表观遗传学的概念基于遗传学而来,不是单纯的体外在环境导致的甲基化和乙酰基化改变,也不是简单转录因子和miRNA等等基因调控,它的指的是由非DNA变异而改变表型的‘可遗传的’现象。现在众多所谓的表观遗传学研究实际上都没有跳出经典遗传学的定义。 经典数量遗传学早已经把表型变异归因到遗传和环境单独效应和互作: V= G + E + GxE V: phenotypic variance, 表型变量,G: Genetic variance, 遗传变量,E: environmental variance,环境变量 这里的GxE,即遗传与环境互作,就是众多体外环境影响甲基化水平等等等等等的研究,早就是经典遗传学的一部分,并非表观遗传学。 把环境因素抛开,遗传变量又可以再次归因到几个部分: G = A + D + epistasis A: additive genetic variance, 加性遗传效应,D: Dominance, '显性遗传效应'?忘记了怎么翻译,'epistasis: gene-gene interaction,上位效应,或者基因互作 这里的epistasis, 基因互作, 就包含了所谓的转录因子和miRNA,lincRNA,非编码RNA调控等等等等基因间的调控,也并非表观遗传学。 不过这些跳出孟德尔遗传模式的非表观遗传现象,例如D+epistasis再加上伴性遗传,又可以称作非孟德尔遗传。而且非孟德尔遗传模式也非常有研究价值,诸如时下流行的各种转录组水平上的调控因子,就不再赘述。 真正意义上的表观遗传学要跳出以上经典遗传学的框架才算是有大的突破。 从整个生物群体上来讲,表观遗传对个体的影响比起遗传来讲,并非主要的,但是仍然可以对某些生物的某个性状产生超过遗传因素的影响。其中对可传代的表观遗传(Transgenerational epigenetic inheritance)模式研究还有不少突破,review可以看这篇: Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. 经典的小鼠传代表观遗传实验:子代遗传父亲恐惧记忆,Nature Neuroscience: Fearful memories haunt mouse descendants : Nature News & Comment 因为本人是做大型动物的,大型动物类别中的经典表观遗传学例子:美臀羊, 超极显性, polar overdominance. Polar Overdominance at the Ovine callipyge Locus 带有此变异的羊会形成一个丰满的屁股,而此变异只会在从父本遗传过来的变异杂合子中才会体现这个表型,并且在子代出生一年之后表型才会开始表达,而且只表达在屁股肌群上,身体前半部分肌群,包括肩部胸部,没有任何变化。形成机理通过在DLK1-DIO3 locus 区间父源和母源不同的印迹基因和非编码RNA以及基因间的共同作用,外加与环境互作。这个例子的研究论文非常多,最近的进展可以看这里:New insights into polar overdominance in callipyge sheep. 总体来说,如果想在表观遗传学领域有大的发现,找准性状来研究十分重要,或者说,运气很重要。。。。因为大多数正常或者疾病性状都是经典的遗传和环境互作而来的,真正意义上的纯表观遗传或者说主要由表观遗传主导的性状,还是很少。
表观遗传学的概念基于遗传学而来,不是单纯的体外在环境导致的甲基化和乙酰基化改变,也不是简单转录因子和miRNA等等基因调控,它的指的是由非DNA变异而改变表型的‘可遗传的’现象。现在众多所谓的表观遗传学研究实际上都没有跳出经典遗传学的定义。经典数量遗传学早已经把表型变异归因到遗传和环境单独效应和互作:V= G + E + GxEV: phenotypic variance, 表型变量,G: Genetic variance, 遗传变量,E: environmental variance,环境变量这里的GxE,即遗传与环境互作,就是众多体外环境影响甲基化水平等等等等等的研究,早就是经典遗传学的一部分,并非表观遗传学。把环境因素抛开,遗传变量又可以再次归因到几个部分:G = A + D + epistasisA: additive genetic variance, 加性遗传效应,D: Dominance, '显性遗传效应'?忘记了怎么翻译,'epistasis: gene-gene interaction,上位效应,或者基因互作这里的epistasis, 基因互作, 就包含了所谓的转录因子和miRNA,lincRNA,非编码RNA调控等等等等基因间的调控,也并非表观遗传学。不过这些跳出孟德尔遗传模式的非表观遗传现象,例如D+epistasis再加上伴性遗传,又可以称作非孟德尔遗传。而且非孟德尔遗传模式也非常有研究价值,诸如时下流行的各种转录组水平上的调控因子,就不再赘述。真正意义上的表观遗传学要跳出以上经典遗传学的框架才算是有大的突破。从整个生物群体上来讲,表观遗传对个体的影响比起遗传来讲,并非主要的,但是仍然可以对某些生物的某个性状产生超过遗传因素的影响。其中对可传代的表观遗传(Transgenerational epigenetic inheritance)模式研究还有不少突破,review可以看这篇: Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution.经典的小鼠传代表观遗传实验:子代遗传父亲恐惧记忆,Nature Neuroscience:Fearful memories haunt mouse descendants : Nature News & Comment因为本人是做大型动物的,大型动物类别中的经典表观遗传学例子:美臀羊, 超极显性, polar overdominance. Polar Overdominance at the Ovine callipyge Locus带有此变异的羊会形成一个丰满的屁股,而此变异只会在从父本遗传过来的变异杂合子中才会体现这个表型,并且在子代出生一年之后表型才会开始表达,而且只表达在屁股肌群上,身体前半部分肌群,包括肩部胸部,没有任何变化。形成机理通过在DLK1-DIO3 locus 区间父源和母源不同的印迹基因和非编码RNA以及基因间的共同作用,外加与环境互作。这个例子的研究论文非常多,最近的进展可以看这里:New insights into polar overdominance in callipyge sheep.总体来说,如果想在表观遗传学领域有大的发现,找准性状来研究十分重要,或者说,运气很重要。。。。因为大多数正常或者疾病性状都是经典的遗传和环境互作而来的,真正意义上的纯表观遗传或者说主要由表观遗传主导的性状,还是很少。作者:知乎用户链接:来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。表观遗传学(Epigenetics)的概念各位已经谈了很多了,@Lucif X回答尤为全面,事实上尽管表观遗传的概念很宽泛,做Small RNA,DNA Modification, Post-translational Modification的科学家都愿意把自己的研究方向划归到表观遗传学的范畴,但毫无疑问,表观遗传学最吸引人的还是获得性遗传(拉马克遗传),外在的表现就是Transgenerational Inheritance.恰好今年7月份Cell上发表了一篇文章,非常经典的结合了生物实验和深度测序分析,用秀丽线虫( C. elegans)做模式生物,研究了由环境变化引(饥饿)起的Transgenerational Inheritance的机理。<img src="" data-rawwidth="408" data-rawheight="408" class="content_image" width="408">来源:来源:Starvation-Induced Transgenerational Inheritance of Small RNAs in C. elegans: Cell通过这张示意图可以看出,在P0代将实验用线虫分成两组,一组为持续饱足喂养的线虫,另一组为在幼虫阶段就给予饥饿刺激的线虫,而他们的后代又都是进行同等的饱足喂养。结果是给予饥饿喂养的线虫的第三代表现出了较另一组明显长寿的表型。那么为什么会有这样的实验结果呢?<img src="" data-rawwidth="921" data-rawheight="798" class="origin_image zh-lightbox-thumb" width="921" data-original="">来源:来源:Starvation-Induced Transgenerational Inheritance of Small RNAs in C. elegans: Cell通过对P0代和F3代进行转录组测序分析,研究者发现,饥饿会诱导一部分small RNA的表达,而这些small RNA的靶基因一般是营养代谢相关基因,而这类small RNA又可以进行隔代遗传(作者猜测这类小RNA的变化同样在生殖细胞里发生),进而到F3代仍然可以类似被P0代受饥饿刺激的线虫一样调控营养代谢相关基因。故事到这里大家肯定可以想到在哺乳动物里边都有节食可以延长寿命的报道,不知道相同的机制是不是在小鼠或者灵长类动物中也存在,总之这个研究给我们对Transgenerational Inheritance提供了一个新的理解方式。作者:知乎用户链接:来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。表观遗传学研究的核心是试图解答:中心法则中从基因组向转录组传递遗传信息的调控方法。现代遗传学的基础是认为基因的可控性表达实现了细胞的分化与增殖,进而成就了生物体的生长与发育。而众所周知,基因组基因全部书写在的23组染色体上,且一个生物个体体内所有细胞的基因组基因几乎完全相同,那么问题来了:相同的基因组如何造就不同的细胞类型?在分子生物学水平上,基因的表达受到一类称为转录因子(transcription factor)的蛋白的调控。每一种类型的转录因子在每一种细胞中都有它特异的一群调控对象基因;转录因子与基因组DNA的结合会激活/抑制这一群基因的转录表达。而影响这结合与否的一类化学现象,就是甲基化(methylation)和乙酰化(acetylation)。甲基化和乙酰化会发生在几个不同的区域:(1)转录因子自己身上;(2)协助包裹染色体(染色质)的组蛋白上;(3)基因序列中用于让转录因子结合的区域,称为启动子(promoter)。这些地点发生的甲基化或乙酰化修饰,会很大程度地影响每种基因的表达。而正是这些修饰地点的特异性,决定了不同细胞类型存在着相对不同的转录组,进而表现出相对不同的细胞功能。当然,既然是化学修饰,那么修饰的过程自然也会受到外界因素的影响。一些因素会激活/抑制细胞内特定的信号通路,从而可逆/不可逆地改变某些基因的甲基化和乙酰化修饰水平。其中一些变化如果写入到生殖细胞中,就有可能遗传给下一代。这些“外界因素”不但跟吃喝拉撒有关系,精神创伤、心理压力等也会存在影响。当然这些研究还处于比较暧昧的状态。以上是一点表观遗传学的基本科普。好多年不看教科书了,有错的地方欢迎指正。
在“国家杰出青年科学基金”和国家自然科学基金重点项目支持下,来自东北师范大学植物分子表观遗传学实验室的研究人员对高等植物“杂交与进化”研究领域开展了重要的系统研究,在远缘渐渗杂交 (introgressive hybridization)对受体基因组稳定性影响方面取得了重要进展,这些研究成果已经在Molecular Biology and Evolution,Genetics,Plant Molecular Biology,Theoretical and Applied Genetics和 Genome 等权威杂志发表论文近10篇,并且受到包括美国科学院院士和英国皇家学会会员在内的国际权威的认可和好评。植物的远缘杂交是指种以上分类单位的生物类型之间的杂交,包括同属植物的种间杂交和不同属植物的属间杂交,是高等植物基因组进化和新物种形成的主要动力之一。高等植物杂交与进化的关系一直是进化生物学上有争议的热点问题之一。一种观点认为,由于种间杂种在适合度(fitness)上的普遍劣势,杂交阻碍了进化;另一种观点则认为,杂交可以综合亲本种的适应性或创造出新的适应性,丰富基因库、拓宽生境,进而促进基因组进化和新种形成。可成活远缘杂种有3种主要命运:形成多倍体,二倍体重组或与亲本种之一回交(又称渐渗杂交)。近年来基因组学的巨大进展,解释了高等植物多倍体普遍性的原因,在二倍体重组途径导致新种形成的研究领域,也取得突破性进展,但关于第3种途径,即渐渗杂交 (introgressive hybridization) 在进化上的意义,实验性研究不多。近些年来东北师范大学植物分子表观遗传学实验室在刘宝教授等的研究人员的共同努力下,2000年从DNA分子水平确证了外缘菰DNA的存在,并且在国际上首次发现植物异源多倍体物种形成可以定向诱发DNA序列删除及表观遗传变异现象,首次合成“水稻+菰”属间可育体细胞杂种及有性杂交渐渗系的分子证明,发现外源DNA导入可诱发反转录转座子激活和DNA甲基化变异。这些研究结果为“远缘渐渗杂交促进基因组进化”的观点提供了分子水平上的实验性证据,并对利用远缘杂交进行作物遗传改良提出了新启示。
日本东京大学Umeharu Ohto和日本京都大学Norimichi Nomura团队共同合作近期取得重要工作进展。他们研究发现胆汁酸转运蛋白NTCP的结构对乙型肝炎病毒进入至关重要。该项研究成果2022年5月17日在线发表于《自然》杂志上。 在这里,研究人员报告了人类、牛和大鼠NTCPs在apo状态下的低温电子显微镜(cryo-EM)结构,它揭示了跨膜隧道的存在和底物的可能运输途径。 此外,人类NTCP在LHBs的肉豆蔻酰化preS1结构域存在下的低温电镜结构以及突变和运输试验分析表明了一种结合模式,即preS1和底物竞争NTCP中细胞外通道的开口。重要的是,preS1域相互作用分析能够对人类NTCP中自然发生的HBV不敏感突变进行机理解释。综上所述,他们的研究结果为HBV识别和哺乳动物NTCPs对钠依赖性胆汁酸易位的机制的理解提供了结构框架。 据介绍,慢性乙型肝炎病毒 (HBV) 感染在全球影响超过亿人,是肝硬化和肝细胞癌的主要原因,估计每年导致82万人死亡。HBV感染的建立需要病毒包膜糖蛋白L(LHBs)与宿主进入受体钠-牛磺胆酸共转运多肽(NTCP)之间的分子相互作用,NTCP是一种从血液到肝细胞的钠依赖性胆汁酸转运蛋白。然而,目前对于病毒-转运蛋白相互作用分子基础尚不清楚。 Source: 美国加州大学Arash Komeili研究小组在研究中取得进展。他们发现不同基因簇诱导细菌铁小体细胞器的形成。2022年5月18日出版的《自然》发表了这项成果。 在本研究中,研究人员发现一个与铁结合的隔室,在此命名为“铁小体”,是之前在厌氧细菌磁性脱硫弧菌中发现的。使用蛋白质组学方法,研究人员鉴定了三种铁小体相关(Fez)蛋白,它们在D. magneticus中参与形成铁小体。Fez蛋白由特定的操纵子编码,包括FezB,FezB是在系统发育和代谢不同的细菌和古细菌中发现的P1B-6-ATP酶。研究人员揭示了另外两种细菌物种,Rhodopseudomonas palustris和Shewanella putrefaciens,通过其六基因fez操纵子产生铁小体。 此外,研究发现fez操纵子还可以在外来宿主中形成铁小体。使用S. putrefaciens作为模型,研究表明铁小体可能在厌氧适应铁饥饿中发挥作用。总体而言,该工作发现铁小体可能是一类新的铁储存细胞器,并为研究它们在多种微生物中的形成和结构奠定了基础。 据了解,细胞内铁稳态对于机体至关重要,通过严格调节铁的输入、流出、储存和代谢来维持铁稳态。最常见的铁储存模式使用蛋白质隔室,例如铁蛋白和相关蛋白质。尽管发现了脂质结合的铁隔室,但它们的形成和功能基础仍然未知。 Source: 美国德克萨斯大学西南医学中心Peter M Douglas研究组发现小G蛋白香叶酰化可监测细胞内脂质稳态。2022年5月18日出版的《自然》杂志发表了这项成果。 他们描述了一种在秀丽隐杆线虫中进行细胞内脂质监测的机制,该机制涉及核激素受体 NHR-49 的转录失活,其通过与小 G 蛋白 结合的香叶基香叶酯结合到内吞囊泡进行胞质隔离。由脂质消耗引起的有缺陷的从头类异戊二烯合成限制了 香叶基香叶酰化,这促进了 NHR-49 的核易位和 转录的激活,以增强转运蛋白在质膜上的驻留。因此,他们鉴定了一种细胞可感知的关键脂质,及与其相连 G 蛋白和核受体,它们的动态相互作用使细胞能够感知由于脂质消耗引起的代谢需求,并通过增加营养吸收和脂质代谢来做出反应。 据悉,脂质稳态失衡会对健康产生有害影响。然而,细胞如何感知由于脂质消耗导致的代谢需求并通过增加营养吸收做出反应仍不清楚。 Source: 英国牛津大学Sebastian M. Shimeld研究组探明Hmx基因保留确定了脊椎动物颅神经节的起源。2022年5月18日出版的《自然》杂志发表了该项成果。 他们表明同源盒转录因子 Hmx 是脊椎动物感觉神经节发育的组成成分,并且在小肠绦虫中,Hmx 是驱动双极尾神经元分化程序所必要且充分的,这些细胞以前被认为是神经嵴的同源物。使用绦虫和七鳃鳗转基因,他们证明了茎-脊椎动物谱系中,一个独特的、串联重复的增强子对调节的 Hmx 表达。他们还在绦虫中展示了明显强大的脊椎动物 Hmx 增强子功能,表明上游调控网络的深度保留跨越了脊椎动物的进化起源。这些实验证明了绦虫和脊椎动物 Hmx 之间的调节和功能保护,并指出双极尾神经元是颅感觉神经节的同源物。 研究人员表示,脊椎动物的进化起源包括与掠夺性生活方式的获得相关的感官处理方面的创新。脊椎动物通过由颅感觉神经节服务的感觉系统感知外部刺激,其神经元主要来自颅基板;然而,由于活体谱系之间的解剖学差异以及细胞类型和结构之间的同源性分配困难,阻碍了对基板和颅感觉神经节进化起源的理解。 Source: 美国斯坦福大学Anthony E. Oro团队近期取得重要工作进展。他们研究发现Gibbin中胚层调节模式上皮细胞的发育。该项研究成果2022年5月18日在线发表于《自然》杂志上。 在这里,研究人员鉴定了由Xia-Gibbs AT-hook DNA-binding-motif-containing 1(AHDC1)疾病基因编码的蛋白质Gibbin,它是早期上皮形态发生的关键调节因子。他们发现增强子或启动子结合的Gibbin与数十种序列特异性锌指转录因子和甲基-CpG 结合蛋白相互作用,以调节中胚层基因的表达。Gibbin的缺失导致GATA3依赖性中胚层基因的DNA甲基化增加,导致发育中的真皮和表皮细胞类型之间的信号通路的缺失。 值得注意的是,Gibbin突变的人类胚胎干细胞衍生的皮肤类器官缺乏真皮成熟,导致表达p63的基底细胞具有缺陷的角质形成细胞分层。体内嵌合CRISPR小鼠突变体揭示了一系列Gibbin依赖性发育模式缺陷,这些缺陷影响了反映患者表型的颅面结构、腹壁闭合和表皮分层。他们的结果表明,在Xia–Gibbs和相关综合征中看到的模式表型源于基因特异性 DNA甲基化决定而导致的异常中胚层成熟。 据介绍,在人类发育过程中正确的外胚层模式需要先前确定的转录因子,如GATA3和p63,以及来自区域中胚层的位置信号。然而,外胚层和中胚层因子对稳定基因表达和谱系定型的机制仍不清楚。 Source: 美国纪念斯隆-凯特琳癌症中心Vinod P. Balachandran等研究人员合作发现,新抗原质量可预测胰腺癌幸存者的免疫编辑。相关论文于2022年5月19日在线发表在《自然》杂志上。 研究人员表示,癌症免疫编辑是癌症的一个标志,它预示着淋巴细胞会杀死更多的免疫原性癌细胞,使免疫原性较低的克隆体在群体中占主导地位。虽然在小鼠身上得到证实,但免疫编辑是否在人类癌症中自然发生仍不清楚。 为了解决这个问题,研究人员调查了70个人类胰腺癌在10年内是如何演变的。研究人员发现,尽管有更多的时间积累突变,但罕见的胰腺癌长期幸存者在原发肿瘤中具有更强的T细胞活性,其复发肿瘤的遗传异质性较低,免疫原性突变(新抗原)较少。为了量化免疫编辑是否是这些观察结果的基础,研究人员通过两个特征来推断了新抗原是否具有免疫原性(高质量),这基于新抗原与已知抗原相似性的"非自体性",以及基于新抗原与野生型肽相比不同地结合到MHC或激活T细胞所需的抗原性距离的"自体性"。利用这些特征,研究人员估计癌症克隆的适应性是T细胞识别高质量新抗原的总成本被致癌突变的收益所抵消。 通过这个模型,研究人员预测了肿瘤的克隆进化,并发现胰腺癌的长期幸存者会发展出具有较少高质量新抗原的复发性肿瘤。因此,研究人员展示了人类免疫系统自然编辑新抗原的证据。此外,研究人员提出了一个模型来预测免疫压力是如何诱导癌细胞群随时间演变的。更广泛地说,这些研究结果表明,免疫系统从根本上监督宿主的基因变化来抑制癌症。 Source: 美国斯坦福大学Mark J. Schnitzer、Sadegh Ebrahimi等研究人员合作揭示感觉皮质编码和区域间通信的新兴可靠性。2022年5月19日,国际知名学术期刊《自然》在线发表了这一成果。 研究人员对小鼠执行视觉辨别任务的8个新皮层区域的神经元活动同时进行了5天的成像,产生了超过21000个神经元的纵向记录。分析显示,整个新皮层的事件序列从静止状态开始,到感知的早期阶段,并通过任务反应的形成。在静止状态下,新皮层有一种功能连接模式,通过共享活动共变的区域组来识别。在感觉刺激开始后约200毫秒内,这种连接重新排列,不同区域共享共变和任务相关信息。 在这个短暂的状态中(大约持续300毫秒),区域间的感觉数据传输和感觉编码的冗余都达到了顶峰,反映了任务相关神经元之间相关波动的短暂增加。刺激开始后约秒,视觉表征达到一个更稳定的形式,其结构对单个细胞反应中突出的、逐日的变化是强大的。在刺激出现约1秒后,一个全局波动模式传达了小鼠对每个受检区域即将作出的反应,并与携带感觉数据的模式正交。 总的来说,新皮层通过在感知开始时感觉编码冗余的短暂提升、对细胞变异性稳健的神经群体编码以及广泛的区域间波动模式来支持感觉性能,这些模式以不干扰的渠道传递感觉数据和任务反应。 据了解,可靠的感觉辨别必须来自高保真的神经表征和脑区之间的交流。然而,新皮层感觉处理如何克服神经元感觉反应的巨大变异性仍未确定。 Source: 近日,美国斯坦福大学Jesse M. Engreitz及其团队的最新研究揭示人类增强子和启动子序列的相容性规则。相关论文于2022年5月20日在线发表在《自然》杂志上。 研究人员设计了一种名为ExP STARR-seq(增强子x启动子自转录活性调节区测序)的高通量报告试验,并应用它来研究人类K562细胞中1000个增强子和1000个启动子序列的组合相容性。研究人员确定了增强子-启动子兼容性的简单规则:大多数增强子以类似的数量激活所有启动子,内在的增强子和启动子的活动以倍数结合来决定RNA输出(R2=)。 此外,有两类增强子和启动子显示出微妙的偏好效应。管家基因的启动子含有GABPA和YY1等因子的内置激活模体,这降低了启动子对远端增强子的反应性。表达不一的基因的启动子缺乏这些模体,对增强子表现出更强的反应性。总之,这种对增强子-启动子兼容性的系统评估表明,在人类基因组中,有一个由增强子和启动子类型调整的乘法模型来控制基因转录。 据了解,人类基因组中的基因调控是由远端增强子控制的,它能激活附近特定的启动子。这种特异性的一个模型是,启动子可能对某些增强子有序列编码的偏好,例如由相互作用的转录因子组或辅助因子介导。这种"生化兼容性"模型已被个别人类启动子的观察和果蝇的全基因组测量所支持。然而,人类增强子和启动子内在兼容的程度还没有得到系统的测量,它们的活动如何结合起来控制RNA的表达仍不清楚。 Source: 美国华盛顿大学医学院David J. Pagliarini和美国摩根里奇研究所Joshua J. Coon共同合作,近期取得重要工作进展。他们通过深度多组学分析来确定线粒体蛋白的功能。该项研究成果2022年5月25日在线发表于《自然》杂志上。 在这里,为了建立更完整的人类线粒体蛋白功能纲要,研究人员使用基于质谱的多组学分析方法分析了200多个CRISPR介导的HAP1敲除细胞系。这项工作产生了大约 830 万个不同的生物分子测量值,提供了对线粒体扰动的细胞反应的深入调查,并为蛋白质功能的机制研究奠定了基础。在这些数据的指导下,他们发现PIGY 游开放阅读框(PYURF)是一种S-腺苷甲硫氨酸依赖性甲基转移酶伴侣,它支持复合物I组装和辅酶Q生物合成,并且在以前未解决的多系统线粒体疾病中被破坏。 研究人员进一步将推定的锌转运蛋白SLC30A9与线粒体核糖体和OxPhos完整性联系起来,并将RAB5IF确定为第二个含有导致脑面胸腔发育不良的致病变异的基因。他们的数据可以通过交互式在线资源进行探索,表明许多其他孤儿线粒体蛋白的生物学作用仍然缺乏强大的功能表征,并定义了线粒体功能障碍的丰富细胞特征,可以支持线粒体疾病的基因诊断。 据了解,线粒体是真核生物新陈代谢和生物能学的中心。近几十年来的开创性努力已经确定了这些细胞器的核心蛋白成分,并将它们的功能障碍与150多种不同的疾病联系起来。尽管如此,数以百计的线粒体蛋白仍缺乏明确的功能,约40%的线粒体疾病的潜在遗传基础仍未得到解决。 Source: 美国加州大学洛杉矶分校Alcino J. Silva和Miou Zhou研究组合作揭示,C-C 趋化因子受体 5 (CCR5)可关闭记忆链接的时间窗口。相关论文发表在2022年5月25日出版的《自然》杂志上。 他们展示了CCR5(一种免疫受体,众所周知是 HIV 感染的共同受体)的表达延迟(12-24 小时)增加在环境记忆形成后决定时间窗口的持续时间,以便将该记忆与后续记忆关联或链接。小鼠背侧 CA1 神经元中 CCR5 的这种延迟表达导致神经元兴奋性降低,进而负调节神经元记忆分配,从而减少背侧 CA1 记忆集合之间的重叠。降低这种重叠会影响一个记忆触发另一个记忆的召回能力,因此关闭记忆链接的时间窗口。 他们的研究结果还表明,与年龄相关的 CCR5 及其配体 CCL5 的神经元表达增加会导致老年小鼠的记忆连接受损,这可以通过 Ccr5 敲除和美国食品和药物管理局(FDA)批准的药物逆转。抑制这种受体具有临床意义。总而言之,这里报道的研究结果提供了对塑造记忆链接时间窗口的分子和细胞机制的见解。 据介绍,现实世界的记忆是在特定的环境下形成的,通常不是孤立地获得或回忆的。时间是记忆组织中的一个关键变量,因为时间接近的事件更有可能有意义地关联,而间隔较长的事件则不是。大脑如何区分时间上不同的事件尚不清楚。 Source: 德国海德堡大学Rohini Kuner研究组发现错误连接和终末器官靶向异常可引起神经性疼痛。2022年5月25日出版的《自然》杂志在线发表了这项成果。 研究人员在神经损伤后超过10个月的时间里,以纵向和非侵入性地方式对基因标记的纤维群进行成像,这些纤维群在皮肤周围感知有害刺激(伤害感受器)和轻柔触摸(低阈值传入),同时跟踪这些小鼠与疼痛相关的行为。完全去神经支配的皮肤区域最初失去感觉,逐渐恢复正常敏感性,并在受伤几个月后出现明显的异常性疼痛和对轻触的厌恶。这种神经再支配引起的神经性疼痛与伤害感受器有关,这些伤害感受器延伸到去神经支配的区域,精确地再现神经支配的初始模式,由血管引导,在皮肤中显示出不规则的终端连接,并降低了模拟低阈值传入的激活阈值。 相比之下,低阈值传入神经(通常在损伤后完整神经区域中介导触觉以及异常性疼痛)没有重新建立神经支配,导致仅具有伤害感受器的迈斯纳小体等触觉末端器官受异常神经支配。敲除与伤害感受器有关的基因完全消除了神经再支配异常性疼痛。因此,该研究结果揭示了一种慢性神经性疼痛的发生机制,这种疼痛是由结构可塑性、异常末端连接和神经再支配过程中伤害感受器受损造成的,并为在临床观察到的对病人产生沉重负担的矛盾感觉提供了机制框架。 据了解,神经损伤会导致慢性疼痛和对轻柔触摸的过度敏感(异常性疼痛)以及受伤和未受伤神经聚集区域的感觉丧失。改善这些混合和矛盾症状的机制尚不清楚。 Source: 星形胶质细胞在不同疾病中的反应性转录调控不同,这一成果由美国加州大学Michael V. Sofroniew、Joshua E. Burda研究组经过不懈努力而取得。2022年5月25日出版的《自然》杂志发表了这项成果。 研究人员通过将生物学和信息学分析(包括RNA测序、蛋白质检测、转座酶可及染色质测定与高通量测序(ATAC-seq)和条件基因缺失)相结合的方法来预测转录调节因子,这些调节因子调控了超过12,000个与小鼠和人不同中枢神经系统疾病中星形胶质细胞反应有关的差异表达基因(DEGs)。与星形胶质细胞反应相关的DEG在疾病中表现出明显的异质性。转录调节因子也具有疾病特异性差异,但研究人员发现了一个在这两个物种多种疾病中常见的由61个转录调节因子组成的核心组。实验表明,DEG多样性是由不同转录调节因子与特定细胞内环境之间相互作用决定的。 值得注意的是,相同反应性转录调节因子可以调节不同疾病中显著不同的DEG队列。转录调节因子对DNA结合基序的可及性变化在不同疾病之间存在明显差异;对DEG变化至关重要的调控可能需要多个反应性转录调节因子。通过调节反应性,转录调节因子可以显著改变疾病结果,并可以将其作为治疗靶点。该研究提供了与疾病相关反应性星形胶质细胞DEG及可搜索的预测转录调节因子资源。该研究结果表明,与星形胶质细胞反应性相关的转录变化是高度异质的,并且可通过特定于细胞内环境的转录调节因子组合产生大量潜在的DEG。 据悉,星形胶质细胞对中枢神经系统疾病和损伤作出反应,反应性变化会影响疾病进展。这些变化包括DEGs,然而对DEGs背景多样性和调控知之甚少。 Source: 近日,以色列魏茨曼科学研究所Karina Yaniv、Rudra N. Das等研究人员合作发现,淋巴管转分化可产生专门的血管。相关论文于2022年5月25日在线发表在《自然》杂志上。 研究人员利用斑马鱼臀鳍的循环成像和系谱追踪,从早期发育到成年,发现了一种通过淋巴管内皮细胞(LECs)的转分化形成专门血管的机制。此外,研究人员证明了从淋巴与血液内皮细胞(EC)衍生出的臀鳍血管在成年生物体中的功能差异,揭示了细胞本体和功能之间的联系。研究人员进一步利用单细胞RNA测序分析来描述了转分化过程中涉及的不同细胞群和过渡状态。 最后,结果表明,与正常发育相似,在臀鳍再生过程中,血管从淋巴管中重新衍生出来,表明成年鱼的LEC保留了生成血液EC的效力和可塑性。总的来说,这项研究强调了通过LEC转分化形成血管的先天机制,并为EC的细胞个体发生和功能之间的联系提供了体内证据。 据了解,细胞的谱系和发育轨迹是决定细胞身份的关键因素。在血管系统中,血液和淋巴管的EC通过分化和特化来满足每个器官的独特生理需求。虽然淋巴管被证明来自多种细胞来源,但LEC不知道会产生其他细胞类型。 Source: 德国马克斯·普朗克免疫生物学和表观遗传学研究所Thomas Boehm、Dominic Grün等研究人员合作揭示两种双潜能胸腺上皮细胞祖先类型的发育动态。相关论文于2022年5月25日在线发表于国际学术期刊《自然》。 研究人员结合单细胞RNA测序(scRNA-seq)和一个新的基于CRISPR-Cas9的细胞条形码系统,在小鼠中确定胸腺上皮细胞随时间变化的质和量。这种双重方法使研究人员能够确定两个主要的祖先群体:一个早期双潜能祖先类型偏向皮质上皮,一个产后双潜能祖先群体偏向髓质上皮。研究人员进一步证明,连续提供Fgf7的自分泌导致胸腺微环境的持续扩张,而不会耗尽上皮祖细胞池,这表明有一种策略可以调节胸腺造血活动的程度。 据介绍,胸腺中的T细胞发育对细胞免疫至关重要,并取决于器官型的胸腺上皮微环境。与其他器官相比,胸腺的大小和细胞组成是异常动态的,例如在发育的早期阶段快速生长和高T细胞输出,随后随着年龄的增长,胸腺上皮细胞的功能逐渐丧失,初始T细胞的产量减少。scRNA-seq发现了年轻和年老的成年小鼠胸腺上皮细胞的意外异质性;然而,推定的产前和产后上皮祖细胞的身份和发育动态仍未得到解决。 Source: 美国西奈山伊坎医学院Filip K. Swirski、Wolfram C. Poller等研究人员合作发现,大脑运动和恐惧回路在急性应激期间调节白细胞。2022年5月30日,《自然》杂志在线发表了这项成果。 研究人员发现,在小鼠急性应激期间,不同的大脑区域塑造了白细胞的分布和整个身体的功能。利用光遗传学和化学遗传学,研究人员证明运动回路通过骨骼肌来源的吸引中性粒细胞的趋化因子诱导中性粒细胞从骨髓快速动员到周围组织。相反,室旁下丘脑通过直接的、细胞内的糖皮质激素信号控制单核细胞和淋巴细胞从二级淋巴器官和血液向骨髓排出。这些压力诱导的、反方向的、全群体的白细胞转移与疾病易感性的改变有关。 一方面,急性应激通过重塑中性粒细胞并引导它们被招募到损伤部位来改变先天免疫力。另一方面,促肾上腺素释放激素(CRH)神经元介导的白细胞转移可防止获得自身免疫,但会损害对SARS-CoV-2和流感感染的免疫力。总的来说,这些数据显示,在心理压力期间,不同的大脑区域会不同地、迅速地调整白细胞景观,从而校准免疫系统对身体威胁的反应能力。 据了解,神经系统和免疫系统有着错综复杂的联系。尽管人们知道心理压力可以调节免疫功能,但将大脑中的压力网络与外周白细胞联系起来的机制途径仍然不为人知。 Source:
表观遗传学的概念基于遗传学而来,不是单纯的体外在环境导致的甲基化和乙酰基化改变,也不是简单转录因子和miRNA等等基因调控,它的指的是由非DNA变异而改变表型的‘可遗传的’现象。现在众多所谓的表观遗传学研究实际上都没有跳出经典遗传学的定义。经典数量遗传学早已经把表型变异归因到遗传和环境单独效应和互作:V= G + E + GxEV: phenotypic variance, 表型变量,G: Genetic variance, 遗传变量,E: environmental variance,环境变量这里的GxE,即遗传与环境互作,就是众多体外环境影响甲基化水平等等等等等的研究,早就是经典遗传学的一部分,并非表观遗传学。把环境因素抛开,遗传变量又可以再次归因到几个部分:G = A + D + epistasisA: additive genetic variance, 加性遗传效应,D: Dominance, '显性遗传效应'?忘记了怎么翻译,'epistasis: gene-gene interaction,上位效应,或者基因互作这里的epistasis, 基因互作, 就包含了所谓的转录因子和miRNA,lincRNA,非编码RNA调控等等等等基因间的调控,也并非表观遗传学。不过这些跳出孟德尔遗传模式的非表观遗传现象,例如D+epistasis再加上伴性遗传,又可以称作非孟德尔遗传。而且非孟德尔遗传模式也非常有研究价值,诸如时下流行的各种转录组水平上的调控因子,就不再赘述。真正意义上的表观遗传学要跳出以上经典遗传学的框架才算是有大的突破。从整个生物群体上来讲,表观遗传对个体的影响比起遗传来讲,并非主要的,但是仍然可以对某些生物的某个性状产生超过遗传因素的影响。其中对可传代的表观遗传(Transgenerational epigenetic inheritance)模式研究还有不少突破,review可以看这篇: Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution.经典的小鼠传代表观遗传实验:子代遗传父亲恐惧记忆,Nature Neuroscience:Fearful memories haunt mouse descendants : Nature News & Comment因为本人是做大型动物的,大型动物类别中的经典表观遗传学例子:美臀羊, 超极显性, polar overdominance. Polar Overdominance at the Ovine callipyge Locus带有此变异的羊会形成一个丰满的屁股,而此变异只会在从父本遗传过来的变异杂合子中才会体现这个表型,并且在子代出生一年之后表型才会开始表达,而且只表达在屁股肌群上,身体前半部分肌群,包括肩部胸部,没有任何变化。形成机理通过在DLK1-DIO3 locus 区间父源和母源不同的印迹基因和非编码RNA以及基因间的共同作用,外加与环境互作。这个例子的研究论文非常多,最近的进展可以看这里:New insights into polar overdominance in callipyge sheep.总体来说,如果想在表观遗传学领域有大的发现,找准性状来研究十分重要,或者说,运气很重要。。。。因为大多数正常或者疾病性状都是经典的遗传和环境互作而来的,真正意义上的纯表观遗传或者说主要由表观遗传主导的性状,还是很少。作者:知乎用户链接:来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。表观遗传学(Epigenetics)的概念各位已经谈了很多了,@Lucif X回答尤为全面,事实上尽管表观遗传的概念很宽泛,做Small RNA,DNA Modification, Post-translational Modification的科学家都愿意把自己的研究方向划归到表观遗传学的范畴,但毫无疑问,表观遗传学最吸引人的还是获得性遗传(拉马克遗传),外在的表现就是Transgenerational Inheritance.恰好今年7月份Cell上发表了一篇文章,非常经典的结合了生物实验和深度测序分析,用秀丽线虫( C. elegans)做模式生物,研究了由环境变化引(饥饿)起的Transgenerational Inheritance的机理。<img src="" data-rawwidth="408" data-rawheight="408" class="content_image" width="408">来源:来源:Starvation-Induced Transgenerational Inheritance of Small RNAs in C. elegans: Cell通过这张示意图可以看出,在P0代将实验用线虫分成两组,一组为持续饱足喂养的线虫,另一组为在幼虫阶段就给予饥饿刺激的线虫,而他们的后代又都是进行同等的饱足喂养。结果是给予饥饿喂养的线虫的第三代表现出了较另一组明显长寿的表型。那么为什么会有这样的实验结果呢?<img src="" data-rawwidth="921" data-rawheight="798" class="origin_image zh-lightbox-thumb" width="921" data-original="">来源:来源:Starvation-Induced Transgenerational Inheritance of Small RNAs in C. elegans: Cell通过对P0代和F3代进行转录组测序分析,研究者发现,饥饿会诱导一部分small RNA的表达,而这些small RNA的靶基因一般是营养代谢相关基因,而这类small RNA又可以进行隔代遗传(作者猜测这类小RNA的变化同样在生殖细胞里发生),进而到F3代仍然可以类似被P0代受饥饿刺激的线虫一样调控营养代谢相关基因。故事到这里大家肯定可以想到在哺乳动物里边都有节食可以延长寿命的报道,不知道相同的机制是不是在小鼠或者灵长类动物中也存在,总之这个研究给我们对Transgenerational Inheritance提供了一个新的理解方式。作者:知乎用户链接:来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。表观遗传学研究的核心是试图解答:中心法则中从基因组向转录组传递遗传信息的调控方法。现代遗传学的基础是认为基因的可控性表达实现了细胞的分化与增殖,进而成就了生物体的生长与发育。而众所周知,基因组基因全部书写在的23组染色体上,且一个生物个体体内所有细胞的基因组基因几乎完全相同,那么问题来了:相同的基因组如何造就不同的细胞类型?在分子生物学水平上,基因的表达受到一类称为转录因子(transcription factor)的蛋白的调控。每一种类型的转录因子在每一种细胞中都有它特异的一群调控对象基因;转录因子与基因组DNA的结合会激活/抑制这一群基因的转录表达。而影响这结合与否的一类化学现象,就是甲基化(methylation)和乙酰化(acetylation)。甲基化和乙酰化会发生在几个不同的区域:(1)转录因子自己身上;(2)协助包裹染色体(染色质)的组蛋白上;(3)基因序列中用于让转录因子结合的区域,称为启动子(promoter)。这些地点发生的甲基化或乙酰化修饰,会很大程度地影响每种基因的表达。而正是这些修饰地点的特异性,决定了不同细胞类型存在着相对不同的转录组,进而表现出相对不同的细胞功能。当然,既然是化学修饰,那么修饰的过程自然也会受到外界因素的影响。一些因素会激活/抑制细胞内特定的信号通路,从而可逆/不可逆地改变某些基因的甲基化和乙酰化修饰水平。其中一些变化如果写入到生殖细胞中,就有可能遗传给下一代。这些“外界因素”不但跟吃喝拉撒有关系,精神创伤、心理压力等也会存在影响。当然这些研究还处于比较暧昧的状态。以上是一点表观遗传学的基本科普。好多年不看教科书了,有错的地方欢迎指正。
表观遗传学,包括组蛋白共价修饰(covalent histone modification)、DNA甲基化修饰(DNA methylation)、RNA甲基化修饰(RNA methylation)、基因组印记(genomic imprinting)、基因沉默(gene silencing)、RNA编辑(RNA editing)及非编码RNA(noncoding RNA)等,是 指在核苷酸序列不发生改变的情况下,生物表型或基因表达发生了稳定的可遗传变化 。 RNA甲基化 作为表观遗传学研究的重要内容之一,是指发生在RNA分子上不同位置的甲基化修饰现象, 6-甲基腺嘌呤(N6-methyladenosine,m6A) 和 5-甲基胞嘧啶(C5-methylcytidine,m5C) 是真核生物中最常见的两种RNA转录后修饰。RNA甲基化在调控基因表达、剪接、RNA编辑、RNA稳定性、控制mRNA寿命和降解等方面可能扮演重要角色。 相对于DNA甲基化,RNA甲基化更加复杂、种类繁多、普遍存在于各种高级生物中。已知绝大部分真核生物中,mRNA在5’ Cap处存在甲基化修饰,作用包括维持mRNA稳定性、 mRNA前体剪切、多腺苷酸化、 mRNA运输与翻译起始等。而3’ polyA发生的修饰有助于出核转运、翻译起始以及与polyA结合蛋白⼀起维持mRNA的结构稳定。但是这些修饰只发生mRNA的头部和尾部,关于RNA的内部修饰(internal modification)在许多种类的RNA中都有发⽣。无论是mRNA还是lncRNA,都大量存在m6A修饰。m6A能够加速mRNA前体的加工时间,加快mRNA在细胞中的转运速度和出核速度。主要学习研究较多的m6A。RNA的m6A甲基化⼀共有大三类酶参与: Writers、 Erasers和Readers ,需要相关研究的可以学习相关文献。 检测m6A的方法非常多,如包括MeRIPseq、 miCLIP-seq、 SCARLET、 LC-MS/MS等。2012年之后,两篇发表于Nature和Cell上的论⽂可以说是第⼀次从转录水平上,大范围高通量地鉴定了人和小鼠m6A的甲基化水平(Dominissini 2012和Meyer 2012)。这两篇独立发表的论文采用的 核心方法就是 将m6A抗体与带有m6A的mRNA片段相结合 后进行高通量测序 。通过对下机数据的分析,来鉴定mRNA上m6A程度较高的区域,分辨率约为100nt。这种方法我们称之为MeRIP-seq( me thylated R NA i mmuno p recipitation sequencing)或m6A-seq。 MeRIP-seq建库步骤 : 1. 提取total RNAs,并用Oligo-dT磁珠对total RNAs带有polyA的mRNA进行富集(通常要求Total RNA 300ug,人鼠可以做微量2ug 但结果可能会出现map率低dup率高 建库步骤与常量也有区别); 2. 用磁珠进行富集,得到带有polyA的mRNA。之后加入片段化试剂,将完整的mRNA进行片段化。或者使用超声波仪直接进行片段化; 3. 将片段化后的RNA分成两份。⼀份加入带有m6A抗体的免疫磁珠,对含有m6A甲基化的mRNA片段进⾏富集。另⼀份作为control,直接构建类似常规的转录组测序文库(这一步就是IP步骤,片段化程度、抗体抓取效率都会影响到后期实验结果;这里的control通常称为Input);4. 对m6A抗体免疫磁珠进行富集,带有m6A的mRNA片段进行回收后,按照转录组的建库流程构建常规的测序文库; 5. 分别将构建好的2个测序文库,即m6A-seq library和RNA-seq library分别进行高通量测序。测序平台保持一致,推荐Hiseq X ten或Novaseq; 6. 对下机数据进行生物信息学分析,对发生m6A甲基化程度较高的区域进行peak calling。由于不能做到单个碱基的分辨率,所以只能对大致的区域进行分析。从下图中我们可以发现,与右侧常规的转录组测序结果相比,在基因上有两处区域存在非常明显的高甲基化峰; 7.接下来会进行一些常规分析,如peak区域基因注释,差异peak分析。 以上就是关于m6A-seq的标准步骤,现在是不是对m6A-seq有了一个非常直观的认识呢? 再次强调下,这种测序方法只能鉴定高甲基化的区域,并不能做到单碱基的分辨率。 思路1 老数据挖掘 第一步:先从原有的转录组数据中,挖掘到差异表达的甲基化酶; 第二步:对挖掘到的甲基化酶如METTL3或FTO等进⾏qPCR验证,并进行m6A-seq分析哪些基因甲基化水平发生改变; 第三步:在细胞(动物模型可选)中对这些酶进行敲低和过表达,进行常规的qPCR和WB检测相关酶表达情况,并用LC-MS/MS法检测RNA整体m6A水平; 第四步:继续对这些敲低和过表达的细胞进行转录组测序/小RNA测序或表达谱芯片/小RNA芯片,分析哪些基因出现差异表达变化和可变剪切变化; 第五步:找到甲基化酶调控的靶基因,进行敲低和过表达,看甲基化酶缺陷的细胞或动物模型表型能否补救; 第六步:在确定上一步靶基因确实受到甲基化酶调控后,对靶基因上的motif进行点突变后进行验证; 第七步:鉴定新型的甲基化酶(可选)。 思路2 研究甲基化修饰差异基因 第一步:直接进行m6A-seq和转录组测序,找到时间顺序或差异表达的基因并用qPCR、 WB等⽅法验证,此外找到m6A有差异的基因; 第二步:对甲基化酶进行敲低和过表达,检测RNA整体的m6A水平,之后可进行转录组或小RNA测序等方法检验甲基化酶敲低和过表达对mRNA或miRNA整体的影响,并着重研究第⼀步中感兴趣的m6A有差异的靶基因; 第三步:对靶基因进行敲低或过表达,是否能够对甲基化酶异常表达后的表型进⾏恢复; 第四步:对靶基因上motif进行点突变后进⼀步确认直接受到甲基化酶调控; 第五步:鉴定新型的甲基化酶(可选)。 当然根据不同的研究目的还有许多其他的研究思路,可根据自身实验设计进行延申和拓展。m6A相关SCI论文根据不同实验手段IF2~20不等,实验手段:m6A-seq、转录组测序/表达谱芯片、 LC-MS/MS 或 m6A 比色法、小RNA 测序/小RNA芯片、qPCR、 WB、敲降/过表达、靶基因验证、动物实验、临床实验/药物实验等。 学习资源来源网络,侵删。 参考学习: 1、 高通量RNA甲基化测序数据处理与分析研究进展 2、 RNA修饰检测技术 Roundtree, Ian A et al. “Dynamic RNA Modifications in Gene Expression Regulation.” Cell vol. 169,7 (2017): 1187-1200. doi: Helm, M, & Y. Motorin. "Detecting RNA modifications in the epitranscriptome: predict and validate.” Nature Reviews Genetics (2017):275.
遗传学的论文一篇,给点素材你怎么理解,分析探讨具体谈清晰的
遗传与变异 ---新形式下的基因突变 ( 2005动物科学院 X X X ) 摘要:染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 关键词:遗传;变异;基因突变 遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。 遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、行为习性,以及优良性状可以在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样可以传递给子代。 遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。 变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。 生物的遗传与变异是同一事物的两个方面,遗传可以发生变异,发生的变异可以遗传,正常健康的父亲,可以生育出智力与体质方面有遗传缺陷的子女,并把遗传缺陷(变异)传递给下一代。 遗传和变异的物质基础 生物的遗传和变异是否有物质基础的问题,在遗传学领域内争论了数十年之久。 在现代生物学领域中,一致公认生物的遗传物质在细胞水平上是染色体,在分子水平上是基因,它们的化学构成是脱氧核糖核酸(DNA),在极少数没有DNA的原核生物中,如烟草花叶病毒等,核糖核酸(RNA)是遗传物质。 真核生物的细胞具有结构完整的细胞核,在细胞质中还有多种细胞器,真核生物的遗传物质就是细胞核内的染色体。但是, 细胞质在某些方面也表现有一定的遗传功能。人类亲子代之间的物质联系是精子与卵子,而精子与卵子中具有遗传功能的物质是染色体,受精卵根据染色体中DNA蕴藏的遗传信息,发育成和亲代相似的子代。 一、遗传与变异的奥秘 俗话说“种瓜得瓜,种豆得豆”,这是生物遗传的根本特征。人类与其他生物一样,在世代的交替中,子女(子代)总是保持着父母(亲代)的某些基本特征,这种现象就是遗传。但子代又会与亲代有所差异,有的差异还很明显。子代与亲代的这植钜炀褪潜湟臁R糯�捅湟焓巧��淖罨�咎卣髦�唬�ü��镆淮��姆敝程逑殖隼础? 遗传和可以遗传的变异都是由遗传物质决定的。这种遗传物质就是细胞染色体中的基因。人类染色体与绝大多数生物一样,是由DNA(脱氧核糖核酸)链构成的,基因就是在DNA链上的特定的一个片段。由于亲代染色体通过生殖过程传递到子代,这就产生了遗传。染色体在生物的生活或繁殖过程中也可能发生畸变,基因内部也可能发生突变,这都会导致变异。 如遗传学指出:患色盲的父亲,他的女儿一般不表现出色盲,但她已获得了其亲代的色盲基因,她的下一代中,儿子将因获得色盲基因而患色盲。 我们观察我们身边很多有生命的物种:动物、植物、微生物以及我们人类,虽然种类繁多,但在经历了很多年后,人还是人,鸡还是鸡,狗还是狗,蚂蚁、大象、桃树、柳树以及各种花草等等,千千万万种生物仍能保持各自的特征,这些特征包括形态结构的特征以及生理功能的特征。正因为生物界有这种遗传特性,自然界各种生物才能各自有序地生存、生活,并繁衍子孙后代。 大家可能会问,生物是一代一代遗传下来,每种生物的形态结构以及生理功能应该是一模一样的,但为什么父母所生子女,一人一个样,一人一种性格,各有各自的特征。又如把不同人的皮肤或肾脏等器官互相移植,还会发生排斥现象,彼此不能接受,这又如何解释呢?科学家研究的结果告诉我们,生物界除了遗传现象以外还有变异现象,也就是说个体间有差异。例如,一对夫妇所生的子女,各有各的模样,丑陋的父母生出漂亮的孩子,平庸的父母生出聪明的孩子,这类情况也并不罕见。全世界恐怕很难找出两个一模一样的人,既使是单卵双生子,外人看起来好像一模一样,但是与他们朝夕相处的父母却能分辨出他们之间的微细差异,这种现象就是变异。人类中多数变异现象是由于父母亲遗传基因的不同组合。每个孩子都从父亲那里得到遗传基因的一半,从母亲那里得到另一半,每个孩子所得到的遗传基因虽然数量相同,但内容有所不同,因此每个孩子都是一个新的组合体,与父母不一样,兄弟姐妹之间也不一样,而形成彼此间的差异。正因为有变异现象,人类才有众多的民族。人们可以很容易地从人群中认出张三、李四,如果没有变异,大家全都是一个样子,社会上的麻烦事就多了。除了外形有不同,变异还包括构成身体的基本物质--蛋白质也存在着变异,每个人都有他自己特异的蛋白质。所以,如果皮肤或器官从一个人移植到另一个人身上便会发生排斥现象,这就是因为他们之间的蛋白质不一样的缘故。 还有一类变异是遗传基因的突变,这类突变往往是由环境中的条件所诱发的,这种突变的基因还可以遗传给下一代。许多基因突变的结果会造成遗传病。 变异也可以完全由环境因素所造成,例如患小儿麻痹症后遗的跛足,感染大脑炎后形成的痴呆等这些性状都是由环境因素所造成的,是因为病毒感染使某些组织受损害,造成生理功能的异常,不是遗传物质的改变,所以不是遗传的问题,因此也不会遗传给下一代。 总之,遗传与变异是遗传现象中不可分离的两个方面,我们有从父母获得的遗传物质,保证我们人类的基本特征经久不变。在遗传过程中还不断地发生变异,每个人又在一定的环境下发育成长,才有了人类的多种多样。 二、遗传变异的科学理论 遗传的分子基础 (一)遗传物质的存在形式 (1)染色体是遗传物质的载体,遗传信息以基因的形式蕴藏于DNA分子中; (2)每个人体体细胞含两个染色体组,每个染色体组的DNA构成一个基因组; (3)广义的基因组包括细胞核染色体基因组和线粒体基因组; (4)人类细胞核染色体基因组中90%左右为DNA重复序列,10%为单一序列; (5)多基因家族是真核基因组中重要的结构之一。 (二)基因的结构及其功能 、真核生物基因的分子结构 (1)、基因的DNA序列由编码序列和非编码序列两部分构成,编码序列是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因;编码序列称为外显子,非编码序列称为内含子; (2)、在每个外显子和内含子的接头区存在高度保守的一致序列,称为外显子-内含子接头,即在每个内含子的5’端开始的两个核苷核为GT,3’端末尾是AG,特称之为GT-AG法则; (3)、真核生物基因的大小相关悬殊,外显子和内含子的关系也不是固定不变的; (4)、DNA分子两条链中,5’→3’链称为编码链,其碱基排列序列中储存着遗传信息;3’→5’链称为反编码链,是RNA合成的模板; (5)、每个断裂基因中第一个外显子和最后一个外显子的外侧都有一段不被转录的非编码区,称为侧翼序列,其上有一系列调控序列,对基因的表达起调控作用。这些结构包括: ①启动子:位于基因转录起始处,是RNA聚合酶的结合部位,能启动基因转录。 ②增强子:位于基因转录起始点的上游或下游,能增强启动子转录,提高转录效率; ③终止子:位于3’端非编码区下游的一段序列,在转录中提供转录终止信号。 、基因的复制 (1)、基因的复制是以DNA复制为基础的,每个DNA分子上有多个复制单位(复制子); (2)、每个复制子有一个复制起点,从起点开始双向复制,在起点两侧各形成一复制叉; (3)、DNA聚合酶只能使DNA链的3’端加脱氧核苷核,故复制只能沿5’→3’方向进行; (4)、与复制叉同向的新链复制是连续的,速度也较快,称为前导链;与复制叉反向的新链复制是不连续的(先要在RNA引物存在下合成一个个冈崎片段,然后在DNA连接酶作用下补上一段DNA),速度也较慢,称为后随链;故DNA的复制是半不连续复制; (5)、复制后的DNA分子都含有一条旧链和一条新链,故DNA的复制又是半保留复制。 、基因的表达 基因表达是DNA分子中所蕴藏的遗传信息通过转录和翻译形成具有生物活性的蛋白质或通过转录形成RNA发挥功能作用的过程。 (1)、转录:是在RNA聚合酶催化下,以DNA为模板合成RNA的过程。 ①新合成好的RNA称为不均一核RNA(也叫核内异质RNA,hnRNA); ②hnRNA要经过“戴帽”和“加尾”以及剪接等加工过程才能形成成熟的mRNA。 (2)、翻译:是以mRNA为模板指导蛋白质合成的过程。 ①mRNA分子中每3个相邻的碱基为三联体,能决定一种氨基酸,称为密码子; ②翻译后的初始产物大多无功能,需经进一步加工才可成为有一定活性的蛋白质。 、基因表达的调控(了解操纵子学说) 、基因的突变 (1)、基因突变的概念:基因突变是DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 (2)、基因突变的方式 ①碱基替换 也叫点突变,包括转换和颠换两种方式。其后果可以造成同义突变、错义突变、无义突变或终止密码突变(延长突变)等生物学效应。 ②移码突变 是DNA分子中某一位点增加或减少一个或几个碱基对,造成该位点以后的遗传编码信息全部发生改变。 ③动态突变 微卫星DNA或短串联重复序列,尤其是三核苷酸的重复,在靠近基因或位于基因序列中时,其重复次数在一代一代的传递中会出现明显增加的现象,导致某些遗传病的发生。 (3)、基因突变的修复 ①切除修复 是一种多步骤的酶反应过程,首先将受损的DNA部位切除,然后再合成一个片段连接到切除的部位以修补损伤。 ②重组修复 又称复制后修复,是在DNA受损产生胸腺嘧啶二聚体(T-T)以后,当DNA复制到损伤部位时,再与T-T相对应的部位出现切口,完整的DNA链上产生一个断裂点。此时,在重组蛋白作用下,完整的亲链与有重组的子链发生重组,亲链的核苷酸片段补充了子链上的缺失。重组后亲链的切口在DNA聚合酶作用下,以对侧子链为模板,合成单链DNA片段来填补,随后在DNA连接酶作用下,以磷酸二酯键使新片段与旧链相连接,而完成修复过程。 2、遗传的细胞基础 染色质:在间期细胞核,染色质的功能状态不同,折叠程度也不同,分为常染色质和异染色质两种。1、常染色质 在细胞间期处于解螺旋状态,具有转录活性,呈松散状,染色较浅;2、异染色质 在细胞间期处于凝缩状态,很少进行转录或无转录活性,染色较深;3、性染色质 在间期细胞核中染色体的异染色质部分显示出来的一种特殊结构,有两种:(1)、X染色质 正常女性间期细胞核中有一个染色较深,大小约为10nm的椭圆形小体(了解Lyon假说)。(2)、Y染色质 正常男性间期细胞核用荧光染料染色后,核内可见一个圆形或椭圆形的强荧光小体,直径为3nm左右。 染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 (三)人类的正常核型:色体数目、形态结构特征的分析叫核型分析。1、非显带核型 根据丹佛体制,将正常人类体细胞的46条染色体分为23对7个组(A、B、C、D、E、F和G组)。在描述一个核型时,首先写出染色体总数(包括性染色体),然后是一个“,”号,最后是性染色体。正常男性核型描述为46,XY;女性为46,XX。2、显带核型 用各种特殊的染色方法使染色体沿长轴显现出一条条明暗交替或深浅相间的带,故又叫带型。根据ISCN规定,描述一特定带时,需要写明4项内容:①染色体号;②臂号;③区号;④带号。 遗传的基本规律:孟德尔提出的分离定律和自由组合定律以及摩尔根提出的连锁与交换定律构成了遗传的基本规律,通称为遗传学三大定律。分离律说的是遗传性状有显隐性之分,这样具有明显显隐性差异的一对性状称为相对性状。相对性状中的显性性状受显性基因控制,隐性性状由一对纯合隐性基因决定。杂合体往往表现显性基因的性状。基因在体细胞中成对存在,在形成配子时,彼此分离,进入不同的子细胞。减数分裂时同源染色体彼此分离,分别进入不同的生殖细胞是分离律的细胞学基础。自由组合律是说生物在形成配子时,不同对基因独立行动,可分可合,以均等的机会组合到同一个配子中去。减数分裂过程中非同源染色体随机组合于生殖细胞是自由组合律的细胞学基础。连锁与交换律是说位于同一条染色体上的基因是互相连锁的,它们常一起传递(连锁律),但有时也会发生分离和重组,是因为同源染色体上的各对等位基因进行了交换。减数分裂中,同源染色体联会和交换是交换律的细胞学基础。 单基因性状的遗传:遗传性状受一对基因控制的,称单基因性状的遗传。单基因性状又叫质量性状。1、决定某种遗传性状的等位基因,在传递时服从分离律;2、当决定两种遗传性状的基因位于不同对染色体上时,这两种单基因性状的传递符合自由组合律。3、如果决定两种遗传性状的基因位于同一对染色体上时,它们的传递将从属于连锁与交换律。 多基因性状的遗传:由多基因控制的性状往往与单基因性状不同,其变异往往是连续的量的变异,称为数量性状。每对基因对多基因性状形成的效应是微小的,称为微效基因。微效基因的效应往往是累加的。多基因遗传性状除受多基因遗传基础影响外,也受环境因素影响。(熟悉多基因遗传假说,了解多基因遗传的特点) 遗传的变异:(一)染色体异常与疾病;染色体异常类;形成机; 数目畸变 整倍性改变 单倍体 多倍体 双雄受精,双雄受精,核内复制 非整倍性改变 亚二倍体 染色体不分离,染色体丢失 超二倍体 结构畸变 缺失(del) 受多种因素影响,如物理因素、化学因素和生物因素等 重复(dup) 倒位(inv) 易位(t) 环状染色体 双着丝粒染色体 等臂染色体 1、一个个体内同时存在两种或两种以上核型的细胞系,这种个体称嵌合体。 2、染色体结构畸变的描述方式有简式和详式两种。 (二)人类的单基因遗传病1、常染色体显性遗传(AD)病 (1)、AD系谱特点:①致病基因位于常染色体上,遗传与性别无关;②患者双亲中至少有一方是患者,但多为杂合体;③患者与正常个体结婚,后代有1/2的发病风险;④系谱中可看到连续传递现象。 (2)、其它AD类型:①不完全显性或半显性,是指杂合体的表现型介于显性纯合体与隐性纯合体的表现型之间;②不规则显性,是指杂合体由于某种原因不一定表现出相应的症状,即使发病,但病情程度也有差异;③共显性,是指一对等位基因无显隐性之分,杂合状态下,两种基因的作用都能表现出来;④延迟显性,有显性致病基因的杂合体在生命早期不表现出相应症状,当到一定年龄后,其作用才表达出来。 2、常染色体隐性遗传(AR)病 (1)、AR系谱特点:①致病基因的遗传与性别无关,男女发病机会均等;②患者双亲往往表型正常,但都是致病基因的携带者,患者的同胞中约有1/4的可能将会患病,3/4表型正常,但表型正常者中2/3是可能携带者;③系谱中看不到连续传递现象,常为散发;④近亲婚配后代发病率比非近亲婚配后代发病率高。 (2)、常见AR病:苯丙酮尿症、白化病、先天性聋哑、高度近视和镰状细胞贫血等。 3、X连锁显性遗传(XD)病 (1)、XD系谱特点:①系谱中女性患者多于男性患者,且女患者病情较轻;②患者双亲中至少有一方是患者;③男性患者后代中,女儿都为患者,儿子都正常;女性患者后代中,子女各有1/2的患病风险;④系谱中可看到连续传递现象。 (2)、常见XD病:抗维生素D性佝偻病。 4、X连锁隐性遗传(XR)病 (1)、XR系谱特点:①人群中男性患者远多于女性患者;②双亲无病时,儿子可能发病,女儿则不会发病;③由于交叉遗传,患者的兄弟、舅父、姨表兄弟和外甥各有1/2的发病风险;④如果女性是患者,父亲一定是患者,母亲一定是携带者或患者。 (2)、常见XR病:甲型血友病、红绿色盲。 5、Y连锁遗传(YL)病 全男性遗传 (三)多基因遗传病 1、有关多基因遗传病的几个重要概念 (1)、易感性 在多基因遗传病中,由多基因遗传基础决定某种多基因病发病风险高低。 (2)、易患性 由遗传基础和环境因素共同作用,决定了一个个体是否易于患病。 (3)、发病阈值 当一个个体的易患性高达一定水平即达到一个限度时,这个个体就将患病,这个易患性的限度称为阈值。 (4)、遗传度 在多基因遗传病中,易患性受遗传基础和环境因素的双重影响,其中遗传基础所起作用大小的程度称为遗传度或遗传率。一般用百分率(%)来表示。 2、多基因遗传病的特点 (1)、有家族聚集倾向,患者亲属的发病率高于群体发病; (2)、随着亲属级别的降低,患者亲属的发病风险迅速降低; (3)、近亲婚配时,子女患病风险增高; (4)、发病率有种族(或民族)差异。 三、遗传与变异在当代 人类基因组计划的工作草图已于今年的6月26日绘制完成,但要将全部30多亿个碱基完全装配完成还需要一段时间,预计要到明年的6月份。即使完成了人类基因组计划的“精图”,也只是我们认识人类基因功能的开始,完全弄清基因的功能及其相互间的作用,至少还要40年的时间。毋庸赘言,这是一项浩繁巨大的工程。 迄今为止,人们对整个人类基因组中所含有的基因数目尚存争议,有人说是3万,有人说是14万,相差非常大。在整个人类基因组序列中,只存在1%的差异,就是这1%的差异导致了人种、肤色、身高、眼睛、胖瘦以及疾病的易感性等方面的不同。科学家除继续研究基因的数量和功能外,基因在多大程度上受外界环境和体内因素的影响以及这种改变是否可以一代代地延续下去,也是需要解决的问题。 上述问题涉及到后成说(epigenetics)这一范畴。后成说是研究通过其他的化学途径,而不是通常所说的碱基突变,使基因活性发生半永久性改变的一门科学。后成说的重要性一直存有很大争议。如果后成说真有科学依据的话,那么它将是解释不同个体之间,甚至不同物种之间存在差异的关键所在,同时还将是疾病发生的一个重要机制。 不同基因的表达:基因含有合成蛋白质的指令,蛋白质合成的过程称为基因表达。但是遗传学家们很早以前就知道通过对DNA链碱基上的化学基团进行修饰来调控基因表达、影响蛋白质的合成。最常见的修饰方式是基因的甲基化(甲基是由一个碳原子和三个氢原子组成的基团),即在基因上添加甲基基团,结果常常会终止基因表达。 科研人员通过对某些哺乳动物的研究发现,此类修饰只存在于个体中,而不遗传给后代,因为这种修饰在精子和卵子细胞中常常被清除。最近有人发现,后成特征在小鼠中可以遗传。在悉尼大学生化学家怀特劳博士所做的实验中,遗传学相同的小鼠,同其父母相比,更像它们的母亲。因为它们继承了其母亲的卵子DNA的甲基化类型。该型甲基化在决定小鼠毛色中起着非常重要的作用。 怀特劳博士小组的大量的研究数据表明,要探明动物是如何把物理特征或疾病易感性传给后代的,有必要先搞清可遗传的后成特征。如果后成特征可遗传,那么这些特征所引起的疾病应能够像普通的基因突变一样在家系之间传递。该研究小组对小鼠的后成标记在传代过程中如何关闭和表达进行了深入地研究。研究人员将一个可以产生特异类型红细胞的基因(称为转基因)导入具有相同遗传学特征小鼠的基因组中(接受该基因的小鼠称之为转基因鼠)。研究发现这些转基因小鼠体内的转基因正以不同的方式表达。有些转基因小鼠体内40%的红细胞表达该基因,而另一些则根本就不表达。同时该小组还对小鼠毛色进行了研究,发现与毛色有关的DNA甲基化增高与转基因的不表达(或称为“沉默”表达)有关。但是在这种情况下,后成性改变可来自父方,也可以来自母方。 令人费解的是,虽然这种基因表达的沉默现象至少可以维持三代,但不是不可逆转的。在该型的后代小鼠与非同类小鼠交配时,发现在后代小鼠中不存在甲基化和表达沉默现象,转基因又可在小鼠的幼崽中获得表达。如果这种基因沉默和再活化现象是自然发生的话,那么就可以解释个体之间和代与代之间差异的原因。 后成说还可以解释物种之间的差异。最近普林斯顿大学的迪尔格曼通过两种相近小鼠的交配,将多个小鼠基因上的后成特征破坏。这些小鼠相互之间不能进行正常的交配,并且它们杂交的后代表现为生长异常。研究人员认为这种生长异常与杂交后代基因上的甲基化模式破坏有关。他们推测后成性效应非常显著,仅靠改变这些特征就可以造就新物种。 大家都知道,物种的产生是遗传变异逐渐积累的结果。但是,迪尔格曼认为有些物种出现之快不是该假说所能解释的。所以物种后成说的假设有一定优势。例如,甲基化可以迅速地关闭整条基因的表达,并引起根本的改变。这种改变足以阻止新的品种与旧品种之间的杂交,尤其是阻止新物种的产生。 四、结论 变异基因的表达:许多生物学家对此种假说表示不屑。基因序列虽不能完全解释动物的特征,但是至少可以解释一些由基因突变所引起的疾病。 疾病基因突变假说的倡导者把癌症作为经典的实例,来说明在个体DNA水平上,到底有多少碱基差错才能导致肿瘤。但加州大学伯克利分校的杜斯博格博士不同意这一观点,认为癌症并不是由基因异常引起的,而是由另一形式的后成现象 染色体异常引起的。 根据癌症基因突变假说,指导细胞分裂和死亡的基因突变使正常的细胞分裂和死亡过程遭到破坏,导致细胞不受控制地生长。但是,最近杜斯博格博士领导的研究小组报道,至今还没有人证实突变的基因会使正常的细胞变为癌细胞。他还指出,如果突变基因对细胞分裂具有显著影响的话,为什么有些情况下,突变发生的数月甚至数年后才发展为癌症,这是非常奇怪的现象。他认为可以用后成性非整倍现象对上述问题加以解释,非整倍性是指细胞具有错误的染色体个数。 在细胞分裂时,染色体排列整齐,通过纺锤体(一种蛋白质的支架)分配到子代细胞中。杜斯博格推测,致癌的化学物质可以影响纺锤体,因此,造成子代细胞具有或多或少的染色体。由于这种错误分配的染色体不稳定,细胞分裂时染色体之间相互混合并发生非自然的重组。 大多数重组对细胞而言是至关重要的,但最终会产生一个分裂异常的细胞。产生这种异常细胞的概率非常小,这种低概率事件可以解释为什么从接触致癌物质到细胞发生癌变,要经过这么长时间。细胞的非整倍性是5000多种肿瘤的一种显著特征。 与个体碱基突变相比,染色体数的增加或减少使细胞表征发生显著改变。因为染色体数目的改变(即非整倍性),可以导致成千上万种蛋白质活性发生改变,而不仅仅是一种或两种蛋白质,导致细胞分裂的失控。假如这种假说成立的话,那么现在试图通过定点修复癌基因来治疗癌症的策略将毫无效果。 杜斯博格博士10年前曾因自己的假说而声名狼藉,他认为人类免疫缺陷病毒(HIV)并不能引起艾滋病。一系列的HIV和艾滋病的研究表明,杜斯博格的理论是极其荒谬的。这严重地损害了他的声誉,因此,他的其他理论也很容易被人忽视。但是,他的非整倍性假说似乎非常有价值。癌症中非整倍体的普遍性尚需进一步阐明。
1、通过遗传学研究人类起源2、在遗传学的指导下通过生物工程开发转基因作物3、基因治疗
baohu shengwuxue 保护生物学(~rvation bid。盯)研究生物及其生 存环境保护的学科。生命的两大基本特征是其延续性与多样 性。生命的延续性指地球上的生命形式具有自我复制、繁衍再 生的能力;生物多样性指生命形式的遗传因素、物种,以及它们 之间和它们与环境条件间相互作用的多样性。由于生物多样 性是生物的存在方式,所以保存生物多样性即保证了物种的延 续。因此,保护生物学也是研究生物多样性保护的科学。 保护生物学研究当前物种濒危、灭绝的机制,如遗传多样 性与种群生存力,生境破碎与种群生存力,以及种群结构与种 群生存力的关系。保护生物学也研究全球变化对生物多样性 的影响,生物多样性的演化历程以及人类社会发展与生物环境 的相互作用。其目标是评估人类对生物多样性的影响,提出防 止物种灭绝的具体措施。 保护生物学既具有理论科学的性质,又具有应用管理科学 的特征。生态学理论中的种群生态学、群落生态学与生态系统 生态学是保护生物学的核心内容。有关物种多样性的时空变 化理论,如群落演替中种群的消长兴衰,环境梯度上的物种分 布格局和不同地点的生态系统多样性等,都是构成保护生物学 的生态学基础。群体遗传学探讨种群遗传多样性与选择、群体 大小的关系。因此,保护生物学与群体遗传学紧密相关。另 外,进化论、生物地理学和动植物分类学都是保护生物学的 基础。 保护生物学的特点之一是其综合性。许多应用学科与保 护生物学有关,如野生动物管理学、水产养殖学、林学、农学和 环境保护科学等。自然保护的概念己经从单一物种的保护发 展到整个自然生态环境的保护和生物多样性的保护。然而,野 生动物作为生态系统中的最活跃、最引人注目、对环境变化敏 感的部分,其保护和持续利用仍然是保护生物学研究的焦点 之一。 保护生物学也涉及到社会科学问题。制定环境保护法、野 生动物保护法需要保护生物学的研究。少数民族地区社区的 生存和发展与生物多样性的关系紧密,于是,人类学和民族学 研究亦提供出了生物资源的合理利用和生物多样性的保护问 题。保护生物学还是一门决策科学。为了保护自然,减缓物种 灭绝,人们依据保护生物学原理作出管理决策。检验决策的标 准,是珍稀物种是否仍有可生存的野生种群,具有代表性的自 然生态系统是否保存完整,对生物资源的利用是否既满足当代 的需要,又保存了未来利用的基础。 l卯8年,第一届国际保护生物学大会在美国圣地亚哥动 物园召开。1985年,保护生物学会成立。这个学会是目前世界 上会员人数增长最快的一个学会。从19男)年开始,北美的许 多大学已经设立了保护生物学专业。许多基金会,包括美国国 家科学基金会,都将保护生物学研究作为优先资助领域。两本 保护生物学专业期刊“生物保护”(Biol哈以肠脱四以沁n)和“保 护生物学”(。概口ation Bio】o留)已分别在1980年和1987年创 刊发行
疾病简介 遗传病是指由遗传物质发生改变而引起的或者是由致病基因所控制的疾病。[编辑本段]疾病类型 由于遗传物质的改变,包括染色体畸变以及在染色体水平上看不见的基因突变而导致的疾病,统称为遗传病。根据所涉及遗传物质的改变程序,可将遗传病分为三大类: 其一是染色体病或染色体综合征,遗传物质的改变在染色体水平上可见,表现为数目或结构上的改变。由于染色体病累及的基因数目较多,故症状通常很严重,累及多器官、多系统的畸变和功能改变。 其二是单基因病,目前已经发现 5余种单基因病,主要是由单个基因的突变导致的疾病,分别由显性基因和隐性基因突变所致。所谓显性基因是指等位基因中(一对染色体上相同座位上的基因)只要其中之一发生了突变即可导致疾病的基因。隐性基因是指只有当一对等位基因同时发生了突变才能致病的基因。 第三是多基因病,顾名思义,这类疾病涉及多个基因起作用,与单基因病不同的是这些基因没有显性和隐性的关系,每个基因只有微效累加的作用,因此同样的病不同的人由于可能涉及的致病基因数目上的不同,其病情严重程度、复发风险均可有明显的不同,如唇裂就有轻有重,有些人同时还伴有腭裂。值得注意的是多基因病除与遗传有关外,环境因素影响也相当大,故又称多因子病。很多常见病如哮喘、唇裂、精神分裂症、高血压、先心病、癫痫等均为多基因病。 遗传病是指完全或部分由遗传因素决定的疾病,常为先天性的,也可后天发病。如先天愚型、多指(趾)、先天性聋哑、血友病等,这些遗传病完全由遗传因素决定发病,并且出生一定时间后才发病,有时要经过几年、十几年甚至几十年后才能出现明显症状。如假肥大型肌营养不良要到儿童期才发病;慢性进行性舞蹈病一般要在中年时期才出现疾病的表现。有些遗传病需要遗传因素与环境因素共同作用才能发病,如孝喘病,遗传因素占80%,环境因素占20%;胃及十二指肠溃疡,遗传因素占30%~40%,环境因素占60%~70%。遗传病常在一个家族中有多人发病,为家族性的,但也有可能一个家系中仅有一个病人,为散发性的,如苯丙酮尿症,因其致病基因频率低,又是常染色体隐性遗传病,只有夫妇双方均带有一个导致该疾病的基因时,子女才会成为这种隐性致病基因的纯合子(同一基因座位上的两个基因都不正常)而得病,因此多为散发,特别在只有一个子女的家庭,偶有散发出现的遗传病患者,就不足为奇了。 那么,遗传病能够治疗吗? 以前,人们认为遗传病是不治之症。近年来,随着现代医学的发展,医学遗传学工作者在对遗传病的研究中,弄清了一些遗传病的发病过程,从而为遗传病的治疗和预防提供了一定的基础,并不断提出了新的治疗措施。家族遗传病 遗传性疾病是由于遗传物质改变而造成的疾病。 遗传病具有先天性、家族性、终身性、遗传性的特点。 遗传病的种类大致可分为三类: 一、单基因病。 单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种: 1.显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。 2.隐生遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。 3.性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。 二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。 三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病。 上述遗传病并非携带致病基因就肯定会发病。 其实几乎所有的疾病都与基因有关系,也和环境有密切联系!遗传按生物体的照性状分,还可以分为质量性状和数量性状!所谓质量性状就是白种人和黄种人的差别,这主要是遗传决定的,受环境因数影响小。也就是男女的差别!数量性状即稻谷的重量,人的身高,颜色深浅等等,这些都叫数量性状。数量性状是多基因决定的,基因数一般不易测算,因为误差可以相差一个数量级。所以主要讲基因的总效应!数量性状受环境的影响非常大。可以说超过遗传因子! 总之,绝大部分疾病是环境因子和遗传因子共同作用的结果由于受精卵形成前或形成过程中遗传物质的改变造成的疾病。有人认为只有受父母遗传因素决定的疾病才是遗传病,这一认识不够全面。例如有一些染色体畸变并非由父母遗传因素决定,而是在受精卵形成过程中产生,习惯上染色体畸变都包括在遗传病的范畴内。还有人认为凡是受遗传因素影响的疾病都是遗传病,这一概念也不确切,因为在人类所有疾病中,除了少数几种(如外伤造成骨折)完全由环境因素所致,不受遗传因素影响外,几乎绝大多数疾病都是环境和遗传两方面因素互相作用的结果,只是两者影响疾病发生的程度可不相同。即使细菌感染、外伤后癫痫等环境因素十分明显的疾病,不同个体之间也存在着易感性的差异,而这种差异也是受遗传因素影响的,不可能把这些病都包括在遗传病的范畴之中。完全由遗传因素决定的疾病(A类,如21三体综合征)和完全由环境因素决定的疾病(D类, 如外伤性骨折)都是少数,而大多数人类疾病都居于B类和C类。B类指基本上由遗传因素决定,但需要环境中一定的诱因才发病,如苯丙酮酸尿症患儿在出生后摄入苯丙氨酸就会发病。 C类指遗传因素和环境因素都对发病起作用的疾病,如高血压病、感染等;但不同疾病的遗传度不同,即遗传因素影响越大,则遗传度就越高。所以从理论上来说, A、B、C等三类均属遗传病,但C类如感染、外伤后癫痫等在习惯上不包括在遗传病的范畴中。遗传病不同于先天性疾病,后者是指出生时就已表现出来的疾病。虽然不少遗传病在出生时就已表现出来,但也有些遗传病在出生时表现正常,而是在出生数日、数月,甚至数年、数十年后才开始逐渐表现出来,这显然不属于先天性疾病。另一方面,先天性疾病也并不都是遗传因素造成的,例如孕期母亲受放射线照射时所致的先天畸形,就不属于遗传病。遗传病也不同于家族性疾病。虽然有些由于同一个家族成员具有相同的遗传基础可表现遗传病的家族发病,但是不同的遗传病在亲代、子代之间的传递规律是复杂多样的,有些遗传病(如白化病等隐性遗传病)就可能没有家族史,另一方面,家族性疾病也可能由非遗传因素(如相同的生活条件)造成,如饮食中缺乏维生素 A使多个家族成员出现夜盲。 过去认为遗传病是一个较罕见的疾病,但随着医学的发展和人民生活水平的提高,一些过去严重威胁人类健康的传染病、营养性疾病得以控制,而遗传病成为比较突出的问题。如英国1914年的一项儿童死因调查表明,非遗传性疾病(如感染、肿瘤等)占%,而遗传性疾病只占%,但到20世纪70年代后期,两类疾病各占50%。国内的情况也同样,1951年北京市儿童的死亡原因中,感染性疾病占重要地位,但在1974~1976年儿童死因分析中,先天畸形占全部死因的%,居首位,而在这些畸形中,属遗传病的达3~10名。另一方面,遗传病的病种非常多,随着生物学和医学的发展,近年发现新的遗传病更是层出不穷。表1 表明1958~1982年人类认识的单基因病的病种,至今已有4000种左右的遗传病被人们所认识。 简史 18 世纪法国人莫佩尔蒂第一个对遗传病作了家系调查,他分析了白化病的遗传方式。1814年亚当斯发表有关临床疾病遗传性质的论文,这被认为是近代最早的一篇系统论述遗传病的文章。1908年.加罗德首次提出“先天代谢异常”的概念,将遗传与代谢联系起来,并认为尿酸尿症等先天代谢异常的遗传规律可以用孟德尔定律来解释,为医学遗传学作出了划时代的贡献。1949年L.波林提出了“分子病”的概念。1944年比克尔首先提出控制新生儿营养,可有效防止苯丙酮酸尿症的发展,为遗传病的有效治疗开创了新的一章。1958年J.勒热纳发现先天愚型患儿为三条21号染色体,这是第一次报道了遗传病的染色体异常。 1969年拉布斯发现了 X染色体的脆性部位,为染色体的畸变的研究开辟了一个新的领域。从60年代起,遗传病的产前诊断开始应用于临床。1978年卡恩和多齐首次将 DNA重组技术应用于遗传病的诊断,他们诊断了一例镰刀状细胞性贫血,此后这一诊断技术发展极为迅速。 分类 按照目前对遗传物质的认识水平,可将遗传病分为单基因遗传病、多基因遗传病和染色体病三大类。 单基因遗传病 同源染色体中来自父亲或母亲的一对染色体上基因的异常所引起的遗传病。这类疾病虽然种类很多,3000种以上(见表[1958~1982年全世界报告的单基因遗传病的病种数]1958~1982年全世界报告的单基因遗传病的病种数),但是每一种病的患病率较低,多属罕见病。欧美国家统计,约1%的新生儿患有较严重的基因病。按照遗传方式又可将单基因病分为四类:①常染色体显性遗传病。人类的23对染色体中,一对与性别有关,称为性染色体,其余22对均称常染色体。同源常染色体上某一对等位基因彼此相同的,称为纯合子,一对基因彼此不同的称杂合子。如果在杂合状态下,异常基因也能完全表现出遗传病的,称为常染色体显性遗传病,如多指并指、先天性肌强直,这类遗传病的发生与性别无关,男女患病率相同。父母中有一位患此疾病,其子女中就可能出现患者。据估计,约7‰新生儿患有常显体显性遗传病。②常染色体隐性遗传病。常染色体上一对等位基因必须均是异常基因纯合子才能表现出来的遗传病。大多数先天代谢异常均属此类。父母双方虽然外表正常,但如果均为某一常显体隐性遗传基因的携带者,其子女仍有可能患该种遗传病。近亲婚配时容易产生纯合状态,所以其子女隐性遗传病的发病率也高。③常染色体不完全显性遗传病。这是当异常基因处于杂合状态时,能且仅能在一定程度上表现出症状的遗传病。如地中海贫血,引起该病的异常基因为,纯合子 表现为重症贫血,杂合子则表现为中等程度的贫血④ 伴性遗传病。分为X连锁遗传病和Y连锁遗传病两种。有些遗传病的基因位于X染色体上,Y染色体过于短小,无相应的等位基因,因此,这些异常基因将随X染色体传递,所以称为X连锁遗传病。也分为显性和隐性两种,前者是指有一个X染色体的异常基因就可表现出来的遗传病,由于女性拥有两条X染色体而男性只有一条,所以女性获得该显性基因的机会较多,发病率高于男性,但这类遗传病为数很少,至今仅知10余种。如Xg血型,又如抗维生素D佝偻病是 X连锁不完全显性遗传病。X连锁隐性遗传病是指X染色体上等位基因在纯合状态下才发病者,在女性,只有当两条X染色体上的一对等位基因都属异常时才患病,如果其中有一条 X染色体的等位基因正常就不会患有此病。但是男性只有一条X染色体,只要X染色体上的基因异常,就会表现出遗传病,所以男性发病率高于女性发病率。这种伴性隐性遗传病占伴性遗传病的绝大部分,例如红绿色盲、血友病等都比较常见。据估计约1‰新生儿患有X连锁遗传病。 Y连锁遗传病的致病基因位于Y染色体上,X染色体上则无相应的等位基因,因此这些基因随着Y染色体在上下代间传递,也叫全男性遗传。在人类中属于 Y连锁遗传病的有外耳道多毛症等。 多基因遗传病 与两对以上基因有关的遗传病。每对基因之间没有显性或隐性的关系,每对基因单独的作用微小,但各对基因的作用有积累效应。一般说来,多基因遗传病远比单基因遗传病多见。受环境因素的影响,不同的多基因遗传病,受遗传因素和环境因素影响的程度也不同。遗传因素对疾病发生的影响程度,可用遗传度来说明,一般用百分数来表示,遗传度越高,说明这种多基因遗传病受遗传因素的影响越大。例如唇裂、腭裂是多基因遗传病,其遗传度达76%,而溃疡病仅37%。多基因遗传病还包括一些糖尿病、高血压病、高脂血症、神经管缺陷、先天性心脏病、精神分裂症等。在人群中,多基因遗传病的患病率在2~3%以上。 染色体病 指由于染色体的数目或形态、结构异常引起的疾病。新生儿中染色体异常的发病率为 %。染色体异常称为染色体畸变,包括常染色体的异常和性染色体的异常。但是染色体病在全部遗传病中所占的比例不大,仅约1/10。 遗传病的研究和诊断 要研究判断某一疾病是否为遗传病可通过以下几个途径:家系调查及分析、挛生子分析、种族比较,伴随性状研究、动物模型和 DNA分析。通过家系调查、分析并与人群发病情况比较,不仅可以判断某病是否为遗传病,如果是遗传病的话,还可进一步确定其遗传方式。通过单卵孪生和双卵孪生同胞发病的一致率分析,可能判断某种病受遗传因素及环境因素影响的程度。不同种族和民族发病情况的比较,尤其是对同样生活环境不同种族的发病率的研究可能为遗传病的判断提供重要线索。在伴随症状分析中,目前应用最多的是同种白细胞抗原(HLA)系统,应用这一系统作为遗传病标志。研究作为某一遗传的伴随性状,进行连锁分析,则也能为遗传病的判断提供依据。目前已建立了数十种染色体畸变和单基因遗传病的动物模型,为遗传病的研究提供了有力手段。 DNA分析是近年来发展的重要手段,其中以限制片断长度多态性(RFLP)分析在遗传病判断中应用最多。 遗传病的临床诊断比其他疾病更困难。一方面遗传病的种类极多,另一方面每一种遗传病的单独发病率很低,所以临床医师在遗传病的诊断上不容易取得经验。除了一般疾病的诊断方法(如病史、体格检查、实验室和仪器检查)外,遗传病的诊断还可能需要依靠一些特殊的诊断手段,如染色体检查,特殊的生化学测定及系谱分析。遗传病的临床表现是最重要的诊断线索,每一种遗传病都有一些症状、体征同时存在,被称为“综合征”,这是提示诊断的最初线索,也是选择实验室检查和其他遗传学检查的依据。对遗传病患者必须要详细询问家族史并绘制准确可靠的家系谱,对家系谱的分析不仅是遗传病诊断的一项依据,而且对遗传方式的判明及进行遗传咨询也是极为重要的。皮纹分析是遗传病诊断的另一种特殊手段,主要对染色体病最有价值,对其他个别单基因遗传病也可能有一定意义,常用于临床检查的是指纹、掌纹、掌褶纹、指褶纹和脚掌纹。许多遗传病的最后诊断,还有赖于染色体检查和特殊的生化测定或DNA分析。 产前诊断是遗传病诊断的一个重要方面,在婴儿出生以前通过穿刺取得羊水或绒毛组织。进行染色体检查、特异的酶活性或代谢产物测定,或进行DNA分析对胎儿的发病情况作出判断,决定是否需要进行人工流产以终止妊娠,这在减少遗传病患儿的出生,提高人口素质方面具有重要意义,尤其在目前人类对大多数遗传病还不能进行有效治疗的条件下,用终止妊娠来防止遗传病患儿的出生更具有突出的意义。近年来由于 B型超声扫描仪的广泛应用和技术的提高,在产前诊断,尤其是发育畸形的诊断上有很大的价值。胎儿镜也开始应用于产前诊断。 基因诊断是新发展起来的一项重要技术,也能对近百种遗传病作出准确的诊断,但是由于这些遗传病大多数还不能作有效治疗,所以从医学伦理学的观点来看,除应用于产前诊断外,基因诊断的推广仍存在很大问题。 治疗和预防,要根治遗传病,应该从基因水平或染色体水平来纠正已发生的缺陷,这种方法称为基因治疗,属于基因工程的范畴。但是基因治疗在理论上、技术上还存在着极大的困难,目前谈不上临床应用。目前对遗传病所能进行的治疗只是在早期诊断的前提下,通过控制环境条件(如饮食成分等),调节代谢过程,防止症状的出现,称为“环境工程”。目前能应用于环境工程的治疗包括饮食控制疗法(如苯丙酮尿症用低或无苯丙酮酸奶粉喂养)、药物疗法(如用维生素B6治疗B6 依赖症,用别嘌呤醇治疗痛风等)、手术治疗(如脾切除术治疗遗传性球形红细胞增多症)、酶的补充(如异体骨髓移植治疗戈谢氏病)和对症疗法(如用抗癫痫药物控制苯丙酮酸尿症的惊厥)等。环境工程虽然可以减轻或消除一些遗传病的症状,对个体来说是有利的,但是治疗结果却使带有致病基因的患者不仅存活下来,甚至还能继续繁殖后代,而这些患者如果不经治疗本来可以自然淘汰,至少不会繁衍后代。所以环境工程对整个人类的影响可能是有害的,它将使致病基因的频率在人群中逐代提高,从而导致遗传病发病率的增高。 正因为目前对大多数遗传病尚无有效治疗方法,所以遗传病的预防就有特别重要的意义。预防措施包括新生儿筛查、环境保护、携带者的检出和遗传咨询等方面。新生儿筛查是指对所有出生的婴儿进行某项遗传病的简单检查,以便在症状出现以前就开始治疗,防止症状发生。只有那些在症状出现以前就可以通过检查发现生化异常,而且已有治疗措施,而不给予治疗日后又会造成严重残疾的遗传病才进行新生儿筛查。苯丙酮酸尿症和先天性甲状腺功能低下在许多国家已列为法定新生儿筛查项目。中国自1982年以来在北京、上海、天津、武汉等地也进行了一些筛查。其中1985年发表的全国12省市的苯丙酮酸尿症筛查是中国第一次报告的较大规模的新生儿筛查。生物素基酶缺陷的新生儿筛查在国际上也还是一个新课题,中国从1987年开始已在北京开始了这项筛查工作。环境保护是指减少或消除环境中的致畸剂、致癌剂、致染色体畸变剂和致基因突变剂,主要是工农业生产中产生的污染。携带者检出是指将那些外表正常,但带有致病基因或异常染色体的个体从人群中检出,对其婚姻和生育进行指导,防止其后代发生这种遗传病,检出的方法主要是染色体检查、特异的酶活性测定或代谢产物测定以及DNA分析,目前已能对染色体平衡易位及百余种单基因病作携带者的检出,对这些遗传病的预防有重要意义。遗传咨询, 1952年首先出现在美国,中国70年代以后才开展起来,是医务人员对遗传病患者及其家属对该遗传病的病因、遗传方式、防治、预后,以及提出的各项问题进行解答,并对患者的同胞子女再患此病的危险率作出估计,给予建议和指导。可以认为遗传咨询、产前诊断和终止妊娠三者为防止遗传病患者出生的“三部曲”。有人把婚姻咨询和生育咨询也纳入遗传咨询的范畴内,这些工作对优生优育具有重大意义。
汗。。不会写。。你自己加油吧。。。
遗传携带者的检出 遗传携带者(genetic carrier)是指表型正常,但带有致病遗传物质的个体。一般包括: ①隐生遗传杂合子;②显性遗传病的未显者;③表型尚正常的迟发外显者;④染色体平衡易位的个体。 遗传携带者的检出对遗传病的预防具有积极的意义。因为人群中,虽然许多隐性遗传病的发病率不高,但杂合子的比例却相当高。例如苯酮尿症的纯合子在人群中如为1:1000,携带者(杂合子)的频率为2:50,为纯合子频率的200倍。对发病率很低的遗传病,一般不做杂合子的群体筛查,仅对患者亲属及其对象进行筛查,也可以收到良好效果。对发病率高的遗传病,普查携带者效果显著。例如我国南方各省的α及β地中海贫血的发病率特别高(共占人群8%-12%,有的省或地区更高),因此检出双方同为α或同为β地贫杂合子的机会很多,这时,进行婚姻及生育指导,配合产前诊断,就可以从第一胎起防止重型患儿出生,从而收到巨大的社会效益和经济效益,不仅降低了本病的发病率,而且防止了不良基因在群体中播散。 染色体平衡易位携带者生育死胎及染色体病患儿的机会很大(参阅第二章),因此,对染色体平衡易位的亲属进行检查十分重要。 隐性致病基因杂合子检出方法的理论根据是基因的剂量效应,即基因产物的剂量,杂合子介于纯合子与正常个体之间,约为正常个体的半量,但因机体内外环境各种因素对基因表达的影响,以及检测方法的不同(直接测定基因产物或测定基因间接产物),使测定值在正常与杂合子之间,杂合子与纯合子之间发生重叠,造成判断的困难。 杂合子携带者的检测方法大致可分为:临床水平、细胞水平、酶和蛋白质水平及分子水平。从临床水平,一般只能提供线索,不能准确检出,故已基本弃用。细胞水平主要是染色体检查,多用于平衡易位携带者的检出。酶和蛋白质水平的测定(包括代谢中间产物的测定),目前对于一些分子代谢病杂合子检测尚有一定的意义,但正逐渐被基因水平的方法所取代。即随着分子遗传学的发展,可以从分子水平即利用DNA或RNA分析技术直接检出杂合子,而且准确,特别是对一些致病基因的性质和异常基因产物还不清楚的遗传病,或用一般生化方法不能准确检测的遗传病,例如慢性进行舞蹈病、甲型和乙型血友病、DMD、苯酮尿症等;最后,对一些迟发外显携带者还可作症状前诊断,因而有可能采取早期预防性措施,如成人多囊肾病等(参阅第十三章)。目前,用基因分析检测杂合子的方法日益增多,并逐步向简化、快速、准确的方向发展,以求扩大到高危人群的筛查。
作物栽培学作物栽培技术作物育种学实验农业概论农业系统工程学农学庄稼医生技术手册植物育种原理与方法植物雄性不育机理的研究及应用油菜优质高产栽培技术油菜品质改良和分析方法油菜生态和遗传育种研究芸薹属植物的生物工程2004年加拿大油菜研究情况简介21世纪初湖南油菜生产发展趋势2BF-6型稻茬田油菜免耕联合播种机的研究681A不育胞质对杂种一代农艺性状的影响ACC合成酶基因技术在培育延熟保鲜果品上的应用ASK1 physically interacts with COI1 and is required for male fertility in ArabidopsisBiodiesel production and its development strategyBreeding and agronomic characters of Bt transgenic insect-resistant Brassica napus linesBt杀虫蛋白基因在转基因油菜中的动态表达与其抗虫性研究Bt毒蛋白基因与植物抗虫基因工程Bt毒蛋白基因导入甘蓝型油菜获得转基因植株Bt毒蛋白基因的研究进展Cytogenetic studies on rapeseed. The analysis of salient feature on the chromosomal morphology of mitotic prophase in rapeseedEffects of lipoxygenase null genes of soybean in controlling beany-flavor of soymilk and soyflourInheritance and mapping of a restorer gene for the rapeseed cytoplasmic male sterile line 681ARAPD Assessment of Genetic Diversity ofRAPD技术及其在油菜遗传育种上的应用Sensitivity of Maize Seed Germ ination and Seedling Growth to Water EnvironmentStudies and application of CHA and its hybrid of winter rapeseed (B. napus) in ChinaStudies of Graft Transfer of Endogenous Gibber ilic AcidsStudies on cytology of visible chromosome formation under the light microscope during cell cycle in rapeseedTA-29基因与转基因油菜杂交系TE缓冲液对RAPD带型的影响The effect of ZMA on inducing male sterility on spring canolaWeb农业专家系统多媒体技术的应用研究^60Co电离辐射对油菜影响的研究“单低 双低油菜系列标准”制定的必要性“单低 双低油菜系列标准”的制定及评价“单低 双低油菜系列标准”的推广与实施情况不同基因型水稻产量和品质的物质代谢研究不同播期对不同基因型油菜产量特性的影响不同播种期油菜与气象因子的关系不同施氮水平和氮素来源烟叶碳氮比及其与碳氮代谢的关系不同栽培方式对辣椒采后病害的影响不同植物激素对油菜角果生长和结实的影响不同氮量和氮源的烟叶高级脂肪酸含量及其与香吃味的关系 世界油菜生产的发展和我国长江流域油菜带的开发两系亚种间与品种间杂交稻籽粒充实度的比较研究两系亚种间杂交稻籽粒充实度的遗传研究两系亚种间杂交稻籽粒充实度的配合力研究两系杂交稻籽粒充实度亲子相关研究中国芸芥形态特征特性及类型研究中国芸芥栽培品种亲缘关系的RAPD分析中国芸芥遗传多样性RAPD标记分析亚种间杂交稻籽粒充实度研究进展优质油菜新品种湘农油571的选育传播科技信息荟萃学术新篇作物产量和品质的碳氮及脂肪代谢调控的研究进展作物收获指数的研究概况作物源─库关系研究的现状作物生长模拟模型技术作物生长模拟模型研究概述俄罗斯油菜育种俄罗斯的油菜育种光叶杂交油菜油用及菜用特性的研究光周期对水稻源库关系的影响关于植物随机引物扩增多态性DNA标记的可靠性问题关于油菜化学杀雄杂种的几点说明内源赤霉素与油菜不同种性品种花芽分化的关系的研究农业大学与职业中学联合建立农业技术推广网络的探讨农业高新技术股份制企业式教学基地建设的探讨农学专业“六边”实习的教学改革探索农学专业《农学实践》课程的设置农学专业学生实践技能训练的系统构建农学专业改革的探讨几种分析方法对杂种棉后代综合评价的比较研究几种化学药物对油菜杀雄效果的研究几种酶活性与油菜油分和蛋白质及产量的关系加拿大卡诺拉的生产和销售加拿大油菜品种的演变及现状匈牙利捷克波兰高等教育考察的启示化学杂交剂诱导油菜雄性不育机理的研究 ⅡKMS-1对甘蓝型油菜育性的影响化学杂交剂诱导油菜雄性不育机理的研究十字花科种间杂交亲和性雄性不育细胞质遗传效应十字花科芸薹属种间杂种营养优势的利用研究单双低油菜研究进展双低杂交油菜新品种湘杂油6号的选育双低油菜品种湘油13号选育及品种特性研究双低油菜新品种湘油15号双低油菜新品种湘油15号的选育双低油菜核心竞争力的研究双低油菜湘油11号高产长势长相及栽培技术的探讨双低油菜湘油15Bnapus对菌核病抗性的研究双低油菜湘油15号对菌核病抗性研究简报双低油菜湘油15号种植密度的调查国外关于Sinapis arvensis L.的一些研究基于Web的油菜生产专家系统施肥知识表示基于Web的油菜生产专家系统的研究与应用基于人工智能的理科电子教材的设计与实现基因克隆技术的研究进展基因工程技术与油菜杂种优势利用基因工程技术与油菜育种基因枪法向甘蓝型油菜转移反义FAD2基因的研究外源基因在转基因抗虫油菜中的遗传行为外源基因直接转移技术之评价大学理科教材汲取人文社会科学的方法与技巧大豆种子脂肪氧化酶与豆制品产生豆腥味关系的研究进展大豆种子脂肪氧化酶的缺失对其农艺性状的影响大豆种子脂肪氧化酶的缺失对种子劣变的影响大豆种子脂肪氧化酶缺失基因控制豆腥味效果的研究大豆种子脂肪氧合酶缺失体类型的加工特性研究大豆脂肪氧化酶生理作用研究进展威优207水稻种子对汞铜锌胁迫的耐抗性研究子房注射法与农杆菌介导法转化甘蓝型油菜的比较研究建立“大农学专业”的实践影响油菜收获指数的几个生理因子抓住机遇,加快发展优质油菜抓住机遇,发展优质油菜抗除草剂油菜研究及其进展拟南芥ASK1与COI1形成蛋白复合体并调控雄性不育改变冬油菜栽培方式,提高和发展油菜生产新疆野生油菜与甘蓝型油菜属间杂种分子鉴定新疆野生油菜与野芥Sinapis arvensis L遗传性状的比较研究新疆野生油菜与野芥品质性状的比较研究新疆野生油菜细胞遗传学研究----Ⅱ.染色体的形态特征过氧化物酶同工酶和mtDNA分新疆野生油菜细胞遗传学研究施氮对油菜几种酶活性的影响及其与产量和品质的关系施钾对油菜酶活性的影响及其与产量品质的关系无菌苗法在鉴定油菜菌核病抗耐性上的应用杂交油菜制种行比的研究杂交油菜湘杂油1号的高产分析根癌农杆菌介导TA29-Barnase基因转化甘蓝型油菜的研究植物RAPD标记的可靠性研究植物体细胞无性系变异及其突变体的RAPD鉴定分析植物基因工程与油菜品种改育植物基因工程的新方向——叶绿体基因工程植物抗病基因克隆的研究进展植物淀粉合成的调控酶植物雄性不育的遗传机制探讨水稻幼穗分化期间减源对源库关系的影响油菜Brassica napus L收获指数的变异油菜RAPD反应体系的优化研究油菜、玉米、晚稻三熟制高产栽培的配套技术油菜不同发育时期喷施杀雄剂1号的杀雄效果和对花药细胞形态的影响油菜不同品种逆境下结实性的研究油菜与芸芥属间杂种离体子房和胚培养研究油菜中内源赤霉素嫁接转移研究油菜产品综合利用的研究:Ⅲ[1].油菜茎杆栽培平菇试验油菜优质高产高效栽培管理多媒体专家系统油菜光温生态特性的研究和应用油菜分子标记图谱构建及抗菌核病性状的QTL定位油菜化学杀雄杂种湘杂油1号湘油11号×466选育报告油菜化学杀雄药物,机理和杂种研究油菜单倍体植株叶原生质体培养再生植株油菜原生质体培养与融合技术的研究进展油菜和芸芥杂交时花粉与柱头识别反应的研究油菜品种与菌核菌相互作用机理研究进展油菜品质育种的研究:Ⅱ.双低油菜湘油11号的选育油菜品质育种的研究:Ⅳ[1]. 甘蓝型油菜种子中硫代葡萄糖甙油菜对菌核病抗耐病性鉴定与抗病育种研究进展油菜对霜霉病抗性鉴定及遗传研究摘要油菜小孢子培养和双单倍体育种研究Ⅰ供体植株和小孢子密度对小孢子培养的影响油菜小孢子培养和双单倍体育种研究Ⅱ影响甘蓝型油菜和芥菜型油菜种间杂种胚产量的因素油菜库器官分化发育期剪叶对源库关系的影响油菜收获指数对经济产量的贡献油菜收获指数的研究摘要油菜无菌苗培养前的种子消毒技术油菜栽培密度与几种酶活性及产量和品质的关系油菜栽培管理多媒体专家系统的设计与实现油菜湘杂油1号的特征特性及栽培技术油菜生产专家系统知识库构建油菜生产情况与科研进展油菜生态特性的研究油菜生态特性的研究:Ⅲ[1].油菜油菜生态特性研究油菜生物量与氮素吸收量及生理效率的动态变化油菜的小孢子培养和双单倍体育种油菜的自交不亲和性和杂种优势育种油菜的转基因育种油菜种子内生菌的检测及杀菌消毒处理方法油菜种子特异表达napin基因启动子的克隆及序列分析油菜种子生产体系和方法的研究:I[1].双低油菜原原种不同隔离方法的比较油菜种子生产体系和方法的研究:Ⅱ双低油菜原原种种子来源对原种生长[1]油菜育种与生物技术油菜脂肪酸品质改良的研究进展油菜自交不亲和性杂种优势利用的遗传基础探讨油菜花期性状与经济性状的相关性油菜花药离体培养研究油菜菌核病抗性鉴定抗性机理及抗性遗传育种研究进展油菜角果内的淀粉酶活性与有关同化物转运的调控油菜转基因的遗传研究油菜转基因育种研究油菜转基因育种研究进展油菜远缘杂交的遗传育种研究Ⅵ芥菜型油菜几个基因的染色体组定位研究油菜远缘杂交育种的主要障碍及其克服方法油菜迟播初步研究摘要油菜遗传育种研究进展油菜雄性不育分子机理的研究进展油菜雄性不育性的研究:I[1].甘蓝型油菜波里马(Polima)细胞油菜雄性不育系与十字花科蔬菜远缘杂交亲和性研究油菜高效转化系统的研究油菜高油酸遗传育种研究进展湖南发展油菜生产的措施湘农油571生长发育及产量形成与播种期关系的模拟分析湘南地区油菜播种期研究湘南地区油菜生长发育特点和适宜品种的研究湘南地区油菜适宜播种期的研究湘油13号高产栽培综合农艺措施优化分析湘西地区油菜播种期研究烟叶自然陈化过程中高级脂肪酸及有关生化特性动态变化的研究烟叶香气前体物在成熟和调制过程中的变化烟草腺毛分泌物的化学成分及遗传现代生物技术与大麦遗传育种甘蓝型冬油菜Brassica napus干物质积累分配与转移的特性研究甘蓝型油菜FAD2基因cDNA片段的克隆和序列分析甘蓝型油菜fad2基因片段的克隆和反义表达载体的构建甘蓝型油菜pep基因片段的克隆和种子特异性反义表达载体的构建甘蓝型油菜与芥菜型油菜种间杂交研究甘蓝型油菜与芥菜型油菜种间杂交研究摘要甘蓝型油菜与芸芥属间杂种F-1的获得及鉴定甘蓝型油菜品系一些酶的活性与抗菌核病的关系甘蓝型油菜显性无蜡粉基因的染色体组定位甘蓝型油菜杂种优势与配合力及通径分析甘蓝型油菜细胞质雄性不育系681A选育研究生物柴油开发研究进展与产业化发展策略科技与教育是农业可持续发展的两个重要问题稻田三熟制油菜简化栽培技术研究I 不同播种量对稻板茬撒播油菜生长发育和产量的影响稻田三熟制油菜简化栽培技术研究Ⅱ 稻板田撒播油菜的播期品种播种量和播种方式稻白叶枯病菌对水稻悬浮细胞H2O2含量及其代谢酶活性的影响篦齿眼子菜沼生水马齿对汞的耐受性与浓缩性研究精密排种器的特征造型及其装配关联设计红光和蓝光对烟叶生长碳氮代谢和品质的影响红麻分子标记的应用研究进展美国油菜生产情况芥菜型油菜Brassica juncea感光性初步研究芥菜型油菜与甘蓝型油菜种间杂种二代分离观察芥菜型油菜与甘蓝型油菜种间杂种后代的RAPD分析芸芥Eruca sativa Mill与芸薹属Brassica L3个油用种的远芸芥Eruca sativa Mill对菌核病的抗性研究芸芥抗菌核病相关基因的分子标记芸薹属作物的遗传转化芸薹属植物抗菌核病的研究进展菜籽蛋白对超滤膜污染机理及在线反冲工艺研究谈谈植被保护与植物栽培谷粒饱对油菜品质和产量的影响转Bt基因抗虫油菜花粉对蜜蜂生存的影响转基因抗虫油菜中Bt杀虫蛋白基因稳定遗传和高效表达及抗虫性研究转基因抗虫油菜品系选育和性状研究转基因抗虫油菜对菜青虫抗性的研究转基因抗虫油菜的ELISA分析转基因抗虫油菜的生物学特性研究转基因植物的应用研究及基因产品的安全性转基因油菜应用研究转基因油菜雄性不育系15A生化特性研究转基因油菜雄性不育系15A结实性的研究辽西半干旱区农田水肥耦合作用对春小麦产量的影响过氧化氢水杨酸与植物抗病性关系的研究进展适应现代农业需要 培养高素质植物生产类人才野芥Sinapis arvensis L在中国的发现及意义高光谱技术在农业上的应用(综述)高等农业院校农学专业人本科才培养方案及教学内容和课程体系改革的研究“杀雄剂1号”诱导油菜雄性不育的效果及其机理的初步研究“湘农油2号”油菜的选育冬油菜稻板田免耕移栽的研究印度油菜的育成品种介绍春大豆花芽分化的初步研究油菜不育胞质对杂种一代的影响油菜主要性状遗传力和遗传相关油菜产品的加工利用油菜产品综合利用的研究Ⅰ油菜产品综合利用的研究Ⅱ油菜化学杀雄药物、机理和杂种研究油菜品质育种的研究Ⅰ油菜品质育种的研究Ⅱ油菜增产的几个问题油菜杂种在生长性状上的优势表现油菜染色体的数目、形态和行为油菜生态特性的研究Ⅰ.甘蓝型油菜()光温生态特性的初步研究油菜生态特性的研究Ⅱ.不同类型甘蓝型油菜( L.)异地异季种植的生态特性研究油菜生态特性的研究Ⅲ.油菜()低温敏感期的研究油菜的几个生理障碍及对策油菜的营养特性和施肥技术油菜种子生产体系和方法的研究油菜花芽分化的研究湖南地区油菜生长发育特点和适宜品种的研究湘油11号高产栽培措施的数学模型研究甘蓝型油菜()的不同杂种组合的优势比较甘蓝型油菜不同杂种组合的优势比较甘蓝型油菜产量形成的初步分析甘蓝性油菜雄性不育系“湘矮A”及其杂种的初步观察甘蓝型油菜单双低品系数量性状的遗传分析积极行动起来 为我省农业发展做出新贡献论油菜“冬发”
李宝键教授在“展望21世纪的生命科学”一文中谈到基因组研究计划研究重要性时,引用《Scinence》上“第三次技术命革”中的一句话:“下一个传大时代将是基因组革命时代,它正处于初期阶段。”在当前的研究水平上,只要涉及生命体重要现象的课题,几乎离不开对基因及其作用的分析。2000年6月26日,英美两国首脑会同公私两大人基因组测序集团向世人正式宣告,人基因组的工作草图已绘制完成。科学家把这作为生命科学进入新时代的标志,即后基因组时代(post-genome era)。因此有必要对基因组及其研究内容和进展作一个了解。1基因组学及其研究内容基因组(GENOME)一词是1920年Winkles从GENes和chromosOMEs组成的,用于描述生物的全部基因和染色体组成的概念。1953年Watson和Crick发现DNA双螺旋结构,标志分子生物学的诞生,随着各学科的发展,当前生物学研究进入新的进代,在生物大分子水平上将不同的研究技术和手段有机的结合以攻克生物学难题。基因组研究可以理解为:(1)基因表达概况研究,即比较不同组织和不同发育阶段、正常状态与疾病状态,以及体外培养的细胞中基因表达模式的差异,技术包括传统的RTPCR,RNase保护试验,RNA印迹杂交,但是其不足是一次只能做一个。新的高通量表达分析方法包括微点阵(microarrary),基因表达序列分析(serial analysis of gene expression,SAGE),DNA芯片(DNA chip)等;(2)基因产物-蛋白质功能研究,包括单个基因的蛋白质体外表达方法,以及蛋白质组研究;(3)蛋白质与蛋白质相互作用的研究,利用酵母双杂交系统,单杂交系统(one-hybrid system),三杂交系统(thrdee-hybrid system)以及反向杂交系统(reverse hybrid system)等。1986年美国科学家Thomas Roderick提出了基因组学(Genomics),指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录图谱),核苷酸序列分析,基因定位和基因功能分析的一门科学。因此,基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics)。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。随着1990年人类基因组计划(Human Genome Project,HGP)的实施并取得巨大成就,同时模式生物(model organisms)基因组计划也在进行,并先后完成了几个物种的序列分析,研究重心从开始揭示生命的所有遗传信息转移到从分子整体水平对功能的研究上。第一个标志是功能基因组学的产生,第二个标志是蛋白质组学(proteome)的兴起。2 结构基因组学研究内容结构基因组学(structural genomics)是基因组学的一个重要组成部分和研究领域,它是一门通过基因作图、核苷酸序列分析确定基因组成、基因定位的科学。遗传信息在染色体上,但染色体不能直接用来测序,必须将基因组这一巨大的研究对象进行分解,使之成为较易操作的小的结构区域,这个过程就是基因作图。根据使用的标志和手段不同,作图有三种类型,即构建生物体基因组高分辨率的遗传图谱、物理图谱、转录图谱。遗传图谱通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图。它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析。物理图谱物理图谱是利用限制性内切酶将染色体切成片段,再根据重叠序列确定片段间连接顺序,以及遗传标志之间物理距离[碱基对(bp)或千碱基(kb)或兆碱基(Mb)的图谱。以人类基因组物理图谱为例,它包括两层含义,一是获得分布于整个基因组30 000个序列标志位点(STS,其定义是染色体定位明确且可用PCR扩增的单拷贝序列)。将获得的目的基因的cDNA克隆,进行测序,确定两端的cDNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS制备放射性探针与基因组进行原位杂交,使每隔100kb就有一个标志;二是在此基础上构建覆盖每条染色体的大片段:首先是构建数百kb的YAC(酵母人工染色体),对YAC进行作图,得到重叠的YAC连续克隆系,被称为低精度物理作图,然后在几十个kb的DNA片段水平上进行,将YAC随机切割后装入粘粒的作图称为高精度物理作图.转录图谱利用EST作为标记所构建的分子遗传图谱被称为转录图谱。通过从cDNA文库中随机条区的克隆进行测序所获得的部分 cDNA的5'或3'端序列称为表达序列标签(EST),一般长300~500bp左右。一般说,mRNA的3' 端非翻译区(3'-UTR)是代表每个基因的比较特异的序列,将对应于3'-UTR的EST序列进行RH定位,即可构成由基因组成的STS图。截止到1998年12月底,在美国国家生物技术信息中心(NCBI)数据库中分布的植物EST的数目总和已达几万条,所测定的人基因组的EST达180万条以上。这些EST不仅为基因组遗传图谱的构建提供了大量的分子标记,而且来自不同组织和器官的EST也为基因的功能研究提供了有价值的信息。此外,EST计划还为基因的鉴定提供了候选基因(candidantes)。其不足之处在于通过随机测序有时难以获得那些低丰度表达的基因和那些在特殊环境条件下(如生物胁迫和非生物胁迫)诱导表达的基因。因此,为了弥补EST计划的不足,必须开展基因组测序。通过分析基因组序列能够获得基因组结构的完整信息,如基因在染色体上的排列顺序,基因间的间隔区结构,启动子的结构以及内含子的分布等。3功能基因组学研究功能基因组学(functional genomics)又往往被称为后基因组学(postgenomics),它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。比较基因组学(Comparative Genomics)是基于基因组图谱和测序基础上,对已知的基因和基因组结构进行比较,来了解基因的功能、表达机理和物种进化的学科。利用模式生物基因组与人类基因组之间编码顺序上和结构上的同源性,克隆人类疾病基因,揭示基因功能和疾病分子机制,阐明物种进化关系,及基因组的内在结构。目前从模式生物基因组研究中得出一些规律:模式生物基因组一般比较小,但编码基因的比例较高,重复顺序和非编码顺序较少;其G+C%比较高;内含子和外显子的结构组织比较保守,剪切位点在多种生物中一致;DNA 冗余,即重复;绝大多数的核心生物功能由相当数量的orthologous蛋白承担;Synteny连锁的同源基因在不同的基因组中有相同的连锁关系等。模式生物基因组研究揭示了人类疾病基因的功能,利用基因顺序上的同源性克隆人类疾病基因,利用模式生物实验系统上的优越性,在人类基因组研究中的应用比较作图分析复杂性状,加深对基因组结构的认识。 此外,可利用诱变技术测定未知基因,基因组多样性以及生物信息学(Bioinformatics)的应用。4蛋白质组学研究基因是遗传信息的携带者,而全部生物功能的执行者却是蛋白质,它有自身的活动规律,因而仅仅从基因的角度来研究是远远不够的,必须研究由基因转录和翻译出蛋白质的过程,才能真正揭示生命的活动规律,由此产生了研究细胞内蛋白质组成及其活动规律的新兴学科——蛋白质组学(proteomics)。蛋白质组(proteome)是由澳大利亚Macquarie大学的Wilkins和Williams于1994首先提出,并见于1995年7月的“Electrophonesis”上,指全部基因表达的全部蛋白质及其存在方式,是一个基因、一个细胞或组织所表达的全部蛋白质成分,蛋白质组学是对不同时间和空间发挥功能的特定蛋白质群体的研究。它从蛋白质水平上探索蛋白质作用模式、功能机理、调节控制以及蛋白质群体内相互作用,为临床诊断、病理研究、药物筛选、药物开发、新陈代谢途径等提供理论依据和基础。 蛋白质组学旨在阐明生物体全部蛋白质的表达模式及功能模式,内容包括鉴定蛋白质表达、存在方式(修饰形式)、结构、功能和相互作用方式等。它不同于传统的蛋白质学科,是在生物体或其细胞的整体蛋白质水平上进行的,从一个机体或一个细胞的蛋白质整体活动来揭示生命规律。但由于蛋白质具有多样性和可变性,复杂性,低表达蛋白质难以检测等,应该明确其研究的艰难性。总体上研究可以分为两个方面:对蛋白质表达模式(或蛋白质组成)研究,对蛋白质功能模式(目前集中在蛋白质相互作用网络关系)研究。对蛋白质组研究可以提供如下信息:从基因序列预测的基因产物是否以及何时被翻译;基因产物的相对浓度;翻译后被修饰的程度等。由于蛋白质数目小于基因组中开放阅读框(ORF, open reading frame)数目,因此提出功能蛋白质组学(functional proteomics),功能蛋白质指在特定时间、特定环境和试验条件下基因组活跃表达的蛋白质,只是总蛋白质组的一部分。功能蛋白质组学研究是位于对个别蛋白质的传统蛋白质研究和以全部蛋白质为研究对象的蛋白质研究之间的层次,是细胞内与某个功能有关或某种条件下的一群蛋白质。对蛋白质组成分析鉴定,要求对蛋白质进行表征化,即分离、鉴定图谱化,包括两个步骤:蛋白质分离和鉴定。双向凝胶电泳(2-DGE)和质谱(MS)是主要的技术。近年来,有关技术和生物信息学在不断并迅速开发和发展中。蛋白质组研究技术体系包括:样品制备;双向聚丙烯酰胺凝胶电泳(two-dimensional polyacrylamide gel electrophoresis,2-D PAGE);蛋白质的染色;凝胶图像分析;蛋白质分析;蛋白质组数据库。其中三大关键是:双向凝胶电泳技术、质谱鉴定、计算机图像数据处理与蛋白质数据库。5与基因组学相关学科诞生随着基因组学研究的不断深入,人类有望揭示生命物质世界的各种前所未知的规律,完全揭开生命之谜,进而驾驶生命,使之为人类的社会经济服务。基因组研究和其它学科研究交叉,促进一些学科诞生,如营养基因组学(nutritional genomics),环境基因组学(environmental genomics),药物基因组学(phamarcogenomics),病理基因组学(pathogenomics),生殖基因组学(reproductive genomics),群体基因组学(population genomics)等。其中,生物信息学正成为备受关注的新型产业的支撑点。生物信息学是以生物大分子为研究,以计算机为工具,运用数学和信息科学的观点、理论和方法去研究生命现象、组织和分析呈指数级增长的生物信息数据的一门科学。研究重点体现在基因组学和蛋白质两个方面。首先是研究遗传物质的载体DNA及其编码的大分子量物质,以计算机为工具,研究各种学科交叉的生物信息学的方法,找出其规律性,进而发展出适合它的各种软件,对逐步增长的DNA 和蛋白质的序列和结构进行收集、整理、发布、提取、加工、分析和发现。由数据库、计算机网络和应用软件三大部分组成。其关注的研究热点包括:序列对比,基因识别和DNA序列分析,蛋白质结构预测,分子进化,数据库中知识发现(Knowledge Discovery in Database, KDD)。这一领域的重大科学问题有:继续进行数据库的建立和优化;研究数据库的新理论、新技术、新软件;进行若干重要算法的比较分析;进行人类基因组的信息结构分析;从生物信息数据出发开展遗传密码起源和生物进化研究;培养生物信息专业人员,建立国家生物医学数据库和服务系统[5]。20世纪末生物学数据的大量积累将导致新的理论发现或重大科学发现。生物信息学是基于数据库与知识发现的研究,对生命科学带来革命性的变化,对医药、卫生、食品、农业等产业产生巨大的影响。邹承鲁教授在谈论21世纪的生命科学时讲到,生物学在20世纪已取得巨大的发展,数理科学广泛而又深刻地深入生物学的结果在新的高度上揭示了生命的奥妙,全面改变了生物学的面貌。生物学不仅是当前自然科学发展的热点,进入21世纪后将仍然如此。科学家称21世纪是信息时代。生物科学和信息科学结合,无疑是多个学科发展的必然结果。