题目基于小波变换的图像去噪方法研究学生姓名陈菲菲学号 1113024020 所在学院物理与电信工程学院专业班级通信工程专业1 101 班指导教师陈莉完成地点物理与电信工程学院实验中心 201 5年5月 20日 I 毕业论文﹙设计﹚任务书院(系) 物理与电信工程学院专业班级通信 1 101 班学生姓名陈菲菲一、毕业论文﹙设计﹚题目基于小波变换的图像去噪方法研究二、毕业论文﹙设计﹚工作自 201 5年3月1日起至 201 5年6月20 日止三、毕业论文﹙设计﹚进行地点: 物理与电信工程学院实验室四、毕业论文﹙设计﹚的内容 1、图像处理中,输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。一般图像的能量主要集中在低频区域中,只有图像的细节部的能量才处于高频区域中。因为在图像的数字化和传输中常有噪声出现,而这部分干扰信息主要集中在高频区域内,所以消去噪声的一般方法是衰减高频分量或称低通滤波,但与之同时好的噪方法应该是既能消去噪声对图像的影响又不使图像细节变模糊。为了改善图像质量,从图像提取有效信息,必须对图像进行去噪预处理。设计任务: (1 )整理文献,研究现有基于小波变换的图像去噪算法,尝试对现有算法做出改进; (2 )在 MATLAB 下仿真验证基于小波变换的图像去噪算法。 2 、要求以论文形式提交设计成果,应掌握撰写毕业论文的方法, 应突出“目标,原理,方法,结论”的要素,对所研究内容作出详细有条理的阐述。进度安排: 1-3 周:查找资料,文献。 4-7 周:研究现有图像去噪技术,对基于小波变换的图像去噪算法作详细研究整理。 8-11 周: 研究基于小波的图像去噪算法,在 MATLAB 下对算法效果真验证。 12-14 周:分析试验结果,对比各种算法的优点和缺点,尝试改进算法。 15-17 周:撰写毕业论文,完成毕业答辩。指导教师陈莉系(教研室) 系( 教研室) 主任签名批准日期 接受论文( 设计) 任务开始执行日期 学生签名 II 基于小波变换的图像去噪方法研究陈菲菲( 陕西理工学院物理与电信工程学院通信 1 101 班,陕西汉中 72300 0) 指导教师: 陈莉[摘要] 图像去噪是信号处理中的一个经典问题, 随着小波理论的不断完善,它以自身良好的时频特性在图像去噪领域受到越来越多的关注。基于小波变换的去噪方法有很多
当前国内、外的研究动态从对图像进行滤波的过程中所采用的滤波方法来分,可分为空间域滤波、变换域滤波;从滤波类型来分,又可以分为线性滤波和非线性滤波。2002年和VetterliM.提出了一种“真正”的二维图像稀疏表达方法——Contourlet变换[7,8],这种变换能够很好的表征图像的各向异性特征。由于Contourlet变换能更好的捕获图像的边缘信息,因此选择合适的阈值进行去噪就能获得比小波变换更好的效果。Starck等人将Curvelet变换应用于图像的去噪过程中并取得了良好的效果[9],该方法虽然能有效的去除噪声,但往往会“过扼杀”Curvelet系数,导致在消除噪声的同时丢失图像细节。在过去的二十年里,自适应滤波器在通信和信号处理领域引起了人们的极大关注。TerenceWang等人针对二维自适应FIR滤波器提出了一种二维最优块随机梯度算法(TDOBSG)[10]。这种算法对滤波器的所有系数使用了空间可变的收缩因子。基于使后验估计方差矢量的二范数最小的最小方差准则,在块迭代的过程中选出最优的收敛因子。线性滤波器的最大优点是算法比较简单且速度比较快,缺点是容易造成细节和边缘模糊。在目前对非线性滤波器的研究中,中值滤波器有较明显的优势,很多科学工作者对中值滤波器作了改进或者提出了一些新型的中值滤波器。Loupas等人提出的自适应的加权中值滤波方法(AWMF),但他利用的Speckle噪声模型不够精确,图像细节损失较大[11]。针对中值滤波器在处理矢量信号存在的缺点,Jakko等人提出两种矢量中值滤波器[12]。近年来,小波分析是当前应用数学中一个迅速发展的新领域,它凭借其卓越的优越性,越来越多的被应用于图像去噪等领域,基于小波分析的图像去噪技术也随着小波理论的不断完善取得了较好的效果。上个世纪八十年代Mallet提出了 MRA(Multi_Resolution Analysis),并首先把小波理论运用于信号和图像的分解与重构,利用小波变换模极大值原理进行信号的奇异性检测,提出了交替投影算法用于信号重构,为小波变换用于图像处理奠定了基础[13]。后来,人们根据信号与噪声在小波变换下模极大值在各尺度上的不同传播特性,提出了基于模极大值去噪的基本思想。1992年,Donoho和Johnstone[14]提出了“小波收缩”,它较传统的去噪方法效率更高。“小波收缩”被Donoho和Johnstone证明是在极小化极大风险中最优的去噪方法,但在这种方法中最重要的就是确定阈值。1995年,Stanford大学的学者和提出了通过对小波系数进行非线性阈值处理来降低信号中的噪声[15,16,17]。从这之后的小波去噪方法也就转移到从阈值函数的选择或最优小波基的选择出发来提高去噪的效果。影响比较大的方法有以下这么几种:和提出的基于最大后验概率的贝叶斯估计准则确定小波阈值的方法[18];等在处理断层图像时提出了三种基于小波相位的去噪方法:边缘跟踪法、局部相位方差阈值法以及尺度相位变动阈值法[19];学者Kozaitis结合小波变换和高阶统计量的特点提出了基于高阶统计量的小波阈值去噪方法[20];等利用原图像和小波变换域中图像的相关性用GCV(generalcross-validation)法对图像进行去噪[21];和Woolsey等人提出结合维纳滤波器和小波阈值的方法对信号进行去噪处理[22],VasilyStrela等人将一类新的特性良好的小波(约束对)应用于图像去噪的方法[23];同时,在19世纪60年代发展的隐马尔科夫模型(HiddenMarkov Model)[24],是通过对小波系数建立模型以得到不同的系数处理方法;后又有人提出了双变量模型方法[25,26],它是利用观察相邻尺度间父系数与子系数的统计联合分布来选择一种与之匹配的二维概率密度函数。这些方法均取得了较好的效果,对小波去噪的理论和应用奠定了一定的基础。另外,尽管小波去噪方法现在已经成为去噪和图像恢复的重要分支和主要研究方向,但目前在另类噪声分布(非高斯分布)下的去噪研究还不够。目前国际上开始将注意力投向这一领域,其中非高斯噪声的分布模型、高斯假设下的小波去噪方法在非高斯噪声下如何进行相应的拓展,是主要的研究方向。未来这一领域的成果将大大丰富小波去噪的内容。总之,由于小波具有低墒性、多分辨率、去相关性、选基灵活性等特点[27],小波理论在去噪领域受到了许多学者的重视,并获得了良好的效果。但如何采取一定的技术消除图像噪声的同时保留图像细节仍是图像预处理中的重要课题。目前,基于小波分析的图像去噪技术已成为图像去噪的一个重要方法。
导言 损坏的图像往往是在其噪声采集和传输。例如在图像采集,其性能的影像传感器是受多种因素,如环境条件和质量检测的内容本身。例如,在获取图像的CCD相机,轻水平和传感器温度是主要影响因素的数量所产生的噪声的形象。图像传输过程中还损坏,由于干扰的频道用于传输。图像降噪技术,必须消除这种添加剂随机噪声,同时保留尽可能多的重要信号的功能。的主要目标,这些类型的随机噪声去除抑制噪声,同时保持原始图像的细节。统计过滤器一样平均滤波器[ 1 ] [ 2 ] , Wiener滤波器[ 3 ]可用于消除这种噪音,但基于小波变换的去噪方法更好的结果证明不是这些过滤器。一般来说,图像去噪规定之间的妥协,减少噪音和保护重要的图像细节。为了实现良好的性能在这方面,去噪算法,以适应图像的不连续性。小波代表性,自然有利于建设这种空间自适应算法。它压缩在一个重要信息信号转换成相对较少,大量系数,代表图像细节在不同的决议尺度。在最近几年出现了相当数量的研究小波阈值和阈值选取的信号和图像去噪[ 4 ] [ 5 ] [ 6 ] [ 7 ] [ 8 ] [ 9 ] ,因为小波提供了一个适当的基础分离噪音信号从图像信号。许多小波阈值技术一样VisuShrink [ 10 ] , BayesShrink [ 11 ]已经证明,效益较好的图像去噪。在这里,我们描述一个有效的阈值去噪技术通过分析统计参数的小波系数。本文安排如下:简要回顾了离散小波变换( DWT域)和小波滤波器银行第二节。小波阈值技术是基于解释第三节。在第四部分提出了新的阈值技术的解释。的步骤在此范围内工作的解释第五节第六节的实验结果这个拟议的工作和其他去噪技术是当前和比较。最后总结发言中给出了第七节。
1. 彭玉华,《小波分析与工程应用》(20万字),科学出版社,1999年2. Yuhua Peng, Wenbing Wang, The Applications of Wavelet Transform inElectromagnetic Object Detection, The Third International Symposium on Antennasand EM Theory, Session 9I, , September 6-9,1993,Nanjing, Peng, Wenbing Wang, “On the representations of Hankel integral operatorin bases of orthogonal wavelets”, Proceedings of the 1994international conference on computational electromagnetic and its applications,Session I,pp. 17-22, November 1-4,1994,Beijing, Qun, Peng Yuhua, Wang Wenbing , Xiao Yanming, “On the Use of Wavelet MOMto Solve the EFIE”, Journal of Systems Engineering and Electronics,, , 1997, . Yuhua Peng ,, De-noising by Modefied Soft Thresholding, ,IEEE APCCAS, Peng , Wavelet Transform Based Filter for Smoothing of Signals,International Conference on Computational Electromagnetic andIts Applications, , . 彭玉华,信号在多尺度空间的滤波, 通信学报,2000,. 彭玉华, 汪文秉, “小波用于估测散射波波达时间及去噪”, 电子学报,第24卷第4期, 96年4月,pp113-1169. 彭玉华, 董晓龙, 汪文秉, 高静怀, “小波变换在电磁场数值计算中的应用”, 电子学报,第24卷第12期, 96年12月,, (Engineering index 1997, 摘录)10. 彭玉华, 汪文秉, “应用小波变换于电磁场目标后向散射信号的时频图分析”, 电子学报,第23卷第9期, 95年9月, (Engineering index 1996, 摘录,)11. 彭玉华,汪文秉, Hankel积分算子在两种二维正交小波基下的展开, 电子学报,第27卷第6期,1999年6月, . 彭玉华,“基于离散正交小波变换的图像去噪方法”,中国图形图象处理学报, 第4卷第8期。13. 彭玉华, 傅君眉, “大的标准TEM小室内谐振频率的计算”, 电子科学学刊,第17卷第1期, 95年1月,. 彭玉华,姜响应,“基于连续小波变换(CWT)的汉语语音谱图”,信号处理, 1999, 第15卷第4期。15. 彭玉华,姜响应,张保轩,“小波预处理与语音识别”, 山东工业大学学报,第28卷第5期,1998年10月,。16. 彭玉华,“基于离散正交小波变换的图像压缩方法”,山东工业大学学报, 第29卷第4期。17. 朱雪田,彭玉华,, 低信噪比下的提高正弦波频率估计精度算法,, 电路与系统学报,2001,18. 许宏吉,彭玉华, 雷达双频信号提取自适应滤波器的设计, 电子技术, 2002年第6期19. 高静怀, 汪文秉, 朱光明,彭玉华,“地震资料处理中小波函数的选取研究”,地球物理学报,第39卷第3期,96年5月,. 王玉平,蔡元龙,彭玉华,“电磁后向散射数据的小波包变换分析”电子科学学刊,第18卷第5期,96年9月,。
matlab中文论坛 强烈建议你
导言 损坏的图像往往是在其噪声采集和传输。例如在图像采集,其性能的影像传感器是受多种因素,如环境条件和质量检测的内容本身。例如,在获取图像的CCD相机,轻水平和传感器温度是主要影响因素的数量所产生的噪声的形象。图像传输过程中还损坏,由于干扰的频道用于传输。图像降噪技术,必须消除这种添加剂随机噪声,同时保留尽可能多的重要信号的功能。的主要目标,这些类型的随机噪声去除抑制噪声,同时保持原始图像的细节。统计过滤器一样平均滤波器[ 1 ] [ 2 ] , Wiener滤波器[ 3 ]可用于消除这种噪音,但基于小波变换的去噪方法更好的结果证明不是这些过滤器。一般来说,图像去噪规定之间的妥协,减少噪音和保护重要的图像细节。为了实现良好的性能在这方面,去噪算法,以适应图像的不连续性。小波代表性,自然有利于建设这种空间自适应算法。它压缩在一个重要信息信号转换成相对较少,大量系数,代表图像细节在不同的决议尺度。在最近几年出现了相当数量的研究小波阈值和阈值选取的信号和图像去噪[ 4 ] [ 5 ] [ 6 ] [ 7 ] [ 8 ] [ 9 ] ,因为小波提供了一个适当的基础分离噪音信号从图像信号。许多小波阈值技术一样VisuShrink [ 10 ] , BayesShrink [ 11 ]已经证明,效益较好的图像去噪。在这里,我们描述一个有效的阈值去噪技术通过分析统计参数的小波系数。本文安排如下:简要回顾了离散小波变换( DWT域)和小波滤波器银行第二节。小波阈值技术是基于解释第三节。在第四部分提出了新的阈值技术的解释。的步骤在此范围内工作的解释第五节第六节的实验结果这个拟议的工作和其他去噪技术是当前和比较。最后总结发言中给出了第七节。
多图平均法跟多次测量取平均值差不多。多幅图像加权,噪声的强度下降。至于难点,应该是加权权值的选取,以及图像的多少。
低频就是颜色缓慢变化,也就是灰度缓慢地变化,就代表着那是连续渐变的一块区域。相反高频即灰度变化快,相邻区域的灰度差别大,例如边缘,噪点都是灰度变化快的区域。 图像平滑是要突出图像的低频成分、主干部分或抑制图像噪声和干扰高频成分的图像处理方法,目的是使图像亮度平缓渐变,减小突变梯度,改善图像质量。字面意思就是让图像上颜色灰度变化更光滑。我们也称图像平滑为图像模糊,因为在平滑的时候,也失去了尖锐的特点。 现实中的数字图像在数字化和传输过程中常受到成像设备与外部环境噪声干扰等影响,称为含噪图像或噪声图像。那么除去这些噪声的过程就是图像去噪。 均值滤波也成线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用原图像中某个像素临近值的均值代替原图像中的像素值。即滤波器的核(kernel)中所有的系数都相等,然后用该核去对图像做卷积。 基本和均值一样,即滤波器的核(kernel)中所有的系数都相等。但是它可以选择是否归一化,如果归一化,则和均值滤波毫无差别;若不选择归一化,则会导致像素点的值超过255,发生越界。 高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的,离得越近的像素点发挥的作用越大。 高斯核主要取决于σ。如果σ越小,高斯分布中心区域更加聚集,平滑效果越差;反之,则更离散,平滑效果越明显。 中值滤波器,使用滤波器窗口包含区域的像素值的中值来得到窗口中心的像素值。是一种非线性平滑滤波器。在去噪同时,较好的保持边缘轮廓细节,适合处理椒盐噪声,但对高斯噪声效果不好。 双边滤波器是一种可以保边去噪的滤波器,也是一种加权平均滤波器,与高斯滤波不同的是,其滤波核是由两个函数构成,一个函数是由几何空间距离决定滤波器系数,另一个由像素差值决定滤波器系数。 适合处理高斯噪声,但对椒盐噪声基本不起任何作用。
摘要:该实验中,根据各种地物特征在不同波段中表现出来的DN值的不同,我们通过人机互动的方式寻找各种地物特征DN值在遥感影像中的联系,通过这样一种联系,确定区分不同特征的阈值,达到分类的目的。同时,比较通过降噪处理之后的分类图与未经过降噪处理的分类图,寻求提高分类精度的方法。 关键词:Landsat 遥感 影像 分类 中图分类号:P23文献标识码:A文章编号:1007-3973(2012)007-109-02 1 影像DN值分析 遥感影像之所以能够表现出各种地物特征,是因为影像中每个像素点有着不同的DN值(Digital Number),为了对遥感影像进行阈值分类,首先我们要弄清各种地物特征在遥感影像处于什么样的位置,通常我们是要弄清楚遥感影像各地物特征的DN值在遥感影像全局里所处的区间,因此,我们首先要对遥感影像做DN值分析。我们选取2010年洋山港区域的Landsat-7ETM+卫星遥感图片作为研究对象,如图1所示。 这张图像具有Landsat-7ETM+所有波段的信息,我们使用的影响是Unsign-8byte图像,因此,图像里的DN值从0~255,影像是通过DN值的不同来表现出不同的特征,我们从影像的各DN值关系表1可以看出2010年洋山港地区的遥感影像9个波段的基本面貌。 利用阈值关系方法进行信息提取的方法非常容易实现, 我们利用各个通道DN值之间存在的关系,例如第5通道DN值小于20的,我们归类为水体,从而很轻松的将水体特征提取出来。但是在分类过程中,各种地物特征的提取并不是简单地依赖某一通道来完成的。 2 阈值分类算法和分类模型确定 通过对表1各类地物特征DN值关系分析表进行分析,我们可以看出,第五第八通道对水很敏感,光波被水吸收,所以DN值均小于20,这样我们只需要同通过这两个通道就能很好地将水体特征提取出来,而植被可以通过第一第二第三通道来提取,其他几个通道都存在其他地物特征与植被特征DN值重叠的现象因此,分类使用ETM+1,2,3,4即可解决植被分类的问题,人类活动在本次实验中遇到了比较棘手的问题,主要原因是人类活动不存在某一通道就可完全提取特征的DN值范围,每个通道,在区分各种地物特征时却不尽人意,往往是水体与人类混淆,或是植被与人类活动混淆,事实上,在实验的过程中,我们也发现,没有哪个通道可以将人类活动单独提取出来。所以我们需要引入数学上的一个概念,就是交集的概念,在处理人类活动特征时必需进行交集分析,但是对于真实人类活动的特征是存在交集,我们在阈值分析的过程中,发现1,2,3,4,9通道,人类和水体在分别大于68,79,75,50和35的值,可以归为人和水的共同类,而5,8通道,在DN值分别大于20和20的,可以归为人和植被的共同类,而这两大类之间的交集就是任内活动特征,于是,我们通过交集的概念可以很快将人类活动的特征提取出来。通过以上的阈值算法分析,我们需要建立本次实验的分类模型,我们选取对分类有用的通道,每种地物特征均采用交集处理以求得到最为匹配的分类结果图。分类模型示意图如图2所示。 利用阈值方法进行信息提取的方法非常容易实现, 仅用少量的人力物力, 可以达到预期的要求, 能够快速获得变化信息的区域。将以上的分类结果整合之后,我们得到了图3,2010年洋山港地区的分类结果图。 3 降噪处理 本次实验的目的是为了对上海市海岸带的遥感影像进行研究与分析,我们需要获得更为准确的分类图,这样才能为往后的生态评价计算提供良好的基础,而降噪处理作为遥感影像预处理三大过程(辐射校正,几何校正,降噪处理)之一,在本次实验中也得到应用,降噪处理是因为遥感影像信号在产生、传输、接收和记录的过程中,经常会受到各种大气效应和电离层辐射的影响,从而产生各种各样的噪声,当进行下一步的遥感影像的特征提取、信息分析和模式识别等处理时将会带来不同的影响,因此在这之前的遥感影像噪声去除是一个非常重要的预处理步骤。遥感影像中大多数像素的灰度值差别不大,正是由于这种灰度相关性的存在,所以一般遥感影像的能量主要集中在低频区域,只有影像的细节部分的能量处于高频区域。 进行遥感影像平滑的主要目的就是要消除或衰减影像上的噪声,也就是衰减高频分量,增强低频量。但是高频区域同样也包含着影像的细节能量,因此遥感影像在消减噪声的同时,对影像的细节也有一定的衰减作用。这一过程能够增强低频量,也就是说在分类的时候,能够获得更多完整连贯的地理特征板块,而这样的数据对于生态评价有着重要的意义。我们通过对2010年洋山港地区的卫星遥感图像进行降噪处理,降噪以后的图像与原图有着很明显的不同,影像边界变得平滑连贯,这位分类的过程提取大斑块有着明显地改善,如图3,图4所示而通过降噪处理之后的分类图与未进行降噪处理的分类图进行比较,可以看出两者在斑块完整度上,降噪以后的图像更有优势,但是降噪以后的分类效果如何,我们需要对这两幅图进行评价。 4 分类评价 经过DN值分析之后,我们对影响进行分类,分类的效果如何,需要一个分类标准,我们通过结合先验知识与实地测量数据所绘制的的标准分类图(图5)作为标准。用统计学理论描述分类效果可以采用线性关系回归系数评价法。 根据一阶线性回归分析数学方程(1) 线性回归系数 (1) 通过Erdas所具有的空间模型语言功能,我们通过编程很快计算出分类图3与标准分类的线性回归系数r=。而降噪处理之后的分类图4的线性回归系数R=。这说明两幅的线性回归情况很好,说明了阈值分类办法能够很好的提高遥感影像的分类精度。把降噪与未降噪的影像分类之后与标准图比较后发现,降噪后的图像比未降噪图像线性回归的更好,与标准图更为一致,从而更进一步地说明了经过降噪处理之后的遥感影像更有利于分类精度的提高。这样就说明我们的分类图与标准图之间具有很高的一致性,从而说明我的分类方法具有很高的可行性。 5 结论 利用阈值分析的分类方法,可以高效而又准确的进行遥感影像的分类,具有很高的线性回归系数r,本文通过对遥感影像各种地物特征DN值进行分析与讨论,找出不同地物特征DN之间的关系,为影像分类提供依据,基于DN值的影像分类技术与传统遥感影像分类技术相比,可以提高遥感影像分类的效率,对于遥感影像信息提取提供了有效的手段。通过降噪处理之后的遥感影像,分类效果更好。分类过程中我们也发现,分类的类别越少,遥感影像也越容易分类,这是因为由于分类类别的减少能够避免同物异谱,同谱异物现象的出现。因此,对于遥感影像较少类别分类的分类,基于DN值分析的分类方法为影像分类提供了有效的办法。 (基金项目:上海市科委重点项目(075105108)) 参考文献: [1]厉银喜,冯晓光,林友明.美国陆地卫星7号的数据产品分类和格式[J].遥感信息,2000(3):37-40. [2]黄剑玲,郑雪梅.一种基于边缘检测的图像去噪优化方法[J].计算机仿真,2009,26(11):260-261. [3]骆剑承,梁怡,周成虎.基于尺度空间的分层聚类方法及其在遥感影像分类中的应用[J].测绘学报,1999,28(4):319-324. [4]杨希华.遥感技术在黄土高原土地利用现状调查中的应用研究[J].环境遥感,1990(5):257-265.
摄影测量与遥感技术发展论文主要通过对摄影技术与遥感技术的发展进行了研究,并对其在各个方面的运用进行了论述。
摄影测量与遥感技术发展论文【1】
摘要:随着经济的不断发展,科学的不断进步,摄影测量与遥感技术因其运用范围广、作用大而走上了逐渐发展的道路,并且对国民经济生活起着重要的影响。
关键词:摄影测量;遥感技术;发展;应用
摄影测量与遥感技术被划分在地球空间信息科学的范畴内,它在获取地球表面、环境等信息时是通过非接触成像传感器来实现的,并对其进行分析、记录、表达以及测量的科学与技术。
3S技术的应用、运用遥感技术以及数字摄影测量是其主要研究方向。
在多个领域内都可以运用遥感技术与摄影测量,比如:自然灾害、勘查土木工程、监测环境以及国土资源调查等。
随着我国经济的不断发展,运用到遥感技术与摄影测量的领域也在逐渐的增多。
在人类认识宇宙方面,遥感技术与摄影测量为人类提供了新的方式与方法,也为人类对地球的认知以及和谐共处提供了新的方向。
遥感技术和摄影测量可以提供比例不同的地形图以服务于各种工作,并且还能实现基础地理信息数据库的建立;遥感技术与摄影测量与地图制图、大地测量、工程测量以及卫星定位等构成了一整套技术系统,是测绘行业的支柱。
一、摄影测量与遥感技术的发展
从摄影测量与遥感技术的发展来看,摄影测量与遥感技术在近30年的时间里已经涉及到城市建设、水利、测绘、海洋、农业、气象、林业等各个领域,在我国的经济发展中起着至关重要的作用。
摄影测量从20世纪70年代后期从模拟摄影中分离出来,并逐渐步入数字摄影阶段,摄影测量正在逐渐的转变为数字化测绘技术体系。
(一)摄影测量与遥感技术有利于推动测绘技术的进步
我国的摄影测量从上世纪70年代后期经历一个系统的转变。
在经历了模拟摄影测量以及解析摄影测量阶段之后,摄影测量终于步入了数字摄影测量的阶段,这也成为我国传统测绘体系解体,测绘技术新体系兴起的标志。
首先,从数字影像的类型来看,当前我国已经建立了数字栅格图、数字高程模型以及数字正射影像,土地利用与地名数据库也随之建立起来,摄影测量与数据库的多样性在一定程度上为生产运用提供了可能,从而进一步推动了测绘技术的发展。
其次,由于摄影测量与遥感技术的飞速发展,也逐渐被国家所重视,并利用这两项技术来完成了各种地理比例尺地形图的绘制。
此外,还推动了诸多具有全国界别的基础地理信息数据库的建立。
比如:比例尺级别为1:50000,1:1000000等的国家级地理信息数据库;除开国家级的,还有省级、县级等的地理信息数据库等。
(二)摄影测量与遥感技术有利于提升空间数据的获取能力
我国获取空间数据的能力在经过五十年的发展,有了较大的提升。
对具有自主知识产权的处理遥感数据平台进行了研发,从而推动了国产卫星遥感影像地面处理系统的建立,并在摄影测量方面积极进行研究和探索,为我国独立处理信息、获取观测体系的建立提供了坚实的基础。
首先,从获取数据的能力方面来看,传感器在国家863以及973计划的支持上成功被研制出来,成功发射了对地观测的包括通信卫星、海洋卫星、气象卫星以及资源卫星等五十多颗卫星,并推动了资源、风云、环境减灾以及海洋四大民用对地观测卫星体系的建立,实现了从太阳和地球同步轨道对地球多传感器、多平台的观测以及对地球表面分辨率不同的雷达和光学图像的获取,并将这些获取的数据用于对海洋现象、大气成分、自然灾害以及水循环等各个方面的监测。
其次,从数据储备方面来看,数据积累已经成功的覆盖了全国海域、陆地以及我国周围国家和地区的包括一千五百万平方公里的地球表面数据。
二、摄影测量与遥感技术在国民经济各项领域中的运用
(一)摄影测量与遥感技术在应对自然灾害中的运用
在发生自然灾害时,为了能够第一时间了解灾情的具体分布,获取高分辨率灾区遥感影像,可以采用低空无人遥感、航天、航空遥感等方式,对灾区原有的地理信息以及尺度进行整合,推动地理信息服务平台的建立,将多尺度影像地图制作出来,及时、有效的提供地理信息以及地图数据支持,为及时制定出应对自然灾害的措施提供了依据。
比如在汶川地震时,在灾区道路交通与通信严重受损的情况下,通过摄影测量与遥感技术在第一时间获取了灾区的详细信息与资料,并利用航空遥感技术和无人机连续、动态的实现对灾区的监测,并对道路交通以及房屋倒塌等情况进行分析,建立起灾区地理信息综合服务平台,将灾区的地理信息数据进行整合,比如水系、居民地以及交通等,为各级抗震救灾指挥部门作出正确的决策以及救援人员的搜救工作提供了及时有效的灾情信息。
在灾区的救援工作中,发挥着至关重要的作用。
(二)摄影测量与遥感技术在气象中的运用
在气象方面中,摄影测量与遥感技术主要运用在对各种气象灾害的.预报和监测两方面。
在热带天气系统的监测方面,气象卫星发挥着极其重要的作用,尤其是对于台风的预报和监测。
在我国的春、夏季中,雷雨、暴雨等作为多发性的灾害性天气,在监测和分析方面,如果运用常规的气象观测资料是非常困难的。
利用具有高空间分辨率和高时间密度特点的卫星云图以及卫星产品,可以对对流系统的演变、发生、移动以及发展过程进行全方位的监测,从而为对流天气的分析和提前预警提供了非常重要的信息。
三、结语
摄影测量与遥感技术的应用已经逐渐步入信息化阶段。
随着我国航空航天技术的不断发展,如何将各行各业的发展与摄影测量和遥感技术相结合从而推动我国经济的发展,已经成为未来摄影测量和遥感技术发展的主要方向。
【参考文献】
[1]张景雄.地理信息系统与科学[M].武汉:武汉大学出版社,2010:108―114
[2]张剑清.潘励.王树根.摄影测量学[M].武汉:武汉大学出版社,2009:89―93
[3]李德仁.王树根.周月琴.摄影测量与遥感概论[M].北京:测绘出版社,2008:131―137
[4]乔瑞亭.孙和利.李欣.摄影与空中摄影学[M].武汉:武汉大学出版社,2008:178―182
[5]窦超.李兆钧.浅谈摄影测量与遥感的发展应用[M].青海国土经略,2011(06):29―31
摄影测量与遥感技术的新特点及技术【2】
摘要:本文主要分析了近年来我国摄影测量与遥感技术表现出的许多新的特点,分别从航空摄影自动定位技术、近景摄影测量、低空摄影测量、SAR数据处理、多源空间数据挖掘等方面进行了总结与论述。
关键词:电子科技论文发表,科技论文网,自动定位技术,近景摄影测量,低空摄影测量,SAR数据处理,多源空间数据挖掘
前言:摄影测量与遥感是从摄影影像和其他非接触传感器系统获取所研究物体,主要是地球及其环境的可靠信息,并对其进行记录、量测、分析与应用表达的科学和技术。
随着摄影测量发展到数字摄影测量阶段及多传感器、多分辨率、多光谱、多时段遥感影像与空间科学、电子科学、地球科学、计算机科学以及其他边缘学科的交叉渗透、相互融合,摄影测量与遥感已逐渐发展成为一门新型的地球空间信息科学。
1、航空摄影自动定位技术
近年来,随着卫星导航和传感器技术的进步,遥感对地目标定位逐步摆脱了地面控制点的束缚,向少控制点甚至是无控制点的方向发展。
利用基于载波相位测量的GPS动态定位技术测定航空影像获取时刻投影中心的3维坐标,以此为基础研究了GPS辅助空中三角测量理论和质量控制方法,在加密区四角布设地面控制点的GPS辅助光束法区域网平差的精度可满足摄影测量规范的精度要求,大量减少了航空摄影测量所需的地面控制点。
研究成果已大规模用于国家基础测绘,产生了显著的社会和经济效益。
开展利用在飞机上装载IMU和GPS构成的POS系统直接获取航摄像片6个外方位元素的多传感器航空遥感集成平台研究,可实现定点航空摄影和无地面控制的高精度对地目标定位。
研究成果表明,在1:5万及以下比例尺的4D产品生产中,可直接使用POS系统测得的像片外方位元素进行影像定向,基本无需地面控制点和摄影测量加密,从而改变了航空摄影测量的作业模式,并使无图区、困难地区的地形测绘和空间信息数据的实时更新成为可能。
2、近景摄影测量技术
近景摄影测量的研究应用领域已涉及空间飞行器制造、航空工业、船舶工业、汽车工业、核能工业、化学工业以及医学、生物工程、公安刑事侦破、交通事故及其他事故现场处理、古建筑建档和恢复、大型工程建设监测等方面。
利用数字相机与实时数字近景摄影测量技术相结合建立相应的工业零件检测系统。
该类系统使用高重叠度序列图像作为影像数据源,利用较多同名特征的冗余观测值成功地进行粗差剔除,根据2维序列图像导出物体不同部位的3维信息,然后将这些3维信息融为统一的表面模型,实现了高精度3维重建。
利用数码相机与全站仪集成形成一个全新的测量系统——摄影全站仪系统。
尽管传统近景摄影测量近年来得巨大发展,但必须在被测物体表面或周围布设一定数量的控制点,摄影测量工作者心中的“无接触测量“没有真正实现。
全站仪作为一种高精度测量仪器在工程测量中被广泛接受,本质上它是一种基于”点“的测量仪器。
将它与基于”面“的摄影测量有机地结合起来,形成一个全新的测量系统——摄影全站仪系统。
在该系统中,量测数码相机安装在全站仪的望远镜上,测量时利用全站仪进行导线测量,在每个导线点利用量测数码相机对被测物体进行摄影。
每张影像对应的方位元素可以由导线测量与全站仪的读数中获取。
3、低空摄影测量技术
近年来随着低空飞行平台(固定翼模型飞机、飞艇、直升机、有人驾驶小型飞机)及其辅助设备的进一步完善、数码相机的快速普及和数字摄影测量技术的日趋成熟,由地面通过无线电通讯网络,实现起飞、到达指定空域、进行遥感飞行以及返回地面等操作的低空遥感平台为获取地面任意角度的清晰影像提供了重要途径。
建立基于无人驾驶飞行器的低空数字摄影测量与遥感硬件系统。
硬件平台包括无人驾驶遥控飞行平台,差分GPS接收机,姿态传感器,高性能数码相机和视频摄像机,数据通讯设备,影像监视与高速数据采集设备,高性能计算机等等。
需要深入研究无人驾驶飞行平台的飞行特性,并研制三轴旋转云台、差分GPS无线通讯、视频数据的自动下传、自动曝光等关键技术。
研究无人驾驶飞行平台的自动控制策略。
在飞行器上搭载飞控计算机,由差分GPS数据得到飞艇(相机)的精确位置,在此基础上对较低分辨率的视频序列影像进行匹配,结合姿态传感器的输出信号实时自动确定飞行器的姿态,从而进行飞行自动控制,并将所有数据同时下传到地面监控计算机。
研究多基线立体影像中连接点的多影像匹配方法与克服影像几何变形的稳健影像匹配方法。
数字表面模型与正射影像的自动获取及立体测图。
4、SAN数据处理技术
SAR成像具有全天时、全天候的工作能力,它与可见光红外相比具有独特的优势。
随着我国SAR传感器研制技术的进一步发展,先后研制了不同波段,不同极化方式,空间分辨率达到 In的传感器,并在SAR立体测绘方面设计了不同轨道和相同轨道的重复观测,为我国开展SAR技术的相关研究奠定了数据基础。
根据不同应用目的的SAR图像与可见光图像的融合。
利用SAR和可见光反映地物不同特性的特点,在提取不同土壤性质以及洪水监测和灾害评估方面采用不同的融合方法,取得了一定的理论成果,并完成了国家和部门的科研课题。
SAR图像噪声去除方法。
由于SAR的成像特点,造成了SAR图像的信噪比低,噪声严重。
提出了自适应滤波思想,基于图斑的去噪方法以及噪声去除方法的评价等。
机载和星载重复轨道的SAR立体测图技术以及星载的InSAR技术和D—InSAR的突破。
完成了星载InSAR生成DEM及D—InSAR形变检测的相关软件开发,利用极化SAR数据提取地物目标,开展极化干涉测量的研究。
5、多源空间数据挖掘技术
多源空间数据挖掘技术主要研究应用数学方法和专业知识从多源对地观测数据中,提取各种面向应用目的的地学信息。
从遥感图像数据中挖掘GIS数据。
在统计模式识别的基础上,通过神经网络、模糊识别和专家系统等技术实现图像光谱特征自动分类。
基于纹理分析的分类识别。
包括基于统计法的纹理分析、基于分形法的纹理分析、基于小波变换的纹理分析、基于结构法的纹理分析、基于模型法的纹理分析和空间/频率域联合纹理分析等。
遥感图像的解译信息提取。
把计算机自动识别出来的影像,结合GIS数据库或解译员的知识,确定其对应的地学属性。
包括基于GIS数据的图像信息识别、基于地学知识辅助的图像信息识别、基于专家知识辅助的图像信息识别、基于立体观察的图像信息识别、基于矢量栅格转化的信息提取和基于多源数据融合的信息识别等。
摄影测量与遥感的现状及发展趋势【3】
摘 要:随着信息时代的来临,人类社会步入全方位信息时代,各种新兴的科学技术迅猛发展,并广泛应用于人类生活中去。
摄影测量与遥感技术被广泛应用于我国测绘工作去,本文探讨了我国摄影测量与遥感的发展现状以及展望了发展趋势。
关键词:摄影测量;遥感;现状
随着信息时代的来临,人类社会步入全方位信息时代,各种新兴的科学技术迅猛发展,并广泛应用于人类生活中去。
摄影测量经历了模拟摄影测量、解析摄影测量和数字摄影测量三个阶段。
而在这期间,从遥感数据源到遥感数据处理、遥感平台和遥感器以及遥感的理论基础探讨和实际应用,都发生了巨大的变化。
数字地球(digitalearth)的概念是基于信息高速公路的假设和地理空间信息学的高速发展而产生的,数字地球为摄影测量与遥感学科提供了难得一遇的机会和明确的发展方向,与此同时,也向摄影测量和遥感技术提出了一些列的挑战。
而摄影测量和遥感学科是为数字地球提供空间框架图像数据及从数据图像中获得相关信息惟一技术手段
一、国内外摄影测量与遥感的现状
(一)摄影测量现状
摄影测量经历了漫长的发展过程,随着计算机技术以及自动控制技术的高数发展,进入20世纪末期的时候,基于全数字自动测图软件的完成,数字摄影测量工作站获得了迅猛发展并普遍存在于测量工作中。
进入21世纪后,科学技术的提升帮助摄影测量进入了数字化时代,数字摄影测量学学科与计算机科学有了大面积的知识交叉,摄影测量工具也变为较为经济的计算机输入输出设备,这种革命性的变革,使得数字摄影测量提升到了另一个台阶,数字摄影测量的语义信息提取、影像识别与分析等方面均产生了从质到量的变化。
目前我国各省测绘局均已广泛应用了数字摄影测量,建立了数字化测绘生产基地,实现了全数字化摄影测量与全球定位系统之间的有机合成,并且应用与测量实际工作中。
(二)遥感技术现状
目前遥感技术主要应用在日常的天气、海洋、环境预报及灾害监测、土地利用、城市规划、荒漠化监测、环境保护等方面,为社会带来了巨大的经济利益。
尤其要提出的是航天遥感,是利用卫星遥感获取各种信息是目前最有效的方法。
在实现数字地球概念,卫星遥感技术具有很重要的地位。
数字地球的实际意义就是将地球转为一个虚拟的球体,以数字形式来表达地球上的不同种类的信息,实现三维式和多分辨形式的地球描述。
数字地球是一个数量庞大的工程,从长远来看,信息量的更新一集信息的收取都需要卫星遥感技术提供可靠的信息源,换句话说,卫星遥感是实现数字地球的必要手段,也是其他手段不能够替代的。
二、摄影测量与遥感的应用与主要技术
(一)摄影测量与遥感在地籍测量中的应用
应用数字摄影测量与遥感模式进行地籍测量前景非常广阔。
航空航天事业的飞速发展,为高分辨率卫星遥感影像技术为空间地理信息提供主要的数据元。
主要以激光成像雷达、双天线SAR系统等三维数字摄影测量系统。
利用卫星遥感进行土地资源调查和土地利用动态监测,为快速及时的变更地籍测量做好参照,同时还能顺利的完成地籍线画图的测绘,还可以得到正射影像地籍图、三维立体数字地籍图等附属产品。
数字摄影测量主要以大比例尺航空像片为数据采集对象,利用该技术在航片上采集地籍数据,实行空三加密。
数字摄影测量与模式得到的地籍图信息丰富,实时性强;大部分工作均在室内完成,降低劳动强度与人工成本,还能大幅度提高工作效率,是一种非常实用的地籍测量模式。
(二)摄影测量在三维模型表面重建的应用
三维物体的重建技术可广泛应用于古建筑重建和文物保护、医学重建、工业量测、人脸重建、人体重建及程勘察等方面,这种技术主要通过手持量测数码相机进行操作,得到一组具有短基线和多度重叠的图片,通过立体匹配获取可靠的模型点数据。
基于短基线多影像数字摄影测量的快速三维重建技术能够解决静静摄影测量中不能同时兼顾变形早点近景和远景的问题,在操作过程中采用量测数码相机以及手持拍摄方式,使得这种技术简单快速,并且具有高度自动化的有点。
(三)遥感自动定位技术的应用
遥感自动定位技术能够确定影响目标的实际位置,并且准确的解译影响属性,在GPS空中三角测量的基础上,利用惯性导航系统,形成航空影响传感器,实现高精度的定点摄影成像。
在卫星遥感条件下,精度甚至可以达到米级。
遥感自动定位技术的应用,有助于实现实时测图和实时数据更新的作业流程,能够大量减少野外像控测量的工作量。
三、摄影测量与遥感发展展望
目前,摄影测量与遥感技术在数据获取与处理、信息服务和数据分析方面都有了新的进展,数据获取装备发展迅猛,数据处理系统自动化程度相应的提高,航空摄影测量软件实现模块化和标准化,实现了内外一体化的航空摄影测量方法,遥感影像信息管理能力增强。
除此之外,还可以看到测绘领域的全球化进程日益加剧。
四、结语
虽然现在摄影测量与遥感技术相对发展迅速,并且已经广泛应用与测绘工作中,逐步实现数字化与智能化。
在我国目前,摄影测量与遥感装备存在产品种类单一、生产效率低等实际生产问题,这是与飞速发展的信息产业背道而驰的,达不到国际水平。
需要国家发展测绘仪器制造业和专业软件开发能力,跨学科展开合作,集中优势力量,通过政府出台政策来引导市场发展,我国想要在摄影测量与遥感上取得更大的飞跃,还有一段很长的路要走。
参考文献:
[1]李德仁等.地球空间信息学与数字地球[C].空间数据基础设施与数字地球论文集,1999.
[2]刘经南.激光扫描测高技术的发展与现状[M].武汉大学学报,2003(2):132-137.
[3]郑立中,陈秀万.中国卫星遥感与定位技术应用的现状和发展[A].中国遥感奋进创新二十年学术论丈集[C].北京:气象出版社,2001.
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!
图像分割技术研究
摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。
关键词:图像分割、阈值、边缘检测、区域分割
中图分类号: 文献标识码: A
1引言
随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。
2图像分割方法
图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。
基于灰度特征的阈值分割方法
阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。
这类方法主要包括以下几种:
(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。
(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。
(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。
边缘检测分割法
基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。
基于区域的分割方法
基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。
区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。
结合特定工具的图像分割技术
20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。
基于数学形态学的分割算法
分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。
基于模糊数学的分割算法
目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。
这类方法主要有广义模糊算子与模糊阈值法两种分割算法。
(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。
(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。
基于遗传算法的分割方法
此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。
基于神经网络分割算法
人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。
图像分割中的其他方法
前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。
(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。
(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的
(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。
(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。
3图像分割性能的评价
图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。
4图像分割技术的发展趋势
随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。
参考文献
[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003
[2] 章毓晋.图像分割[M].北京:科学出版社,2001.
[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.
[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.
点击下页还有更多>>>图像分割技术论文
论文阅读笔记:图像分割方法deeplab以及Hole算法解析deeplab发表在ICLR2015上。论文下载地址:方法概述deeplab方法分为两步走,第一步仍然采用了FCN得到coarsescoremap并插值到原图像大小,然后第二步借用fullyconnectedCRF对从FCN得到的分割结果进行细节上的refine。下面这张图很清楚地展示了整个结构:然后这张图展示了CRF处理前后的效果对比,可以看出用了CRF以后,细节确实改善了很多:deeplab对FCN更加优雅的处理方式在第一步中,deeplab仍然采用了FCN来得到scoremap,并且也是在VGG网络上进行fine-tuning。但是在得到scoremap的处理方式上,要比原FCN处理的优雅很多。还记得CVPR2015的FCN中是怎么得到一个更加dense的scoremap的吗?是一张500x500的输入图像,直接在第一个卷积层上conv1_1来了一个100的大padding。最终在fc7层勉强得到一个16x16的scoremap。虽然处理上稍显粗糙,但是毕竟人家是第一次将图像分割在CNN上搞成end-to-end,并且在当时performance是state-of-the-art,也很理解。deeplab摒弃了这种做法,取而代之的是对VGG的网络结构上做了小改动:将VGG网络的pool4和pool5层的stride由原来的2改为了1。就是这样一个改动,使得vgg网络总的stride由原来的32变成8,进而使得在输入图像为514x514,正常的padding时,fc7能得到67x67的scoremap,要比FCN确实要dense很多很多。但是这种改变网络结果的做法也带来了一个问题:stride改变以后,如果想继续利用vggmodel进行finetuning,会导致后面filter作用的区域发生改变,换句话说就是感受野发生变化。这个问题在下图(a)(b)中通过花括号体现出来了:Hole算法于是乎,作者想出了一招,来解决两个看似有点矛盾的问题:既想利用已经训练好的模型进行fine-tuning,又想改变网络结构得到更加dense的scoremap.这个解决办法就是采用Hole算法。如下图(a)(b)所示,在以往的卷积或者pooling中,一个filter中相邻的权重作用在featuremap上的位置都是物理上连续的。如下图(c)所示,为了保证感受野不发生变化,某一层的stride由2变为1以后,后面的层需要采用hole算法,具体来讲就是将连续的连接关系是根据holesize大小变成skip连接的(图(c)为了显示方便直接画在本层上了)。不要被(c)中的padding为2吓着了,其实2个padding不会同时和一个filter相连。pool4的stride由2变为1,则紧接着的conv5_1,conv5_2和conv5_3中holesize为2。接着pool5由2变为1,则后面的fc6中holesize为4。代码主要是im2col(前传)和col2im(反传)中做了改动(增加了hole_w,hole_h),这里只贴cpu的用于理解:
具体指的什么?是原理啊还是编程实现?