中国网/中国发展门户网讯近期,中国科学院金属研究所沈阳材料科学国家研究中心卢磊研究员团队与国外合作者在高熵合金综合性能与独特变形机制研究方面取得重要进展,相关研究结果于9月23日在《科学》周刊上以First Release形式在线发布。 据悉,长期制约传统金属结构材料发展的“强度-塑性”倒置关系在高熵合金中普遍存在,原因是其塑性变形机制往往被认为与传统金属材料并无本质差别。因此,迫切需要借助新颖的微观结构构筑来揭示高熵合金是否具有独特变形机制,以丰富金属材料的有效强韧化策略。 中科院金属所研究人员通过一种简单、高效的小角度往复扭转梯度塑性变形技术,保持高熵合金棒材样品中的初始晶粒大小,但在晶粒内部成功引入百纳米尺度位错胞稳定结构,并实现了位错胞结构从样品表面至芯部的梯度序构分布和可控制备。拉伸结果表明:梯度位错胞结构不仅显著提高材料屈服强度,同时还使其保持良好的塑性和稳定的加工硬化。梯度位错结构高熵合金的强塑积-屈服强度匹配明显优于文献报道中相同成分的均匀或梯度结构材料。并进一步揭示了高熵合金特有的层错强韧化变形机理,这种层错强化完全不同于传统结构材料的全位错强化,而与高熵合金中空间波动的低层错能、纳米尺度位错胞结构以及梯度序构效应引起的复杂应力场密不可分。 该研究表明简单、易行的往复扭转梯度塑性变形技术可广泛用于梯度结构材料的构筑与制备,具有重要的基础研究和应用价值。 高熵合金中典型梯度位错结构。距离样品表面 mm内(A, B)以及芯部(G, H)的截面EBSD结果显示晶粒(形貌、尺寸、取向)以及内部位错结构在空间上的分布特征;(C)梯度位错胞结构示意图;(D-E)表层晶粒内典型位错胞TEM结果显示平均位错胞尺寸为200 nm,胞壁取向差介于 o o;(F)对应D图单个晶粒内跨过诸多位错胞的累积取向差仅为7o。 梯度位错结构高熵合金的力学性能和变形机制。(A)拉伸工程应力-应变曲线;(B)强塑积与归一化屈服强度曲线,表明梯度位错结构高熵合金的综合力学性能优于相同成分的其它均匀结构和梯度结构,同时也优于文献中其它梯度纳米晶和梯度纳米孪晶结构金属和合金;(C-D)拉伸应变为3%时典型变形结构的HAADF-STEM结果表明梯度位错结构的塑性变形通过独特的超高密度亚十纳米层错和少量孪晶界协调。
导读: 本文报道了Cr7Mn25Co9Ni23Cu36高熵合金(HEA)在热处理条件下的相分解以及二次相的形成对其拉伸力学响应的影响。显微组织分析表明,800 C 2 h和600 C 8 h的热处理会导致σ相的形成,但在600 及2h以下的热处理中没有观察到σ相。将实验观察到的热稳定性和相与计算的相图进行比较,并借助热力学和动力学进行合理化。基于从头计算讨论了相分解的机理,结果表明分解成两个固溶体相在能量上优于具有标称组成的单一固溶体相。
对于金属结构材料,实现强度和延展性的良好结合是一个重要目标。常用方法包括优化合金成分和控制加工路线。多主合金或高熵合金的发现拓宽了合金设计的领域,是材料领域的重要突破。
目前,已经使用了许多方法来开发具有良好性能的热等静压合金,其中,热处理是一种简单、有效和廉价的提高合金力学性能的方法。近年来,学者们热衷于研究热处理对某些合金的显微组织和力学性能的影响。结果表明,当温度从0 升至1000 时,无相分离发生,说明HEA在较宽的温度区间内具有良好的相稳定性。
近日,哈工大陈瑞润教授团队通过电弧熔炼设计和制备了Cr7Mn25Co9Ni23Cu36 HEA,其在室温和铸态下展现出非常好的强度和延展性组合,研究成果发表于金属顶刊《Acta Materialia》,以 “Experimental and theoretical investigations on the phase stability and mechanical properties of Cr7Mn25Co9Ni23Cu36 high-entropy alloy”为题。文中研究了200 1000 下热处理对合金显微组织和室温力学性能的影响,并将实验相组成和热稳定性与热力学计算进行比较。用计算相图法(CALPHAD)确定的生成吉布斯能分析了σ相和FCC相的稳定性。此外,讨论了高温下的相分解机理。
论文链接:
SEM和TEM图像显示,合金800 热处理2h时,形成了富Cr和富Co的σ相,这与CALPHAD的预测相吻合。
在 600 的温度下热处理的样品中没有观察到σ相,但通过CALPHAD进行了预测。这种差异和动力学因素有关,600 热处理时间的延长证实了合金的显微组织变化。
EMTO-CPA的计算结果表明,在低温和高温下,与名义成分的合金相比,分解体系(FCC_1和FCC_2)在能量上是优选的。
热处理温度从200 提高到600 ,屈服强度和抗拉强度分别从401 MPa提高到581 MPa,以及从700 MPa提高到829 MPa,同时,伸长率从35%降低到22%。这些变化归因于600 C热处理时纳米沉淀的细化。
由于屈服和极限抗拉强度分别下降至303 MPa和530 MPa,延展性降低至断裂应变的15%,因此800 C热处理导致断裂韧性下降,强度的显著降低是由于形成的σ析出物分布不均,尺寸无明显变化。σ相的形成对合金的拉伸力学性能是有害的。
研究背景
内容简介
基于此,近日香港理工大学黄勃龙和北京大学郭少军团队设计了一种新的通用低温方法,将多达八种金属元素合并到一个单相亚纳米带中,以获得世界上最薄的HEA金属材料。实验表明,超薄HEA亚纳米带(SNR)的合成过程包括:(1)通过不同金属前体与银纳米线模板之间的电交换反应形成不同的金属原子成核,(2)不同金属前体在纳米线模板上的共还原,以及(3)去除内部银核。密度泛函理论(DFT)计算表明,HEA SNR的结晶和稳定性强烈依赖于模板中的“高动态”Ag,HEA亚纳米带的结晶水平与Pt和Pd的浓度密切相关。目前的合成方法能够灵活控制HEA SNR中的组分和浓度,以实现HEA SNR库和优异的电催化性能。设计良好的HEA SNR在催化燃料电池氧还原反应方面有很大的改进,并且具有高放电容量、低充电过电位和优异的锂电池耐久性 氧气电池。DFT计算表明,HEAs中高浓度还原性元素具有很强的还原能力,而其他元素则保证了有效的电子转移。相关论文以“A General Synthetic Method for High-Entropy Alloy Subnanometer Ribbons”发表在J. Am. Chem. Soc.
本文亮点
1. 构建2D HEA SNR的一般合成路线,包括但不限于五元(PtPdIrRuAg)、六元(PtPdIrRuAuAg)、七元(PtPdIrRuAuRhAg)和八元(PtPdIrRuAuRhOsAg)SNR。
2. 合成机理研究表明,HEA SNR是通过(1)不同金属前驱体与银之间的电偶交换反应形成不同的金属原子成核而形成的纳米线模板,(2)不同金属前体在纳米线模板上的共还原,(3)去除内部银核。
3. 密度泛函理论(DFT)计算表明,银从模板上的最大迁移是保证HEA中其他金属元素稳定的基本因素。同时,钯和铂的浓度对于确定HEA的结晶水平至关重要。在催化应用方面,代表性的五元HEA SNR是碱性电解质中ORR的高效和稳定的电催化剂。
4. DFT计算证实,高动态还原元素(Pd、Pt、Ag、Au)的浓度对于实现HEA的优异电活性至关重要,相对惰性的氧化元素(Ir、Ru、Rh、Os)提高了站点到站点的电子转移效率,但可能导致局部聚集。
图文解析
TEM,HAADF-STEM,PXRD
HEA PtPdIrRuAg SNR的宽度为50 150 nm,长度可达数微米。HEA-PtPdIrRuAg SNR 的厚度确定为约 nm。所获得的 HEA-PtPdIrRuAg SNR 的PXRD结果表明HEA-PtPdIrRuAg SNR 采用无相偏析的 fcc 合金结构。EDS元素映射揭示了Pt、Pd、Ir、Ru和 Ag 元素在五元中的均匀分布。HEA-PtPdIrRuAg SNR 上表面原子排列的原子分辨率 HAADF-STEM 图像和相应的快速傅里叶变换(FFT)模式进一步证明HEA-PtPdIrRuAg SNR 采用 (001)面向fcc 的结构。来自 HEA-PtPdIrRuAg SNR 中各个选定区域的 (200) HEA 晶格说明所获得的五元 HEA 中的晶格畸变。
HAADF-STEM,PXRD
不同成分金属在模板上的可控成核和生长是通过湿化学合成中的电流交换途径和共还原过程实现的,脱合金策略实现了新型 HEA 的二维结构演化。HEA 合成方法是通用的,可用于制造具有 fcc 晶体结构的 六元HEA-PtPdIrRuAuAg SNR、七元 HEA-PtPdIrRuAuRhAg SNR和八元 HEA-PtPdIrRuAuRhOsAg SNR。此外,严重的晶格畸变以及8组分 HEA-PtPdIrRuAuRhOsAg SNR中的无序晶格可能会在一个原子平面上导致更多的原子堆垛层错,这会在不均匀的晶面上引起明显的 X 射线布拉格散射,导致八元 HEA 信噪比的PXRD 衍射峰强度减弱和变宽。
MD模拟
为了进一步了解HEAs的形成过程,通过MD模拟进行DFT计算。为了了解HEA形成过程中原子的动力学,他们比较了元素的均方位移(MSD)。金属原子在HEA形成过程中不断移动,MSD表示金属原子随时间相对于其原始位置的位置偏差。随着更多元素被引入HEA,整体MSD也增加,表明原子迁移行为更强,熵更高,不稳定性可能增加。在HEA形成过程中,Pd和Pt是决定HEAs结晶性的主要因素。Pd和Pt对HEA-SNR的形成有重要的促进作用,而其他金属对HEA-SNR的形成没有明显的影响。
电化学性能
在O2饱和的 M KOH 中 探索 了五元 HEA-Pt23Pd20Ir17Ru16Ag24SNR 的电催化 ORR 性能,并进一步与商业 Pt/C 进行了比较。HEA-PtPdIrRuAg SNRs/C 的半波电位 (E1/2) 为 V,而 ORR 的RHE远高于商业 Pt/C( V)。在 V 时,HEA-PtPdIrRuAg SNRs/C 的质量活度为 A mgPt-1和 A mgPGMs-1(Pt 族金属,PGMs),比商业 Pt/C 高出 和 倍( A mgPt-1)。经过 10000 次电位循环后,HEA-PtPdIrRuAg SNRs/C 的半波电位几乎没有变化,HEA-PtPdIrRuAg SNRs/C 的质量活度保持在 A mgPt-1和 A mgPGMs-1,在 10 000 个循环中分别比商业 Pt/C( A mgPt-1)高 倍和 倍。
电池性能测试
在 A g-1时,HEA-PtPdIrRuAuAg SNRs/C 在 A g-1 的电流密度下显示出 V 的低充电过电位和 5252 mAh g-1 的高放电容量。当放电容量在 A g-1 下固定为 1000 mAh g-1 时,HEA-PtPdIrRuAuAg SNRs/C 的充电过电位低至 V。随着电流密度从 增加到 A g-1,充电过电位仍低于 V(1000 mAh g-1 时为 V)。低充电电压也可以通过 mV s-1 从 到 V 的循环伏安法 (CV) 曲线来证明,其中 HEA-PtPdIrRuAuAg SNRs/C 在 V 处可见低氧化峰。该结果表明 HEA-PtPdIrRuAuAg SNRs/C 可以作为Li2O2分解的有效催化剂。基于 HEA-PtPdIrRuAuAg SNRs/C 的 Li-O2 电池在 A g-1 下具有 100 次循环的稳定耐久性。
DFT计算
用密度泛函理论(DFT)研究了HEAs的电子结构和电活性。结果表明 Pd、Pt、Ag 和Au 是实现具有强还原能力的稳定 HEA 的关键因素。同时,Ru、Ir、Rh和Os提高了电子转移能力。这两种金属之间的优化平衡导致 ORR 和 Li-O2 电池在五元和六元 HEA 中的卓越性能。除了Ir 和 Ru,Pt 显示出很高的键合可能性。特别是,Pt 和 Os 在相邻位置上是高度优选的。通过 DFT 在五元HEA-PtPdIrRuAg 和 六元HEA-PtPdIrRuAuAg 中进一步研究了 ORR 和 Li-O2 电池的性能。在 0 V 下,ORR过程显示出持续的下坡趋势。对于 Li-O2 电池,Li 到Li2O2 的放电过程显示出自发转化。
该研究主要计算及测试方法
做同步辐射 找易科研
做球差电镜 找易科研
做计算 找易科研
易科研 | 让你科研不再难
1、自我介绍:自我介绍作为答辩的开场白,包括姓名、学号、专业。介绍时要举止大方、态度从容、面带微笑,礼貌得体的介绍自己。克服紧张、不安、焦躁的情绪,自信自己一定可以顺利通过答辩。2、答辩人陈述自述的主要内容包括论文标题;课题背景、选择此课题的原因及课题现阶段的发展情况;有关课题的具体内容,其中包括答辩人所持的观点看法、研究过程、实验数据、结果;答辩人在此课题中的研究模块、承担的具体工作、解决方案、研究结果。3、提问与答辩答辩教师的提问安排在答辩人自述之后,一般为3个问题,采用由浅入深的顺序提问,采取答辩人当场作答的方式。4、总结答辩人最后纵观答辩全过程,做总结陈述,包括两方面的总结:毕业设计和论文写作的体会;参加答辩的收获。答辩教师也会对答辩人的表现做出点评:成绩、不足、建议。除去以上流程外,答辩还需要注意以下几点:一、提前准备讲稿;二、若学校要求准备演讲PPT,则需提前准备并演练,若学校不作要求,可不准备;三、最好穿正装,以示对老师的尊重。扩展资料毕业答辩中常见的问题:1、自己为什么选择这个课题?2、研究这个课题的意义和目的是什么?3、全文的基本框架、基本结构是如何安排的?4、全文的各部分之间逻辑关系如何?5、在研究本课题的过程中,发现了哪些不同见解?对这些不同的意见,自己是怎样逐步认识的?又是如何处理的?6、论文虽未论及,但与其较密切相关的问题还有哪些?7、还有哪些问题自己还没有搞清楚,在论文中论述得不够透彻?8、写作论文时立论的主要依据是什么?参考资料:百度百科-毕业论文答辩
个人觉得答辩是一种有组织、有准备、有计划、有鉴定的比较正规的审查论文的重要形式。为了搞好毕业论文答辩,在举行答辩会前,校方、答辩委员会、答辩者(撰写毕业论文的作者)三方都要作好充分的准备。毕业答辩记录是对毕业论文答辩会过程的记录。作毕业论文答辩记录有以下要点:1、答辩会时间、地点2、参加开题的专家(需详细标明单位、职称)3、答辩人、指导教师、题目:4、答辩人对论文的陈述:5、各位专家对报告的提问和答辩人回答情况记录:问题一:回答:问题二:回答:问题三……6、专家评价和结论:7、记录人
一、答辩时间、地点二、答辩人三、评委四、答辩论文题目五、答辩论文大致内容六、专家提问七、答辩人的回答根据经验,毕业论文答辩的时候,会有一张答辩记录表,需要你写上答辩过程中评审老师提到的问题、你是如何作答的,以及论文还有哪些地方需要改进。毕业论文答辩是一种有组织、有准备、有计划、有鉴定的比较正规的审查论文的重要形式。为了搞好毕业论文答辩,在举行答辩会前,校方、答辩委员会、答辩者(撰写毕业论文的作者)三方都要作好充分的准备。在答辩会上,考官要极力找出来在论文中所表现的水平是真是假。而学生要证明自己的论点是正确的。望采纳!
答辩记录表的写法:
(1)论文标题。向答辩小组报告论文的题目,标志着答辩的正式开始。
(2)简要介绍课题背景、选择此课题的原因及课题现阶段的发展情况。
(3)详细描述有关课题的具体内容,包括答辩人所持的观点看法、研究过程、实验数据、结果。
(4)重点讲述答辩人在此课题中的研究模块、承担的具体工作、解决方案、研究结果。
(5)侧重创新的部分。这部分要作为重中之重,这是答辩教师比较感兴趣的地方。
(6)结论、价值和展望。对研究结果进行分析,得出结论;新成果的理论价值、实用价值和经济价值;展望本课题的发展前景。
(7)自我评价。答辩人对自己的研究工作进行评价,要求客观,实事求是,态度谦虚。经过参加毕业设计与论文的撰写,专业水平上有哪些提高、取得了哪些进步,研究的局限性、不足处、心得体会。
论文答辩的一般程序:
1、学员必须在论文答辩会举行之前半个月,将经过指导老师审定并签署过意见的毕业论文一式三份连同提纲、草稿等交给答辩委员会,答辩委员会的主答辩老师在仔细研读毕业论文的基础上,拟出要提问的问题,然后举行答辩会。
2、在答辩会上,先让学员用15分钟左右的时间概述论文的标题以及选择该论题的原因,较详细地介绍论文的主要论点、论据和写作体会。
导读: 本文报道了Cr7Mn25Co9Ni23Cu36高熵合金(HEA)在热处理条件下的相分解以及二次相的形成对其拉伸力学响应的影响。显微组织分析表明,800 C 2 h和600 C 8 h的热处理会导致σ相的形成,但在600 及2h以下的热处理中没有观察到σ相。将实验观察到的热稳定性和相与计算的相图进行比较,并借助热力学和动力学进行合理化。基于从头计算讨论了相分解的机理,结果表明分解成两个固溶体相在能量上优于具有标称组成的单一固溶体相。
对于金属结构材料,实现强度和延展性的良好结合是一个重要目标。常用方法包括优化合金成分和控制加工路线。多主合金或高熵合金的发现拓宽了合金设计的领域,是材料领域的重要突破。
目前,已经使用了许多方法来开发具有良好性能的热等静压合金,其中,热处理是一种简单、有效和廉价的提高合金力学性能的方法。近年来,学者们热衷于研究热处理对某些合金的显微组织和力学性能的影响。结果表明,当温度从0 升至1000 时,无相分离发生,说明HEA在较宽的温度区间内具有良好的相稳定性。
近日,哈工大陈瑞润教授团队通过电弧熔炼设计和制备了Cr7Mn25Co9Ni23Cu36 HEA,其在室温和铸态下展现出非常好的强度和延展性组合,研究成果发表于金属顶刊《Acta Materialia》,以 “Experimental and theoretical investigations on the phase stability and mechanical properties of Cr7Mn25Co9Ni23Cu36 high-entropy alloy”为题。文中研究了200 1000 下热处理对合金显微组织和室温力学性能的影响,并将实验相组成和热稳定性与热力学计算进行比较。用计算相图法(CALPHAD)确定的生成吉布斯能分析了σ相和FCC相的稳定性。此外,讨论了高温下的相分解机理。
论文链接:
SEM和TEM图像显示,合金800 热处理2h时,形成了富Cr和富Co的σ相,这与CALPHAD的预测相吻合。
在 600 的温度下热处理的样品中没有观察到σ相,但通过CALPHAD进行了预测。这种差异和动力学因素有关,600 热处理时间的延长证实了合金的显微组织变化。
EMTO-CPA的计算结果表明,在低温和高温下,与名义成分的合金相比,分解体系(FCC_1和FCC_2)在能量上是优选的。
热处理温度从200 提高到600 ,屈服强度和抗拉强度分别从401 MPa提高到581 MPa,以及从700 MPa提高到829 MPa,同时,伸长率从35%降低到22%。这些变化归因于600 C热处理时纳米沉淀的细化。
由于屈服和极限抗拉强度分别下降至303 MPa和530 MPa,延展性降低至断裂应变的15%,因此800 C热处理导致断裂韧性下降,强度的显著降低是由于形成的σ析出物分布不均,尺寸无明显变化。σ相的形成对合金的拉伸力学性能是有害的。
层错是晶体面序列上的不规则性。因此,晶体基态结构中的层错与过剩的能量有关,称为层错能(SFE)。
在此,来自美国俄亥俄州立大学的Maryam Ghazisaeidi等研究者,重新讨论了层错能(SFE)的意义和致密合金中晶格位错平衡解离的假设。相关论文以题为“Stacking fault energy in concentrated alloys”发表在Nature Communications上。
论文链接:
SFE测量了相对于另一个原子平面的剪切能量成本,因此,直接与晶体对变形的响应有关。根据Frank法则,在晶格位错分解为部分位错以降低弹性能的过程中,会产生层错。因此,层错区域的大小(部分位错之间的距离),是由部分位错之间的排斥性弹性相互作用和它们之间产生层错的能量之间的平衡所决定的,即SFE。 在面心立方(fcc)晶体中,SFE和位错的解离宽度会影响位错的迁移率、交叉滑移的能力和孪晶的形成,所有这些因素都决定着晶体的力学行为。
通过合金化引入化学变化,进一步影响SFE,进而影响力学响应。在fcc晶体中,层错区域以部分位错为界,由两个具有六方致密排列(hcp)结构的原子平面组成。Suzuki等人研究表明,该区域溶质的平衡浓度可能与平均体积浓度不同。溶质向或从层错区偏析或耗尽,改变了SFE,进而影响位错行为。而这种现象,已在许多合金体系中广泛观察到。
随着合金的成分变得更加复杂,例如,在不锈钢或高温合金中,SFE的合金化效应,在决定相互竞争的变形机制中起着更加突出的作用。例如,钢中马氏体相变和机械孪生等二次变形模式的激活均与SFE直接相关。随着SFE的减小,变形机制由位错滑移向位错滑移和孪晶(孪生诱导塑性效应或TWIP效应)转变为位错滑移,γfcc转变为ϵhcp马氏体相变(相变诱导塑性效应或TRIP效应)。
高熵合金(HEAs)将成分的复杂性带到一个新的极端。HEAs是等浓度或接近等浓度的多组分合金,其中溶质和溶剂的概念不存在。在这种情况下,SFE很可能受到局部原子构型的影响,因为一些原子键比其他原子键更难打破。Smith等人观察了CoCrNiFeMn中层错宽度沿位错线的局部变化,证明了HEAs中局部效应的重要性。
但在这里,有两个基本问题急需解决:(1)SFE还能被认为是晶体特有的固有属性吗?(2)解离距离和位错迁移率仍然受SFE控制吗?
鉴于此,研究者使用NiCo系统模型进行了计算演示,该模型完全可混溶,可以检测一系列成分和温度。此外,hcp和fcc的有利度以及SFE的符号可以通过改变成分来调整。此外,该体系不容易形成SRO,因此,可以将这种效应从随机合金中仅由成分波动引起的效应中分离出来。
研究表明,SFE在纯金属中具有独特的价值。然而,在超过稀释极限的合金中,SFE值的分布取决于局部原子环境。通常,部分位错之间的平衡距离是由部分位错之间的排斥性弹性相互作用和SFE的唯一值之间的平衡决定的。这种假设被用来从金属和合金中位错分裂距离的实验测量来确定SFE,通常与计算预测相矛盾。研究者在模型NiCo合金中使用原子模拟,研究了在具有正、零和负平均SFE的成分范围内的位错解离过程,令人惊讶的是,在所有情况下,在低温下都能观察到稳定的、有限的分裂距离。然后,研究者计算了去相关应力,并检查了部分位错的力平衡,考虑了对SFE的局部影响,发现即使SFE分布的上界在某些情况下也不能满足力平衡。此外,研究者还证明了在浓固溶体中,位错与局部溶质环境相互作用产生的阻力,成为作用于部分位错的主要力。在这里,研究者证明了高溶质/位错相互作用的存在,而这在SFE的实验测量中是不容易测量且容易忽略的,从而使得SFE的实验值不可靠。(文:水生)
图1 等原子CrCoNi介质熵合金离解位错的表征。
图2 晶格位错离解过程中能量的示意图变化。
图3 NiCo随机合金中边缘位错的解离。
图4 解离过程中作用在肖克利部分位错上的力。
图5 NiCo随机合金有限温度fcc-hcp自由能与局部层错能的比较。
图6 NiCo随机合金中边缘位错的去相关过程。
图7 fcc Co中存在部分位错的Ni溶质相互作用能图。
图8 溶质/位错相互作用的估计。
图9 解离过程中作用在肖克利部分位错上的各种力的图解演示。
1、高熵合金元素使用概述 2、高熵合金的腐蚀行为 3、几种制备高熵合金的方法 基于组成元素,研究者将目前己有的高熵合金分成七大类,包括 3d过渡族高熵合金 、 难熔金属高熵合金 、 轻金属高熵合金 、 镧系高熵合金 、 青铜和黄铜高熵合金 、 贵金属高熵合金 、 间隙化合物高熵合金 ,其中前两类高熵合金的研究较为广泛。 定义 :3d过渡族高熵合金在高熵合金家族中占据了半壁江山,主要组成元素为 Co、Cr、Cu、Fe、Mn、Ni、Al、Ti和V ,绝大多数FCC单相固溶体高熵合金属于3d过渡族高熵合金体系,但随着BCC稳定元素的加入,合金体系会从单相FCC向FCC+BCC双相转变,最终可获得单相BCC合金。 举例 :在AlxCoCrCuFeNi合金体系中当x=0.5时,枝晶臂和枝晶间均为FCC相,当提高A1含量至x=1.0时,在等原子比合金的枝晶臂中出现BCC相,而枝晶间则为FCC+BCC双相结构,进一步提高A1含量至x=2.0,BCC相的相对含量进一步提升。相组成比例的改变带来的是合金硬度等本征性能的改变(维氏硬度自约200Hv上升至约560Hv),进而带来耐磨性等使役性能的提升,这很好地体现出材料研究中成分-结构-性能-使役性能的调控思想。 定义: 难熔高熵合金的主要组成元素为Hf、Mo、Ta、Zr、Ti、Nb、W、V和Cr,另外也会根据性能需求加入Si或 Al 等非难熔元素。 特点:一方面,难熔高熵合金的研究着眼于新型高温结构材料的应用前景,其合金元素的熔点( 2128 - 3695K )、质量密度(- g/cm3)和杨氏模量(68-411GPa)均为研究者提供了广阔的选择空间。另一方面,Wu等发现在 HfNbTiZr 等原子比体系中,仅通过固溶强化获得的单相BCC合金即可具有 ~879MPa 的屈服强度和%的延伸率,因而相较于Nb基合金而言具有更好的耐磨性和更低的摩擦系数,这表明难熔高熵合金体系具有工程应用的可能性。而Ti、Zr、Nb、Ta的组合更倾向于形成单相固溶体,有助于合金力学性能的优化。 1、对于3d过渡族高熵合金而言,其耐蚀性主要源于Cr、Al及Ti元素的添加,在表面形成钝化膜,抑制腐蚀的进一步发生。这与传统金属如不锈钢等非常相似,其本质是依靠可纯化组元去保护不可钝化的组元。如Chen等研究了高熵合金在模拟海水及酸雨中的腐蚀与磨损行为,其结果表明合金表面所形成的 Al2O3 和 Cr2O3 钝化膜在腐蚀磨损的过程中起到重要的保护作用。 2、而多数难熔高熵合金的组成元素本身在工作介质中就可以形成稳定纯化膜,如Ta、Nb、Zr、Ti等,所以难熔高熵合金在工作介质中将处于各组元竞争形成氧化膜的情况,并没有哪种组元会出现严重的活性溶解,因而其耐蚀性要更加优异,特别是针对于生物医用等对于腐蚀速率更为敏感的应用背景中。 Motallebzadeh等研究了 TiZrTaHfNb 和 Zr 高熵合金在PBS溶液中的电化学行为,其结果表明,由于表面钝化膜的保护作用,这两种高熵合金表现出高于316L不锈钢、CoCrMo和Ti6 Al4V的极化电阻,且在线性扫描中其纯化平台可延伸至1800mV Ag/AgCl,没有发生点蚀且腐蚀电流密度低于Ti合金等传统医用金属。其表面钝化膜的主要成分为Ti02,Zr02,HfO2,Nb205和Ta205。相近的结果见于Chen等对TiTaHf中熵合金的研究中,该合金在SBF溶液中浸泡7天后,XPS结果表明其表面钝化膜主要成分为Ti02,Zr02和Ta205,这种等原子比合金表面所形成的混合氧化物膜的腐蚀抗性要优于组元种类相近的传统合金,如TilOTa6Nb合金。 电弧炉 :电弧炉(electric arc furnace)利用电极电弧产生的高温熔炼矿石和金属的电炉。气体放电形成电弧时能量很集中,弧区温度在 3000℃ 以上。对于熔炼金属,电弧炉比其他炼钢炉工艺灵活性大,能有效地除去 硫 、 磷 等杂质,炉温容易控制,设备占地面积小,适于优质合金钢的熔炼。 缺点 : 1、电弧熔炼可能并不适用于熔点较低的元素(如Mg、Zn 和Mn),因为这些元素容易蒸发,不易控制其成分,它们可以考虑电阻加热或感应加热。 2、传统熔炼方式制备HEA时容易产生孔洞、组织疏松、晶粒粗大、成分偏析等缺陷,这些都显著降低了HEA的耐蚀性。定义 :激光熔覆工艺具有加热、冷却快,熔覆层均匀致密、显微缺陷少等优点,此外还很容易实现微熔覆,对基体的热影响很小。该技术类似于等离子喷涂,不同的是它使用一个集中的激光束作为热源。这种技术通常会产生冶金结合,具有优于等离子喷涂的粘结强度。 优点 :突出优点是激光束可以聚焦并集中在一个很小的区域,这使得基板的热影响区非常浅,从而最大限度地减小了基板材料破裂、变形或变化的可能性。 定义 :磁控溅射是一种物理气相沉积(PVD)技术,广泛应用于各种金属、半导体、绝缘体等单层或复合薄膜材料的制备,具有设备简单、易控制、涂层面积大、附着力强等优点。 缺点 :采用磁控溅射制备HEA 涂层时,虽然涂层结构连续性及致密性较好,沉积快而基体升温慢,容易控制涂层的性能及厚度,但是靶材利用率较低,涂层厚度也受到限制,因此目前采用磁控溅射制备耐蚀性HEA 涂层也有一定的局限。 优点 :电沉积技术具有耗能低、操作简单、选择性好、环境污染小等优点,可在金属部件表面镀覆一层防腐蚀性镀层。镀层的基本要求是厚度均匀、致密,且与基体材料结合良好。在电沉积过程中,电解液成分及其浓度,以及温度、pH、电流密度、时间等参数均可精确控制。 缺点 :目前采用电沉积工艺制备高熵合金涂层的研究比较少,这主要是由于HEA 中元素的电负性差异大,造成HEA 中的成分较难控制,同时由于受电镀液传质的影响,镀层容易产生裂纹,从而影响涂层的耐蚀性。 参考文献: [1]宋芊汀. (TiZrNbTa)_(90)Mo_(10)高熵合金的腐蚀与磨损行为[D].中国科学技术大学,2020. [1]龙琼,胡素丽,黎应芬,李娟,龙绍檑.高熵合金耐蚀性研究的现状及最新进展[J].电镀与涂饰,2020,39(04):231-240.
科研出版社,这个出版社很多英文期刊都还不错,你可以试试,希望能帮到你
JISSR IJPEE他们家好像现在又有12个英文国际期刊可以知网检索了,只需要800块,一篇。一个月就能知网检索到了。快的很你可以上他们的网站上看看,直接百度搜索JISSR 或者IJPEE就行了
我今年4月发了一篇《International Education And Development》,前一段时间刚收到的书,国内的知网也有收录,一年4期,还有纸质期刊,看着质量不错。我投的这个邮箱,你可以试试。
有啊,多着:英语世界、英语广场、英语沙龙、疯狂英语、英语周刊、英语画报
先根据自己论文的水平先粗选几种期刊,粗选期刊时要考虑期刊的影响力
金融类期刊,一般和经济相关,经济类期刊的刊号尾数一般是F,所以你发这些期刊没有问题,我是发的电脑方面的,在GO期刊网发表的,那里应该有金融相关的吧
那就是经济管理类的论文了哦,经济类核心的刊物还是比较多的,不比工科类的数的过来的也就那么几本。看你的情况,建议你还是先确定自己的研究方向,之后按照研究方向(比如人力资源,财务管理,项目管理等等)再有针对性的选择刊物,08北大中文核心期刊目录里收录的还是很全的,当然也得看期刊的其他情况,如是基础理论研究的还是应用的,主办方是什么机构,审稿周期一般多长时间,有没有你所研究的方向的版块之类的。半年类发表你要是自己没有文章,现在着手去做时间会有些赶,如果自己可以做那就自己去做;如果做不了找一个论文发表代理来处理也是一个办法,就是比你自己去做成本高些,但省事啊,呵呵。这方面最好找专业的论文发表机构,比如论文时代,论998等等,都是些正规的门户网站,交易流程也比较合理,可以先去咨询下。当然你也可以自己去找,但还是要多比较几家。
有,省级国家级都可以,根据自己学校相关的要求为准