A 储罐漫溢 装卸时对液位检测不及时易造成甲醇或甲醛跑冒,甲醇或甲醛溢出罐外后,周围空气中甲醇或甲醛的浓度迅速上升,达到或超过爆炸极限,遇到火星即发生爆炸燃烧;在甲醇漫溢时,使用金属容器刮舀,开启电灯照明观察,均会无意中产生火花,而引起爆燃。 B 甲醇滴漏 由于装卸时,胶管破裂、密封垫破损、接头紧固栓松动等原因,使甲醇滴漏至地面,遇火花立即发生燃烧。 C 静电起火 由于输送管道无静电连接、采用喷溅式装卸、罐车无静电接地等原因,造成静电积聚放电,点燃可燃蒸气。 D 装卸过程中遇明火 在非密闭装卸中,大量可燃蒸气从装卸口逸出,当周围出现烟火、火花时,就会产生爆炸燃烧。 (2)储罐、管道或法兰渗漏,没有及时发现,导致甲醇或甲醛暴露在空气中,甲醇或甲醛蒸气遇明火燃烧爆炸。 安全防火间距不足 生产区域内或生产区域外建(构)筑物为有可能出现明火的场所,若建构筑物与生产区域内危险设施的间距不足,易造成火源与合适浓度的可燃性气体相遇,引发事故。另一方面,当一个设施设备出现火灾,若防火间距不足时,易诱发另一 个设施设备火灾;或当生产区域内发生火灾事故,若防火间距不足时,易诱发生产区域外建构筑物火灾,造成更大的损失。 该车间生产过程与储存过程中存在甲醇、甲醛、氢气等易燃易爆物质,该生产区域和储罐区域属于爆炸和火灾危险环境,在此区域内的电气设备如果不能满足防火防爆要求,可能会引起火灾爆炸事故。 电气线路老化、绝缘破损、短路、私拉乱接、超负荷用电、过载、接线不规范、发热、电器使用管理不当等易引起火灾。 雷击引起火灾。由于没有采取可靠的防雷措施,导致雷击直接击中储罐或装卸设施,或者在储罐或装卸设施上产生感应电荷积聚放电,都会导致甲醇、甲醛燃烧或甲醇、甲醛与空气混合气爆炸。 生产区域内建(构)筑物耐火等级达不到要求,一旦明火管理不当,用火失控,就容易导致火灾。2 容器爆炸在生产装置中存在压力容器,这些压力容器如果本身设计、安装存在缺陷;安全附件或安全防护装置存在缺陷或不齐全;在使用过程中如发生侵蚀、腐蚀、疲劳、蠕变等现象;未按规定由有资质的质检单位检验或办理安全准用证;人员误操作等原因,均有可能发生容器爆炸事故。3 中毒 甲醇对中枢神经系统有麻醉作用;对视神经和视网膜有特殊选择作用,引起病变;可致代谢性酸中毒。对粘膜、上呼吸道、眼睛和皮肤有强烈刺激性。接触其蒸气,引起结膜炎、角膜炎、鼻炎、支气管炎;重者发生喉痉挛、声门水肿和肺炎等。肺水肿较少见。对皮肤有原发性刺激和致敏作用,可致皮炎;浓溶液可引起皮肤凝固性坏死。口服灼伤口腔和消化道,可发生胃肠道穿孔,休克,肾和肝脏损害。因此在操作过程中,如防护措施不到位或无防护,有可能对人体造成甲醇中毒事故。 短时大量吸入甲醛会出现轻度眼上呼吸道刺激症状(口服有胃肠道刺激症状);经一段时间潜伏期后出现头痛、头晕、乏力、眩晕、酒醉感、意识朦胧、谵妄,甚至昏迷。视神经及视网膜病变,可有视物模糊、复视等,重者失明。代谢性酸中毒时出现二氧化碳结合力下降、呼吸加速等。因此在操作过程中,如防护措施不到位或无 防护,有可能对人体造成甲醛中毒事故。4 高处坠落该车间生产厂房为三层厂房,在二层以上的楼层作业,若防护栏杆设置不规范、防护栏杆腐蚀损坏等原因,在储罐上进行检修工作,防护措施不到位等原因,均有可能造成高处坠落事故。5 机械伤害各种泵的运转部位,如果没有设置防护罩等防护措施,人体触及运转部位,可能造成机械伤害事故。6 触电各带电设备若因防护措施不到位(如触电保护、漏电保护、短路保护、过载保护、绝缘、电气隔离、屏护、电气安全距离等方面不可靠),均有可能造成人员触电。7 灼烫蒸汽管道或法兰连接处出现破损,使中压蒸汽喷出,可能喷至人体,造成人员高温灼烫事故。8 车辆伤害车间内行走的车辆,若车间内设施防护不当,易造成车辆冲撞装置内设施,另一方面也易对人员造成碰撞伤害。9 噪声项目中存在的罗茨风机、泵等,这些设备会产生噪声,噪声是一种物理危害因素,长期在高噪声的环境下工作,接触者的听力将受到损害,引起噪声耳聋,并妨碍 操作人员正常的感觉能力,使人烦躁不安,还会影响通讯,甚至成为诱发事故的原因。10 毒物长期接触低浓度甲醛可有轻度眼、鼻、咽喉刺激症状,皮肤干燥、皲裂、甲软化等。慢性影响:长期吸入低浓度甲醇,可能会导致神经衰弱综合征,植物神经功能失调,粘膜刺激,视力减退等,皮肤出现脱脂、皮炎等。

甲醇的生产,主要是合成法,尚有少量从木材干馏作为副产回收。合成的化学反应式为: H2 + CO → CH3OH 合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)或气体(如天然气及其他可燃性气体)为原料,经造气净化(脱硫)变换,除去二氧化碳,配制成一定的合成气(一氧化碳和氢)。在不同的催化剂存在下,选用不同的工艺条件。单产甲醇(分高压法低压和中压法),或与合成氨联产甲醇(联醇法)。将合成后的粗甲醇,经预精馏脱除甲醚,精馏而得成品甲醇。高压法为BASF最先实现工业合成的方法,但因其能耗大,加工复杂,材质要求苛刻,产品中副产物多,今后将由ICI低压和中压法及Lurgi低压和中压法取代。

甲醇的毒性对人体的神经系统和血液系统影响最大,它经消化道、呼吸道或皮肤摄入都会产生毒性反应,甲醇蒸气能损害人的呼吸道粘膜和视力。

在甲醇生产工厂,中国有关部门规定,空气甲醇的浓度限制为PC-stel=50mg/m3,PC-TWA=25mg/m3,在有甲醇气的现场工作须戴防毒面具、工厂废水要处理后才能排放,允许含量小于200mg/L的甲醇。

甲醇的中毒机理是,甲醇经人体代谢产生甲醛和甲酸(俗称蚁酸),然后对人体产生伤害。常见的症状是,先是产生喝醉的感觉,数小时后头痛,恶心,呕吐,以及视线模糊。

严重者会失明,乃至丧命。失明的原因:甲醇的代谢产物甲酸累积在眼睛部位,破坏视觉神经细胞。脑神经也会受到破坏,而产生永久性损害。甲酸进入血液后,会使组织酸性越来越强,损害肾脏导致肾衰竭。

扩展资料:

甲醇技术发展很快, 主要趋向为:

1、生产的原料转向天然气、烃类加工尾气。从甲醇生产的实际情况核算, 采用天然气为原料比用固体为原料的投资可降低50%; 采用乙炔尾气则经济效果更为显著。

国际上, 生产甲醇的原料以天然气为主约占90% , 以煤为原料只占2%。国内以煤为原料生产甲醇的比例在逐步上升, 这与中国的能源结构有关。

2、生产规模大型化, 单系列最大规模达225 万吨ö年, 即单系列日产7500 公斤。规模扩大后, 可降低单位产品的投资和成本。

3、充分回收系统的热量。产生经济压力的蒸汽,以驱动压缩机及锅炉给水泵、循环水泵的透平, 实现热能的综合利用。

4、采用新型副产中压蒸汽的甲醇合成塔, 降低能耗。

5、采用节能技术, 如氢回收技术、预转化、工艺冷凝液饱和技术、燃烧空气预热技术等, 降低甲醇消耗。

参考资料来源:百度百科-甲醇生产工艺

四塔甲醇精馏工艺流程及原理粗甲醇通过预塔给料泵、粗甲醇预热器送到预塔脱除轻组份。预精馏塔(脱醚塔)冷凝器采用二级冷凝,系统中增设了排气冷凝器,用以脱除二甲醚等低沸点的杂质,控制冷凝器气体出口温度,并回收夹带的部分甲醇。在该温度下,几乎所有的低沸点馏份都在气相,并排出系统,不再冷凝回流到预精馏塔。 充分脱除低沸点组分后的甲醇溶液,通过加压精馏塔给料泵送往加压精馏塔。主要是提高甲醇气体的分压与沸点,使加压精馏塔的塔顶气有足够的热量供常压精馏塔的再沸器使用。常压精馏塔就不再需要蒸汽加热,减少装置的能耗。加压塔和常压精馏塔分别采出一般要求的甲醇产品。如特殊需要,可再经常压精馏塔进一步提纯。两塔的混合液都达到国家优级标准以上,能满足甲醇羰基化所需要的工艺指标要求。 从常压精馏塔底部排出的占甲醇产量20%左右的残液,被回收塔给料泵送往回收塔进一步回收,最终从底部排出装置。

甲醇合成工艺毕业论文

合成后的粗甲醇,经预精馏脱除甲醚。将粗甲醇净化,净化过程包括精馏和化学处理。化学处理主要用碱破坏在精馏过程中难以分离的杂质,并调节pH值;精馏主要是脱除易挥发组分如二甲醚,以及难挥发的乙醇、高碳醇和水。粗馏后的纯度一般都可达到98%以上。

将工业甲醇用精馏的方法将含水量降到以下。再用次碘酸钠处理,可除去其中的丙酮。经精馏得纯品甲醇。

BV-Ⅲ级甲醇的制备主要采用精馏工艺。以工业甲醇为原料,经精馏、超净过滤、超净分装,得高纯甲醇产品。一般均以工业甲醇为原料,经常压蒸馏除去水分,控制塔顶64~65℃,过滤除去不溶物即可。

甲醇(Methanol,CH3OH)是结构最为简单的饱和一元醇,CAS号为67-56-1或170082-17-4,分子量为,沸点为℃。

因在干馏木材中首次发现,故又称“木醇”或“木精”。是无色有酒精气味易挥发的液体。人口服中毒最低剂量约为100mg/kg体重,经口摄入~1g/kg可致死。用于制造甲醛和农药等,并用作有机物的萃取剂和酒精的变性剂等。成品通常由一氧化碳与氢气反应制得。

1 物料的危害辨识及危险性评价1.1 生产过程中的物料1.1.1 一氧化碳(CO)1.1.1.1 危害性辨识一氧化碳经呼吸道吸入人体后,通过肺泡膜进入血液,与血液中血红蛋白进行可逆性结合,形成碳氧血红蛋白,使血液中的携氧功能发生障碍,造成人体低氧血症,因而导致组织缺氧。轻度中毒者会出现头疼、眩晕、耳鸣、眼花,颞部压迫及博动感,并有恶心、呕吐,心前区疼痛或心悸,四肢无力,甚至有短暂的昏厥;中度中毒者除上述症状外,初期尚有多汗、烦燥,步态不稳,皮肤粘膜樱红,可出现意识模糊,甚至进入昏迷状态;重度中毒者迅速进入昏迷,昏迷可持续数小时或更长时间,出现阵发性和强直性痉挛,有病理反射出现,常伴发脑水肿、肺水肿、心肌损害、心律紊乱或传导阻滞,高热或惊厥,皮肤、粘膜可呈樱红色或苍白、紫绀。1.1.1.2 危险性评价一氧化碳属易燃、易爆、有毒气体,与空气混合浓度在12.5%~74.2%时成为爆炸混合物,爆炸危险度为4.9。遇热容器压力增大,泄漏遇火种有燃烧爆炸的危险。GB 13690—92标准将该物质划分为第2.1类易燃气体;GB 12268—90标准规定其危规号为21005。1.1.2 二氧化碳(CO2)1.1.2.1 危害性辨识低浓度二氧化碳对呼吸中枢有致兴奋作用,高浓度有显著性的麻痹作用。二氧化碳透过肺泡能力比氧大25倍,空气中CO2浓度高时,必造成体内CO2滞留,缺氧引起窒息死亡。即使在含氧浓度较高的情况下,二氧化碳也可以引发中毒。有时缺氧窒息会与二氧化碳中毒并存。吸入浓度为8%~10%的CO2,除头昏、头痛、眼花和耳鸣外,还有气急,脉博加快、无力,血压升高,精神兴奋,肌肉痉挛,时间过长则会出现神志丧失。急性重症发作都在几秒钟内,几乎象触电似的倒下,表现为昏迷,反射消失,瞳孔扩大或缩小,大小便失禁,呕吐等。严重者会出现呼吸停止或休克。1.1.2.2 危险性评价受热后容器压力增大,有爆炸危险。GB 13690—92标准将该物质划分为第2.2类不燃气体;GB 12268—90标准规定其危规号为22019。1.1.3 氢气(H2)1.1.3.1 危害性辨识氢气在生理上属惰性气体,仅在高浓度时,由于空气中氧分压降低才能引起窒息。在很高的分压下,氢气可呈现出麻醉作用。1.1.3.2 危险性评价氢属易燃易爆物质,与空气混合浓度在4.0%~75.6%时成为爆炸混合物,爆炸危险度17.9。氢气比空气轻,在室内使用和储存时,泄漏气体会聚集在上部空间不易外排,遇火即引起爆炸。GB 13690—92将该物质划分为第2.1类易燃气体;GB 12268—90标准规定其危规号为21001。1.1.4 硫化氢(H2S)1.1.4.1 危害性辨识硫化氢是强烈的神经性毒物,对粘膜有明显刺激作用,随空气经呼吸道和消化道能很快被人体吸收。一部分可经呼吸道排出,另一部分在血液中很快被氧化为无毒的硫酸盐和硫化酸盐等经尿道排出;在血液中来不及氧化时,则引起全身中毒反应。体内达到较高浓度时,首先对呼吸中枢和脊髓运动中枢产生兴奋作用,然后转为抑制;高浓度时则引起颈动脉寞的反射作用使呼吸停止;更高浓度时可直接麻痹呼吸中枢而立即引起窒息,造成“闪电式”中毒以致死亡。轻度中毒者首先出现眼结膜刺激病状,接着是呼吸道刺激症状,表现为畏光、流泪、眼刺激、流鼻涕及咽喉灼热感;当接触浓度为200~300mg/m3时,会发生中度中毒,症状为头痛、头晕、全身无力、呕吐,同时引起上呼吸道炎和支气管炎。眼刺激症状强烈、流泪、眼刺痛,且有眼睑痉挛,看光源时周围有色环存在,视觉模糊,有角膜水肿的症兆;当接触浓度在700mg/m3以上时,会发生重度中毒,中枢神经系统症状最突出。出现头晕、呼吸困难,行动迟钝,继而出现烦燥,意识模糊,呕吐、腹泻,很快处于昏迷状态,最终可因呼吸麻痹而死亡;当接触浓度在1000mg/m3以上时,可发生“电击样”中毒,即在数秒钟后突然倒下,瞬间呼吸停止。1.1.4.2 危险性评价硫化氢属易燃剧毒液化气体,人的嗅觉阈为0.035mg/m3,起初是臭鸡蛋味增强与浓度成正比,当浓度超过10mg/m3时,浓度增高而臭鸡蛋味却减弱,以至不能察觉。与空气混合,当浓度在4.3%~45.0%时,形成爆炸性混合物,爆炸危险度为9.5。气体泄漏遇火源会发生燃烧爆炸。GB 13690—92标准将该物质划分为第2.1类易燃气体;GB 12268—90标准规定其危规号为21006。1.1.5 氮气(N2)1.1.5.1 危害性辨识氮气是无色、无臭、无味的气体,是空气的重要组成部分。微溶于水,化学性质稳定。氮气本身并无毒,但当环境中氮气增多致使氧气相对减少,会引起单纯性窒息。其主要表现是机体缺氧,出现头晕、头痛、呼息困难、急促,心跳加快,脉搏弱而快,精神恍惚不安,全身乏力,肌肉协调运动失调。若进入完全充满氮气的设备或容器中,人会立即昏倒窒息。1.1.5.2 危险性评价氮气属难视觉性物质,高纯度氮气环境中易发生窒息甚至死亡事故。超压贮存有爆炸危险。GB 13690—92标准将该物质划分为第2.2类不燃气体;GB 12268—90标准规定其危规号为22005。1.2 成品物料1.2.1 液氨(NH3)1.2.1.1 危害性辨识氨属于低毒类物质。氨随空气经呼吸道吸入后,通过肺泡,除少部分与二氧化碳中和外,其余被血液吸收。被吸收的氨,在肝脏中释出形成尿素,随汗液、尿或呼吸道排出体外。氨对人的呼吸道有刺激和腐蚀作用,浓度过高时,直接接触部分可引起碱化学灼伤,组织呈溶解性坏死,并可引起呼吸道深部及肺泡的损伤,发生化学性支气管炎、肺炎和肺水肿。高浓度吸入,可使中枢神经系统兴奋度增强,引起痉挛,并可通过三叉神经末稍的反射作用引起心脏停搏和呼吸停止。轻度中毒,眼、口有辣感、流泪、流涕、咳嗽、声音嘶哑,吞咽困难,头昏、头痛,眼结膜充血水肿,口唇及口腔、咽部充血,胸闷和胸骨区疼痛;重度中毒,喉头水肿,声门狭窄以及呼吸道粘膜脱落,造成气管阻塞,引起窒息,人体外露部分皮肤可出现Ⅱ度化学灼伤,眼睑、口唇、鼻腔、咽部及喉头水肿,咳吐大量黄痰;肺水肿很快发生,表现为剧烈咳嗽,呼吸困难;脉快而弱,体温升高,咳出血痰或大量粉红色泡沫痰,陷入休克昏迷。1.2.1.2 危险性评价受到猛烈撞击,贮器损坏时,气体外泄会危及人的健康和生命,遇水则变为有腐蚀性的氨水。28%的水溶液则为浓氨水。受热后容器内压力增大或空气中氨浓度在15.7%~27.4%时,遇到火星会引起燃烧爆炸,爆炸危险度为0.9。有油类存在时,更会增加燃烧危险。GB 13690—92标准将该物质划分为第2.3类有毒气体;GB 12268—90标准规定其危规号为23003。1.2.2 甲醇(CH3OH)1.2.2.1 危害性辨识甲醇的职业接触中毒物质危害程度分为三级,急性中毒主要表现为中枢神经系统损害,眼部损害和代谢性酸中毒。人吸入空气中甲醇浓度39.3~65.5g/m3,30~60分钟可致中毒。人体口服中毒最低剂量为0.1g/kg,经口摄入0.3~1.0g可致死。1.2.2.2 危险性评价甲醇是易燃、易爆、有毒性物质。其气体与空气混合能形成爆炸性混合物,爆炸极限为5.5%~36.0%,爆炸危险度为5.5。饮用后会使人失明,甚至死亡。GB 13690—92标准将该物质划分为第3.2类中闪点液体;GB 12268—90标准规定其危规号为32058。

甲醇的生产,主要是合成法,尚有少量从木材干馏作为副产回收。合成的化学反应式为: H2 + CO → CH3OH 合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)或气体(如天然气及其他可燃性气体)为原料,经造气净化(脱硫)变换,除去二氧化碳,配制成一定的合成气(一氧化碳和氢)。在不同的催化剂存在下,选用不同的工艺条件。单产甲醇(分高压法低压和中压法),或与合成氨联产甲醇(联醇法)。将合成后的粗甲醇,经预精馏脱除甲醚,精馏而得成品甲醇。高压法为BASF最先实现工业合成的方法,但因其能耗大,加工复杂,材质要求苛刻,产品中副产物多,今后将由ICI低压和中压法及Lurgi低压和中压法取代。

一分钟读懂.甲醇生产工艺

煤制甲醇合成毕业论文

巨野煤田煤质分析及科学利用评价摘要]从工业、元素、工艺性质方面,对巨野煤田煤质进行了详细的分析,根据其煤质特点,进行科学论证,得出巨野煤田是优质动力用煤和炼焦用煤的结论,可以用来制备水煤浆,用于煤气化合成氨、合成甲醇及后续产品,用作焦化原料等。[关键词]煤质分析;煤质特点;科学利用;评价1巨野煤田煤质分析煤的工业分析工业分析是确定煤组成最基本的方法。在指标中,灰分可近似代表煤中的矿物质,挥发分和固定碳可近似代表煤中的有机质。衡量煤灰分性能指标主要有灰分含量、灰分组成、煤灰熔融性(DT、ST、HT和FT)。其中煤灰熔融性是动力用煤和气化用煤的重要性能指标。一般以煤灰软化的温度(即灰熔点ST)作为衡量煤灰熔融性的指标。龙固矿钻孔煤样工业分析结果(表1)变形温度(DT)为煤灰锥体尖端开始弯曲或变圆时的温度;软化温度(ST)为煤灰锥体弯曲至锥尖触及底板变成球形时的温度;半球温度(HT)为灰锥形变至近似半球形,即高约等于底长的一半时的温度;流动温度(FT)为煤灰锥体完全熔化展开成高度< mm薄层时的温度。彭庄矿钻孔煤样工业分析结果(表2)2煤质特点及科学利用评价巨野煤田煤质特点由煤炭科学研究总院《巨野矿区煤质特征及菜加工利用途径评价》可以看出巨野煤田煤质有如下特点:①灰分含量低,属于中、低灰煤层。②挥发分含量高,各煤层原煤的挥发分含量在33%以上,且差异不大,均属于高挥发分煤种。③磷含量特低;硫分含量上低下高。④干燥基低位热值高。各层煤的都比较高,且随原煤灰分的降低而升高。⑤粘结指数、胶质层厚度和焦油产率均较高。⑥碳、氢含量较高。碳含量在~之间,氢含量在~之间,C/H比值<16。⑦灰熔点上高下低。成浆性实验评价2008年1月,华东理工大学对巨野煤田龙固矿(1#)、赵楼矿(2#)和彭庄矿(3#)原煤进行成浆性实验及评价。成浆浓度实验成浆浓度是指剪切速率100 s-1,粘度为1 000 mPa·s,水煤浆能达到的浓度。采用双峰级配制浆,粗颗粒与细颗粒质量比为3∶7;选取腐殖酸盐作为添加剂,用量为煤粉质量的1%。制成一系列浓度的水煤浆,测量其流动性,观察水煤浆的表观粘度随成浆浓度上升的变化规律,结果如表10所示。由表10看出,随着煤浆浓度增大,煤浆表观粘度也明显升高。本实验3种煤样成浆浓度分别为龙固矿66%(wt);赵楼矿67%(wt);彭庄矿68%(wt)。流变性实验水煤浆流变特性是指受外力作用发生流动与变形的特性。良好的流变性和流动性是气化水煤浆的重要指标之一。将实验用煤制成适宜浓度的水煤浆,然后用NXS-4 C型水煤浆粘度计测定其粘度。将水煤浆的表观粘度随剪切变化的规律绘制成曲线,观察水煤浆的流变特性,见表11。从表11可以看出,3种煤制成的水煤浆中,随着剪切速率增大,表观粘度都随之降低,均表现出一定的屈服假塑性。屈服假塑性有利于气化水煤浆的储存、泵送和雾化。实验结论煤粉粗粒度(40~200目)和细颗粒(<200目)质量比为3∶7,腐殖酸盐作为添加剂,添加量为煤粉质量的1%时,龙固矿煤浆浓度为66%(wt)、赵楼矿煤浆浓度为67%(wt)、彭庄矿煤浆浓度为68%(wt),满足加压气流床水煤浆气化技术对水煤浆浓度的要求。原料煤的应用适合于制备水煤浆水煤浆不但是煤替代重油的首选燃料,而且是加压气流床水煤浆气化制备合成气的重要原料。同时它又是一种很有前途的清洁工业燃料。实践上,华东理工大学“巨野煤田原煤成浆性实验评价报告”表明:巨野煤田各矿井原料煤均适合于制备高浓度稳定水煤浆。用于煤气化合成氨、合成甲醇及后续产品巨野煤田原煤属于高发热量的煤种(弹筒热平均值在28~31 MJ/kg之间),该煤有利于降低氧气和能量消耗,并能提高气化产率;因灰熔点较高(>1 300℃),有利于固态排渣。根据鞍钢和武钢分别使用双鸭山和平项山1/3焦煤作高炉喷吹的经验,巨野煤田的1/3焦煤与双鸭山和平顶山1/3焦煤一样成浆性较好,其1/3焦煤洗精煤可以制成水煤浆,作为德士古(Texaco)水煤浆气化炉高炉喷吹用原料。煤气化得到的合成气既可通过变换用于合成氨/尿素,又可经净化脱硫合成甲醇或二甲醚。以甲醇为基础可进一步合成其他约120余种化工产品。另外,还可利用甲醇制备醇醚燃料及合成液体烃燃料等。用作焦化原料焦化用于生产冶金焦、化工焦,其副产焦炉煤气可用于合成甲醇或合成氨,副产煤焦油进行分离和深加工后可得到一系列化工原料及化工产品。由表12看出,巨野煤田大槽煤经过洗选以后,可以供将来的400万t/a焦化厂或者上海宝钢等大型钢铁企业生产I级焦炭时作配煤炼焦使用;灰分≤的8级精煤(2#),也可供华东地区的中小型焦化企业生产2级和3级冶金焦的配煤炼焦使用。此外,该煤也可以单独炼焦,但所生产焦炭的孔隙率偏高,最好进行配煤炼焦。远景目标———煤制油煤直接液化可得到汽油、煤油等多种产品。巨野煤田的大部分煤层均为富油煤,尤其是15煤层平均焦油产率>12%,属高油煤;根据元素分析计算的碳氢比各煤层均<16%;大部分煤层挥发分>35%的气煤和气肥煤通过洗选后的精煤挥发分>37%,而其灰分<10%。因此,巨野煤田的煤炭都是较好的液化用原料煤。煤间接液化可制取液体烃类。煤经气化后,合成气通过F-T合成,可以制取液体烃类,如汽油、柴油、石腊等化工产品及化工原料。3结语综上所述,巨野煤田第三煤层大槽煤属于低灰、低硫、低磷、结焦性好、挥发分高、发热量高的煤炭资源,其中的气煤、1/3焦煤、气肥煤、肥煤、天然焦等是国内紧缺的煤种,它们的洗精煤不仅可作为炼焦用煤、动力用煤,而且是制备水煤浆和高炉喷吹气化的重要原料。因此,菏泽大力发展煤气化合成氨和甲醇并拉长产业链搞深度加工是必然的正确选择。

煤化工是指以煤为原料,经化学加工使煤转化为气体、液体和固体燃料以及化学品的过程。下面是我整理了煤化工生产技术论文,有兴趣的亲可以来阅读一下!

煤化工及甲醇生产技术探索

摘要:甲醇是一种有机化工原料,它的用途非常广泛,普遍运用于燃烧材料、合成金属、工程涂料、医学消毒、日常生火等多个方面,在甲醇的制造方面,一般都遵循着煤气化碳――变换气体物质――精细蒸馏三大工序,在化工厂生产活动中一般将生产甲醇的工序称为“工段”。难点在于如何去调控操作所需的参数,本文通过对煤化工作的特性解析来引申出甲醇生产的要点,同时对生产技术进行一个流程上的模拟,更全面地去了解甲醇生产中需要多加注意的关键。

关键词:煤化工;甲醇;温度;化学反应;化学式

中图分类号:Q946文献标识码: A

1煤气化原理

在甲醇生产的流程中,煤气化是第一步,它是一种化学反应,将气化剂和煤炭资源中的可燃物质放置在一个高位环境下,然后使其发生中和反应,产生一氧化碳、氢气等可燃气体。在煤气化工段里使用的气化剂包括水蒸气、氧气等,在加入这些气化剂后,煤炭就会发生一系列化学反应,从而生成所需的气体。煤炭在加入气化剂后,经历了干燥、热裂解等热力反应,该反应中生成的气体包括一氧化碳、二氧化碳、氢气、甲烷等,这些化学反应的速度取决于煤气化工段中的温度、热压、气化炉质量以及煤炭的种类,以下是煤气化过程中会出现的化学式:

吸收热量:C - H2O → C O + H2C + C O2→ 2C O

发散热量:C + O2→ C O2C +12O2→ C O

变换反应:C O + H2O → C O2+ H2

从大体上来说,煤气化反应是化学中的强吸热效应,如果以动力和热力的角度来解析这类中和现象,重点在于对温度的把握,温度过高会造成气体流失,温度过低则无法产生完整的化学反应,导致生成的气体数量少、质量差。同时在增压方面应该适当地增加对煤炭的压力值,这样可以使化学反应的速度提高,对甲醇的生产效率起积极作用。

2变换工段

甲醇产品在合成时,一般调整碳元素与氢元素的比例的方法是通过一氧化碳的变换反应来实现的,在甲醇生产的流程中,碳元素与氢元素的分离都在催化剂的影响下进行,在此需要注意的是,碳氧分离工序对水蒸气的需求量相当大,水蒸气的生产成本在这道工段中会激增不少,所以,如何最大限度地利用水蒸气,节约生产成本,这将直接考验生产部门的气体生产技术和操作人员的工作效率。在变换工段中,煤气化之后的煤气物质含有大量的一氧化碳和水蒸气,在催化剂的效果影响到位之后,就可以生成氢与二氧化碳,在此时还会有小部分的一氧化硫转化为氰化硫,此时化学式表现如下:

C O + H2O → C O2+ H2

这是一个主要反应式,但是在主反应进行的同时,还有一部分副反应也会产生,生成甲醇的副产品,这些化学反应包括:

2C O + 2H2→ C O2+ C H

2C O → C + C O2

C O + 3H2→ C H4+ H2O

C O + H2→ C + H2O

C O2+ 4H2→ C H4+ 2H2O

C O2+ 2H2→ C + 2H2O

化学反应在化工产业中要求平衡,在主要变换的化学反应中是一种发散热量反应的类型,这里的化学反应会使煤气化后的温度降低,温度适当降低有利于化学反应的平衡作用,但是如果温度太低,就会导致化学反应时间过长,效率越低,当煤气化工段的生成气体慢慢消耗殆尽时,就会浪费前一道工段的时间和成本,造成浪费。同时,温度还与催化剂的适应性挂钩,如果温度没有调整到位,催化剂的效力就无法发挥到最大值,这就会造成碳氧分离程度不足,必须加大催化剂的剂量,这也会增加生产成本。

3甲醇生产中的注意事项

1.)气化压力的大小在其他的生产条件没有变化的情况下,如果改变气化压力,就会产生非常细微但是关键的变化。通常气压定格在2M Pa以上的范围时,在煤气化工段里基本上不会产生影响,但是如果气压低于2M Pa就会使气化炉的气化效果变低。所以,在煤气化工段中,一定要保证气化压力控制在2M Pa以上,而且可以视实际情况适当提高,这样可以增加气体数量,提高生产效率。

2.)氧气与煤量的比例氧煤比例的提高,指的是在煤炭中氧气流量的增多,直观反映为在煤炭高温加热时,煤炭的燃烧反应量明显提升。同时因为氧气流量的增加,使气化炉的温度也得以升高,煤炭的气化反应会更加强烈,一氧化碳和氢气的数量会增加不少,但是生成的气化产物中,二氧化碳和水分的含量占了很大比例,而一氧化碳和氢气的含量会变少,所以,如果不仔细控制氧煤比例,就会使气化炉中的气化反应过强而导致生产甲醇所需的气体成分变少。

4 甲醇生产工艺模拟

传统的烧煤方式已经不能满足人们对甲醇的需求量,而且单纯的燃烧煤炭既是对资源的浪费,也会造成环境污染。所以,当务之急是要尽快找到新的甲醇提取方法和更快捷有效的甲醇生产技术,在这方面,煤气化生产流程已经被初步运用于各大化工厂中,作为目前提取甲醇的有效方式,煤气化工段还需要更多的模拟和分析来增强其效率,简化其工序。

在模拟中我们假设煤浆和高压后的氧气依照固定比例放置在气化炉中,然后在高温作用下因气温及气压生成各种气体,其中包括一氧化碳、氢气、二氧化碳等,其中高压后的氧气进入气化炉可以通过设置烧嘴的中心管道和外环管道,而煤浆可以通过烧嘴的中环管道进入气化炉。在模拟环境下,我们还设置了激冷室,位于气化炉下段,激冷室主要是处理煤炭中的灰份。在煤气化工段进行到末尾后,会残留一些灰份物质,这些物质会在气化炉的高温中熔融,熔渣和热量汇聚,合成了气体,然后结合离开气化炉的燃烧室部分,经由反应室,进入气化炉下段的激冷室。这些气体在激冷室中将被极寒温度降低到200摄氏度左右,熔渣会立即固体化,然后生成大量的水蒸气,经水蒸气饱和后带走了灰份,从激冷室的排出口派排

出。

需要进行变换的水煤气在预热器中加入一部分进行换气和换热步骤,然后进入模拟的变换炉,这部分水煤气在经过煤气化工段后,自身携带了不少的水蒸气,变换炉中的催化剂进行催化作用进行变换反应,在第一部分结束后,另一部分的水煤气也进入变换炉,变换炉这时就会需要新的高温气体,模拟的变换工段里加入了预热装置,提前储存并加热生成高温气体,然后连入变换炉中与另一部分的水煤气进行变换反应,然后进入气液分离器进行分离,分离成功后的气体将进入低压蒸汽室内降温,再次进入气液分离器进行分离,再喷入冷水来清洗掉气体中的三氢化氮,最后气体进入净化系统,生产气态甲醇。

精馏工段的流程为四塔工作方式,首先甲醇气态材料在预热器中进行高温加热,再传输进预塔中部,在这里去除粗甲醇里的残留溶解气体与二甲醚等,这些属于低沸点物质。在加热后,气体进入冷却器进行气体降温,形成甲醇蒸气后进入预塔的回流管道。甲醇蒸气在经过回流后进入换热器,加热后进入加压塔,甲醇在加压塔中进行冷凝化处理,其中小部分送回加压塔顶部作为回流液。剩余的甲醇气体进入精度甲醇管道,最后由加压塔提供压力与热量,将冷凝的高精度甲醇视需求定制成液态或固态储存,然后将杂质或者甲醇残留物通过排污口排入废水处理器进行净化提取处理。

参考文献:

[1] 韩雅楠. 煤制甲醇的研究进展与发展前景分析 [J]. 中国科技投资. 2013(17) :229.

[2]刘喜宏.浅谈煤制甲醇的前景与工艺流程[J]. 中国石油和化工标准与质量 . 2013(10) :22.

[3] 陈倩,李士雨,李金来. 甲醇合成及精馏单元的能效优化[J]. 化学工程. 2012(10) :1-5.

[4] 金建德. 煤制甲醇工业装置工艺改造措施[J]. 天然气化工2011 36(3):67-69.

[5] 李雅静,张述伟,管凤宝等. 煤制甲醇过程低温甲醇洗流程的模拟与改造 [J]. 化工设计通讯. 2013(2) :15-18.

点击下页还有更多>>>煤化工生产技术论文

智研数据研究中心网讯: 内容提示:目前国内煤化工遍地开花的形势在“十二五”期间也有望得到抑制。“十二五”期间,我国现代煤化工以示范为主,并将严格限制煤炭调入地区发展煤化工。国际原油价格近期连续上涨,油价高涨也再度点燃了投资者对煤化工行业的投资热情。能源局有关领导和业内专家认为,“十二五”期间煤化工仍将以示范为主,不宜再现一哄而上。 油价上涨利好煤化工 NYMEX轻质原油近日达到88美元/桶,业内分析人士预期油价有望在未来两个月达到90美元,甚至100美元的高位。国际油价大涨带动其替代产业新型煤化工板块在二级市场走强,Wind数据显示,国庆节后,新型煤化工指数从点上升至点的历史新高。 海通证券认为,油价的上涨使得煤化工产品的成本优势得以显现,建议关注山西三维、中泰化学、丹化科技等煤化工公司。据其测算,当BDO价格上涨1000元/吨时,山西三维EPS将增厚元;当PVC价格上涨500元/吨时,中泰化学EPS有望增厚元。 事实上,不光是二级市场上煤化工概念火爆,目前各地规划的煤化工项目数量也非常惊人。去年5月,新型煤化工等五类示范工程被列入《石化产业调整和振兴规划》,而洁净煤利用作为煤化工的一部分,入围十大新兴能源产业之一,各地随后出现大量有关煤化工的项目规划。今年9月12日,联想控股也杀入该领域,与山东枣庄市政府签订战略合作协议,投资180亿元在枣庄建设百万吨烯烃及精细化工基地。 据原化工部副部长潘连生介绍,山西、内蒙古、宁夏、新疆等产煤区如果按照目前的规划来发展煤化工,至少需要三万亿的投资。 “十二五”示范为主 国家能源局煤炭司司长方君实日前则表示,煤化工是战略性行业,其发展需要分阶段。“十二五”期间,煤化工仍是处于示范阶段,大量推广还有一个过程。他认为,现在国际上石油的资源尚非常丰富,煤炭的转换效果如何还要经过示范,用煤炭去替代石油的经济型有待评价。现有的煤制油等煤化工工程“十二五”能发展到什么程度还不好说,企业现在需要做好的就是前期的准备工作。 潘连生则认为,国内煤化工产业发展形势有喜有忧。“我国煤化工发展的最成功之处在于坚持技术先行。煤制油、MTO技术的开发都是中科院30年前的决定,在细化技术上,中国开发了6-7种细化技术,有的已经可以与国外技术同台竞争。”潘连生表示。 而不足之处则是抢先发展。潘连生指出,我国煤化工出现了不顾原料、资源、市场需求、技术优劣等客观条件,出现了盲目发展的势头。据他介绍,如果按照目前这种速度发展,甲醇等七种最热的煤化工产品就需要亿吨原煤来满足煤化工项目需求,如果折算为4000大卡的煤炭,则需要亿吨,意味着我国煤炭将有三分之一用在煤化工上,这是做不到的。 潘连生表示,煤化工能否发展的制约因素不是有没有煤,而是有没有水,以水定发展。一吨煤制油需要13吨水,如果采取节能措施,可能降低到10吨左右,但投资将增加。他建议企业增加对产品市场的预测和对项目竞争力的评估。“目前国内煤化工产品结构雷同,市场饱和度已经十分明显。” 目前国内煤化工遍地开花的形势在“十二五”期间也有望得到抑制。工信部总工程师朱宏任表示,“十二五”期间,我国现代煤化工以示范为主,并将严格限制煤炭调入地区发展煤化工。智研数据研究中心( )提供行业市场研究报告,行业数据等内容。

煤的工业分析也称煤的实用分析、近似分析或技术分析,包括煤的外在水分、内在水分、全水分、分析煤样水分、灰分、挥发分、固定碳、全硫和各种硫及发热量等项目。作为校正挥发分、发热量和元素成分碳含量等需用的,碳酸盐中二氧化碳含量也属工业分析范围。一般把煤的水分、灰分、挥发分和固定碳称作煤的半工业分析,如包括硫分和发热量等分析项目,就称作煤的全工业分析。煤的工业分析是煤质分析中最基本的也是最重要的分析项目,因此凡是以煤为原料或燃料的工业部门都需要进行煤的工业分析。煤质分析化验分为两类,一类是测定煤所固有的成分如碳、氢、氧、氮等,称为元素分析,其测定结果是作为对煤进行科学分类的主要依据,在生产上,是计算发热量、热平衡、物料平衡的依据;另一类是在人为规定的条件下,(鹤壁市华诺电子科技有限公司)根据技术需要测定煤经转化生成的物质或呈现的性质如灰分、挥发分等,称作技术分, 根据水分、灰分、挥发分和固定碳含量四项基本测定结果,对煤中有机质、无机质的含量、性质等有了初步了解,并可初步判断煤的种类、加工利用效果及工业用途等。煤的工业分析是煤质分析中最基本的也是最重要的分析项目。

煤制甲醇合成工艺毕业论文

1、根据国情,从节能减排说起。 大家都清楚,我国的资源现状是:福煤贫油。如何充分利用资源优势,取得最大效益,是国家能源部门一直努力的问题。2、 煤制烯烃项目是国家新能源的发展方向。 传统上我国一直用石脑油催化裂解制烯烃,生产主要集中在中石化、中石油两大集团。如今,国内石油制烯烃已经不能满足需要,绝大部分烯烃直接来源于进口。为了改变现状,考虑新的技术支持和出路。利用煤质甲醇,搭建起煤和烯烃的桥梁。 甲醇可以作为烯烃的原料;而在我国,煤制甲醇在所制造甲醇方法中占有很大的比例(65%以上)。据统计, 2010年甲醇制烯烃项目,甲醇消费量仅有30万吨。意味着仅生产了10万吨乙烯。截止到2011年10月份,国内仅有三套烯烃装置已投产,分别是神华包头60万吨/年、神华宁煤52万吨/年和中原石化20万吨/年。后期计划建设的烯烃项目产能预计将会突破1800万吨。这是一个发展迅速、前景非常宏大的项目。3、甲醇制烯烃项目之所以以前没发展起来,本人想主要从项目投入考虑。一套100万吨装置,大概需要投入2300亿,成本高不是一般的企业能够承受。 在这里立足甲醇行业,仅仅为楼主展示一个课题的研究意义和目的。楼主如果论文写作完毕,希望有幸拜读一下。本人邮箱

煤化工是指以煤为原料,经化学加工使煤转化为气体、液体和固体燃料以及化学品的过程。下面是我整理了煤化工生产技术论文,有兴趣的亲可以来阅读一下!

煤化工及甲醇生产技术探索

摘要:甲醇是一种有机化工原料,它的用途非常广泛,普遍运用于燃烧材料、合成金属、工程涂料、医学消毒、日常生火等多个方面,在甲醇的制造方面,一般都遵循着煤气化碳――变换气体物质――精细蒸馏三大工序,在化工厂生产活动中一般将生产甲醇的工序称为“工段”。难点在于如何去调控操作所需的参数,本文通过对煤化工作的特性解析来引申出甲醇生产的要点,同时对生产技术进行一个流程上的模拟,更全面地去了解甲醇生产中需要多加注意的关键。

关键词:煤化工;甲醇;温度;化学反应;化学式

中图分类号:Q946文献标识码: A

1煤气化原理

在甲醇生产的流程中,煤气化是第一步,它是一种化学反应,将气化剂和煤炭资源中的可燃物质放置在一个高位环境下,然后使其发生中和反应,产生一氧化碳、氢气等可燃气体。在煤气化工段里使用的气化剂包括水蒸气、氧气等,在加入这些气化剂后,煤炭就会发生一系列化学反应,从而生成所需的气体。煤炭在加入气化剂后,经历了干燥、热裂解等热力反应,该反应中生成的气体包括一氧化碳、二氧化碳、氢气、甲烷等,这些化学反应的速度取决于煤气化工段中的温度、热压、气化炉质量以及煤炭的种类,以下是煤气化过程中会出现的化学式:

吸收热量:C - H2O → C O + H2C + C O2→ 2C O

发散热量:C + O2→ C O2C +12O2→ C O

变换反应:C O + H2O → C O2+ H2

从大体上来说,煤气化反应是化学中的强吸热效应,如果以动力和热力的角度来解析这类中和现象,重点在于对温度的把握,温度过高会造成气体流失,温度过低则无法产生完整的化学反应,导致生成的气体数量少、质量差。同时在增压方面应该适当地增加对煤炭的压力值,这样可以使化学反应的速度提高,对甲醇的生产效率起积极作用。

2变换工段

甲醇产品在合成时,一般调整碳元素与氢元素的比例的方法是通过一氧化碳的变换反应来实现的,在甲醇生产的流程中,碳元素与氢元素的分离都在催化剂的影响下进行,在此需要注意的是,碳氧分离工序对水蒸气的需求量相当大,水蒸气的生产成本在这道工段中会激增不少,所以,如何最大限度地利用水蒸气,节约生产成本,这将直接考验生产部门的气体生产技术和操作人员的工作效率。在变换工段中,煤气化之后的煤气物质含有大量的一氧化碳和水蒸气,在催化剂的效果影响到位之后,就可以生成氢与二氧化碳,在此时还会有小部分的一氧化硫转化为氰化硫,此时化学式表现如下:

C O + H2O → C O2+ H2

这是一个主要反应式,但是在主反应进行的同时,还有一部分副反应也会产生,生成甲醇的副产品,这些化学反应包括:

2C O + 2H2→ C O2+ C H

2C O → C + C O2

C O + 3H2→ C H4+ H2O

C O + H2→ C + H2O

C O2+ 4H2→ C H4+ 2H2O

C O2+ 2H2→ C + 2H2O

化学反应在化工产业中要求平衡,在主要变换的化学反应中是一种发散热量反应的类型,这里的化学反应会使煤气化后的温度降低,温度适当降低有利于化学反应的平衡作用,但是如果温度太低,就会导致化学反应时间过长,效率越低,当煤气化工段的生成气体慢慢消耗殆尽时,就会浪费前一道工段的时间和成本,造成浪费。同时,温度还与催化剂的适应性挂钩,如果温度没有调整到位,催化剂的效力就无法发挥到最大值,这就会造成碳氧分离程度不足,必须加大催化剂的剂量,这也会增加生产成本。

3甲醇生产中的注意事项

1.)气化压力的大小在其他的生产条件没有变化的情况下,如果改变气化压力,就会产生非常细微但是关键的变化。通常气压定格在2M Pa以上的范围时,在煤气化工段里基本上不会产生影响,但是如果气压低于2M Pa就会使气化炉的气化效果变低。所以,在煤气化工段中,一定要保证气化压力控制在2M Pa以上,而且可以视实际情况适当提高,这样可以增加气体数量,提高生产效率。

2.)氧气与煤量的比例氧煤比例的提高,指的是在煤炭中氧气流量的增多,直观反映为在煤炭高温加热时,煤炭的燃烧反应量明显提升。同时因为氧气流量的增加,使气化炉的温度也得以升高,煤炭的气化反应会更加强烈,一氧化碳和氢气的数量会增加不少,但是生成的气化产物中,二氧化碳和水分的含量占了很大比例,而一氧化碳和氢气的含量会变少,所以,如果不仔细控制氧煤比例,就会使气化炉中的气化反应过强而导致生产甲醇所需的气体成分变少。

4 甲醇生产工艺模拟

传统的烧煤方式已经不能满足人们对甲醇的需求量,而且单纯的燃烧煤炭既是对资源的浪费,也会造成环境污染。所以,当务之急是要尽快找到新的甲醇提取方法和更快捷有效的甲醇生产技术,在这方面,煤气化生产流程已经被初步运用于各大化工厂中,作为目前提取甲醇的有效方式,煤气化工段还需要更多的模拟和分析来增强其效率,简化其工序。

在模拟中我们假设煤浆和高压后的氧气依照固定比例放置在气化炉中,然后在高温作用下因气温及气压生成各种气体,其中包括一氧化碳、氢气、二氧化碳等,其中高压后的氧气进入气化炉可以通过设置烧嘴的中心管道和外环管道,而煤浆可以通过烧嘴的中环管道进入气化炉。在模拟环境下,我们还设置了激冷室,位于气化炉下段,激冷室主要是处理煤炭中的灰份。在煤气化工段进行到末尾后,会残留一些灰份物质,这些物质会在气化炉的高温中熔融,熔渣和热量汇聚,合成了气体,然后结合离开气化炉的燃烧室部分,经由反应室,进入气化炉下段的激冷室。这些气体在激冷室中将被极寒温度降低到200摄氏度左右,熔渣会立即固体化,然后生成大量的水蒸气,经水蒸气饱和后带走了灰份,从激冷室的排出口派排

出。

需要进行变换的水煤气在预热器中加入一部分进行换气和换热步骤,然后进入模拟的变换炉,这部分水煤气在经过煤气化工段后,自身携带了不少的水蒸气,变换炉中的催化剂进行催化作用进行变换反应,在第一部分结束后,另一部分的水煤气也进入变换炉,变换炉这时就会需要新的高温气体,模拟的变换工段里加入了预热装置,提前储存并加热生成高温气体,然后连入变换炉中与另一部分的水煤气进行变换反应,然后进入气液分离器进行分离,分离成功后的气体将进入低压蒸汽室内降温,再次进入气液分离器进行分离,再喷入冷水来清洗掉气体中的三氢化氮,最后气体进入净化系统,生产气态甲醇。

精馏工段的流程为四塔工作方式,首先甲醇气态材料在预热器中进行高温加热,再传输进预塔中部,在这里去除粗甲醇里的残留溶解气体与二甲醚等,这些属于低沸点物质。在加热后,气体进入冷却器进行气体降温,形成甲醇蒸气后进入预塔的回流管道。甲醇蒸气在经过回流后进入换热器,加热后进入加压塔,甲醇在加压塔中进行冷凝化处理,其中小部分送回加压塔顶部作为回流液。剩余的甲醇气体进入精度甲醇管道,最后由加压塔提供压力与热量,将冷凝的高精度甲醇视需求定制成液态或固态储存,然后将杂质或者甲醇残留物通过排污口排入废水处理器进行净化提取处理。

参考文献:

[1] 韩雅楠. 煤制甲醇的研究进展与发展前景分析 [J]. 中国科技投资. 2013(17) :229.

[2]刘喜宏.浅谈煤制甲醇的前景与工艺流程[J]. 中国石油和化工标准与质量 . 2013(10) :22.

[3] 陈倩,李士雨,李金来. 甲醇合成及精馏单元的能效优化[J]. 化学工程. 2012(10) :1-5.

[4] 金建德. 煤制甲醇工业装置工艺改造措施[J]. 天然气化工2011 36(3):67-69.

[5] 李雅静,张述伟,管凤宝等. 煤制甲醇过程低温甲醇洗流程的模拟与改造 [J]. 化工设计通讯. 2013(2) :15-18.

点击下页还有更多>>>煤化工生产技术论文

巨野煤田煤质分析及科学利用评价摘要]从工业、元素、工艺性质方面,对巨野煤田煤质进行了详细的分析,根据其煤质特点,进行科学论证,得出巨野煤田是优质动力用煤和炼焦用煤的结论,可以用来制备水煤浆,用于煤气化合成氨、合成甲醇及后续产品,用作焦化原料等。[关键词]煤质分析;煤质特点;科学利用;评价1巨野煤田煤质分析煤的工业分析工业分析是确定煤组成最基本的方法。在指标中,灰分可近似代表煤中的矿物质,挥发分和固定碳可近似代表煤中的有机质。衡量煤灰分性能指标主要有灰分含量、灰分组成、煤灰熔融性(DT、ST、HT和FT)。其中煤灰熔融性是动力用煤和气化用煤的重要性能指标。一般以煤灰软化的温度(即灰熔点ST)作为衡量煤灰熔融性的指标。龙固矿钻孔煤样工业分析结果(表1)变形温度(DT)为煤灰锥体尖端开始弯曲或变圆时的温度;软化温度(ST)为煤灰锥体弯曲至锥尖触及底板变成球形时的温度;半球温度(HT)为灰锥形变至近似半球形,即高约等于底长的一半时的温度;流动温度(FT)为煤灰锥体完全熔化展开成高度< mm薄层时的温度。彭庄矿钻孔煤样工业分析结果(表2)2煤质特点及科学利用评价巨野煤田煤质特点由煤炭科学研究总院《巨野矿区煤质特征及菜加工利用途径评价》可以看出巨野煤田煤质有如下特点:①灰分含量低,属于中、低灰煤层。②挥发分含量高,各煤层原煤的挥发分含量在33%以上,且差异不大,均属于高挥发分煤种。③磷含量特低;硫分含量上低下高。④干燥基低位热值高。各层煤的都比较高,且随原煤灰分的降低而升高。⑤粘结指数、胶质层厚度和焦油产率均较高。⑥碳、氢含量较高。碳含量在~之间,氢含量在~之间,C/H比值<16。⑦灰熔点上高下低。成浆性实验评价2008年1月,华东理工大学对巨野煤田龙固矿(1#)、赵楼矿(2#)和彭庄矿(3#)原煤进行成浆性实验及评价。成浆浓度实验成浆浓度是指剪切速率100 s-1,粘度为1 000 mPa·s,水煤浆能达到的浓度。采用双峰级配制浆,粗颗粒与细颗粒质量比为3∶7;选取腐殖酸盐作为添加剂,用量为煤粉质量的1%。制成一系列浓度的水煤浆,测量其流动性,观察水煤浆的表观粘度随成浆浓度上升的变化规律,结果如表10所示。由表10看出,随着煤浆浓度增大,煤浆表观粘度也明显升高。本实验3种煤样成浆浓度分别为龙固矿66%(wt);赵楼矿67%(wt);彭庄矿68%(wt)。流变性实验水煤浆流变特性是指受外力作用发生流动与变形的特性。良好的流变性和流动性是气化水煤浆的重要指标之一。将实验用煤制成适宜浓度的水煤浆,然后用NXS-4 C型水煤浆粘度计测定其粘度。将水煤浆的表观粘度随剪切变化的规律绘制成曲线,观察水煤浆的流变特性,见表11。从表11可以看出,3种煤制成的水煤浆中,随着剪切速率增大,表观粘度都随之降低,均表现出一定的屈服假塑性。屈服假塑性有利于气化水煤浆的储存、泵送和雾化。实验结论煤粉粗粒度(40~200目)和细颗粒(<200目)质量比为3∶7,腐殖酸盐作为添加剂,添加量为煤粉质量的1%时,龙固矿煤浆浓度为66%(wt)、赵楼矿煤浆浓度为67%(wt)、彭庄矿煤浆浓度为68%(wt),满足加压气流床水煤浆气化技术对水煤浆浓度的要求。原料煤的应用适合于制备水煤浆水煤浆不但是煤替代重油的首选燃料,而且是加压气流床水煤浆气化制备合成气的重要原料。同时它又是一种很有前途的清洁工业燃料。实践上,华东理工大学“巨野煤田原煤成浆性实验评价报告”表明:巨野煤田各矿井原料煤均适合于制备高浓度稳定水煤浆。用于煤气化合成氨、合成甲醇及后续产品巨野煤田原煤属于高发热量的煤种(弹筒热平均值在28~31 MJ/kg之间),该煤有利于降低氧气和能量消耗,并能提高气化产率;因灰熔点较高(>1 300℃),有利于固态排渣。根据鞍钢和武钢分别使用双鸭山和平项山1/3焦煤作高炉喷吹的经验,巨野煤田的1/3焦煤与双鸭山和平顶山1/3焦煤一样成浆性较好,其1/3焦煤洗精煤可以制成水煤浆,作为德士古(Texaco)水煤浆气化炉高炉喷吹用原料。煤气化得到的合成气既可通过变换用于合成氨/尿素,又可经净化脱硫合成甲醇或二甲醚。以甲醇为基础可进一步合成其他约120余种化工产品。另外,还可利用甲醇制备醇醚燃料及合成液体烃燃料等。用作焦化原料焦化用于生产冶金焦、化工焦,其副产焦炉煤气可用于合成甲醇或合成氨,副产煤焦油进行分离和深加工后可得到一系列化工原料及化工产品。由表12看出,巨野煤田大槽煤经过洗选以后,可以供将来的400万t/a焦化厂或者上海宝钢等大型钢铁企业生产I级焦炭时作配煤炼焦使用;灰分≤的8级精煤(2#),也可供华东地区的中小型焦化企业生产2级和3级冶金焦的配煤炼焦使用。此外,该煤也可以单独炼焦,但所生产焦炭的孔隙率偏高,最好进行配煤炼焦。远景目标———煤制油煤直接液化可得到汽油、煤油等多种产品。巨野煤田的大部分煤层均为富油煤,尤其是15煤层平均焦油产率>12%,属高油煤;根据元素分析计算的碳氢比各煤层均<16%;大部分煤层挥发分>35%的气煤和气肥煤通过洗选后的精煤挥发分>37%,而其灰分<10%。因此,巨野煤田的煤炭都是较好的液化用原料煤。煤间接液化可制取液体烃类。煤经气化后,合成气通过F-T合成,可以制取液体烃类,如汽油、柴油、石腊等化工产品及化工原料。3结语综上所述,巨野煤田第三煤层大槽煤属于低灰、低硫、低磷、结焦性好、挥发分高、发热量高的煤炭资源,其中的气煤、1/3焦煤、气肥煤、肥煤、天然焦等是国内紧缺的煤种,它们的洗精煤不仅可作为炼焦用煤、动力用煤,而且是制备水煤浆和高炉喷吹气化的重要原料。因此,菏泽大力发展煤气化合成氨和甲醇并拉长产业链搞深度加工是必然的正确选择。

  • 索引序列
  • 甲醇合成毕业论文
  • 甲醇的合成毕业论文
  • 甲醇合成工艺毕业论文
  • 煤制甲醇合成毕业论文
  • 煤制甲醇合成工艺毕业论文
  • 返回顶部