首页 > 学术期刊知识库 > 细胞生长与细胞分化研究进展论文

细胞生长与细胞分化研究进展论文

发布时间:

细胞生长与细胞分化研究进展论文

细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!

细胞因子的生物学活性

关键字: 细胞因子

细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。

一、免疫细胞的调节剂

免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)

二、免疫效应分子

在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。

三、造血细胞刺激剂

从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。

四、炎症反应的促进剂

炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。

五、其它

许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。

细胞衰老的分子生物学机制

摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。

关键词:细胞衰老;分子生物学;机制研究

细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。

细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。

衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。

1 细胞衰老的特征

科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。

2 分子水平的变化

①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

3 细胞衰老原因

迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。

差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。

自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。

英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。

生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。

端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。

遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。

参考文献:

[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.

[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.

[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.

其实现在细胞生物学研究有四大热点:第一,细胞骨架;第二,细胞信号转导及其第二信使的信号放大调节;第三,细胞的增殖和调控及其癌变;第四,细胞的衰老和凋亡,并强调与信号和癌变的联系性。总体上来说,现在细胞生物学研究就是这么四个热点,其他的就是这四个大的方面的边缘延伸。

细胞分化使细胞功能趋向专门化,有利于提高各种生理功能的效率,分化是进化的表现。细胞生长是植物个体生长的基础。

细胞分化的实质:组织特异性基因在时间和空间上差异表达的结果。其表达主要由调控蛋白所启动。

一般认为细胞核内含有该种生物的全套遗传信息。在条件具备时,它可使所在细胞发育分化为由各种类型细胞所组成的完整个体。

如将胡萝卜根的韧皮部小块在含有椰乳的培养基中培养,这些在正常情况下不分裂的细胞会长成组织团块,脱落下来的游离细胞能形成幼芽。

更直接的证据是从培养的烟草,髓部小块形成的组织团块上取脱落的细胞,单个分离培养能得到有根和叶的幼芽,再移植到土壤中,会长出开花的植物。即从单个植物体细胞长出了整棵植物,证明体细胞的核具有全能性。

扩展资料:

细胞分化是稳定的变化:

正常情况下,细胞分化是稳定、不可逆的。一旦细胞受到某种刺激发生变化,开始向某一方向分化后,即使引起变化的刺激不再存在,分化仍能进行,并可通过细胞分裂不断继续下去。这种变化不同于各种生理活动,如激素刺激等所引起的细胞变化,后者在刺激作用消失以后,细胞又将恢复到原来的状况。

细胞生物学的研究热点:细胞生长与细胞分化、细胞增殖与细胞周期的调控、细胞的衰老与死亡、细胞工程、干细胞及其应用。

1、细胞的生长,主要是指细胞体积的增大,细胞分化完成后并不是所有的细胞都有生长的过程,大多数的组织器官都是通过不断的细胞分裂以增加细胞数量的方式来实现器官生长,只有很少数细胞(像神经元细胞)是通过增大细胞体积的方式来实现器官生长的,随着个体的不断发育,神经元细胞,特别是轴突的部分也要不断的伸长。

2、细胞增殖是生物体的重要生命特征,细胞以分裂的方式进行增殖。单细胞生物,以细胞分裂的方式产生新的个体。多细胞生物,以细胞分裂的方式产生新的细胞,用来补充体内衰老或死亡的细胞。

多细胞生物可以由一个受精卵,经过细胞的分裂和分化,最终发育成一个新的多细胞个体。必须强调指出,通过细胞分裂,可以将复制的遗传物质,平均地分配到两个子细胞中去。可见,细胞增殖是生物体生长、发育、繁殖和遗传的基础。

3、细胞工程是生物工程的一个重要方面。总的来说,它是应用细胞生物学和分子生物学的理论和方法,按照人们的设计蓝图,进行在细胞水平上的遗传操作及进行大规模的细胞和组织培养。当前细胞工程所涉及的主要技术领域有细胞培养、细胞融合、细胞拆合、染色体操作及基因转移等方面。通过细胞工程可以生产有用的生物产品或培养有价值的植株,并可以产生新的物种或品系。

5、细胞衰老(cell aging)是指细胞在执行生命活动过程中,随着时间的推移,细胞增殖与分化能力和生理功能逐渐发生衰退的变化过程。细胞的生命历程都要经过未分化、分化、生长、成熟、衰老和死亡几个阶段。衰老死亡的细胞被机体的免疫系统清除,同时新生的细胞也不断从相应的组织器官生成,以弥补衰老死亡的细胞。细胞衰老死亡与新生细胞生长的动态平衡时维持机体正常生命活动的基础。

参考资料来源:百度百科-干细胞

参考资料来源:百度百科-细胞工程

参考资料来源:百度百科-细胞衰老

细胞分化研究进展论文

1.来自中国科学院,浙江自然博物馆,英国莱斯特大学等处的研究人员发现了一个成年达尔文翼龙(Darwinopterus)的化石以及一枚与其在一起的蛋,并对这种恐龙进行了雌雄两性比较,从而为判别这些已灭绝动物的性别提供了直接证据。这一研究成果公布在上周出版的Science杂志上。2. 来自哈佛医学院,麻省总医院,澳大利亚墨尔本大学等处的研究人员就利用这一技术进行了大规模测序,并配合功能预测,和实验验证,揭示了线粒体complex I失序症的分子机制,从而提出了一种利用高通量测序方法分析候选基因的新策略。这一研究成果公布在Nature Genetics杂志上。 3.近期来自中国、美国和韩国的科学家在miRNA研究领域又取得一些重要的研究进展,研究成果相继发表在国际顶级期刊Nature 和Cell杂志上,值得关注。4.近日上海交通大学生命科学技术学院力学生物学与医学工程研究所在国家自然科学基金重点项目“血管细胞分化与迁移的力学生物学机制”研究取得重要进展,研究论文发表在本年1月18日的《美国科学院院刊》(PNAS)上5. 近日中科院上海生命科学研究院生物化学与细胞生物学研究所肖磊课题组利用病毒载体在细胞中表达多种重编程因子,诱导绵羊成纤维细胞重编程转化成诱导多能干(iPS)细胞,这是目前世界上首次报道获得的绵羊iPS细胞系。研究论文在线发表在2011年1月11日的《细胞研究》(cell research)杂志上。

做个细胞转录组测序即可。有需要可以联系:

1995年以来我国造血干细胞工程与相关的生物学领域的研究发展迅速。有关造血干/祖细胞基因表达的研究,上海国家人类基因组研究中心陈竺、陈赛娟等为正常和急性白血病人骨髓造血干祖细胞cDNA文库的基因表达建立了一套先进的工作体系。他们在许多白血病细胞系的干/祖细胞中发现了300个新的相关基因。中山大学医学院李树浓、黄绍良等从人的桑葚期胚胎干细胞成功地诱导出造血细胞等。北京输血研究所裴雪涛等从成人和胎儿的骨髓分离出成年源干细胞,又进一步诱导分化为骨、软骨、脂肪和神经原细胞等。他们成功地构建了胎儿和成人间充质干细胞cDNA扣除文库,获得了胎儿和成人间充质干细胞的差异表达基因及在胎儿特异表达基因。中国医学科学院天津血液学研究所、国家血液学重点实验室赵春华等证实从胚胎胰腺、骨髓和肝脏中都可以分离出人间充质干细胞,又证明G-CSF可以使输注的间充质干细胞在体内促造血重建。北京基础医学研究所毛宁等的实验不支持间充质干细胞可以“横向分化“。最近他们发现小鼠胚胎干细胞的体外分化重现了胚胎早期造血发生的生物学程序以及Smad5基因调控在胚胎造血发生中的必要性和多样性,又表明其上游配体TGF-beta家族分子在胚胎发生中的作用和特点。本文针对干细胞可塑性研究作了评论。国际上曾风靡一时的“横向分化“有关的实验都没有用完全纯化的胚层干细胞或组织干细胞来证实。然而,完全纯的胚层或组织定向的干细胞克隆是无法制备的。成年或胎儿全身各类组织中混有一些定向某胚层的或某组织的干细胞,甚至还混有桑葚胚干细胞。它们是胚胎发育过程的每个阶段中停止参与胚胎发育而残留下来的。它们在体内处于静止期,寿命长,长期存留在成人的各种组织中。各胚层和组织干细胞混杂在一起,它们都没有特异的形态、表型和功能,无法分离纯化,甚至和成人组织细胞也很难分开。它们在体外实验适当的条件诱导下可分化为各种组织细胞。在那些想证明组织干细胞“横向分化“的实验中,都无法排除上述可能。本专论指出,只有桑葚胚干细胞是全能的胚胎干细胞,具有向各个胚层分化的潜能,即具有全能分化的可塑 性。当它发育成为各个胚层的或各种组织的干细胞时,它的分化潜能只限于本胚层或本组织,不能向其它胚层其它组织分化。本专论又指出间充质干细胞的制备过程很长,经过许多次的换代。等到出现许多分化抗原标志时,已经是后代的各种不同的成熟间充质细胞了。当然,它们的存在可证实最初培养的是间充质干细胞。大量扩增后所获得的集落主要是各种成熟的间充质细胞,其中也包含一些未来参与分化的间充质干细胞和中胚层干细胞。间充质干细胞和造血干细胞都是来自中胚层。然而它们都是培养中的贴壁幼儿,无法区分也无法分离它们。因此在实验中无法排除所制备的间充质干细胞样品中,绝对没有中胚层或其它胚层干细胞的存在。至今,完全纯化的间充质干细胞是不可能制备的。所以,很可能从间充质干细胞体外诱导出各类不同的,甚至内、外胚层的组织细胞,切不可轻率地推率为“横向分化“。临床支持造血干/祖细胞移植的,主要是成熟而有调控功能的各种间充质细胞。总之,“横向分化“等的推论缺乏实验证据,在生物自然界和人类疾病史中都找不到佐证。想要推翻经无数科学家实践充分证明了的细胞遗传学的最基本原理,必须在生物自然界找到非常充足的科学证据唐佩弦 军事医学科学院基础医学研究所 我国造血干细胞基础研究的新进展兼论干细胞可塑性

细胞生物学细胞分化论文范文

给点对文特尔的评价

您好!关于细胞的分化,其实是一个非常复杂和精细的生物学过程。细胞分化能够让单一的细胞逐步发育为具有不同功能和形态的多种细胞类型,从而形成完整的个体。在这个过程中,核酸,蛋白质等生化分子都发挥了非常重要的作用。细胞分化过程可以简单理解为:信号分子与细胞表面受体结合,进而通过某些信号通路激活内部的信号反应,调节转录因子等基因调控因素的表达,从而诱导细胞分化。在这个过程中,转录因子起着关键的作用,它们能够调控细胞的基因表达,从而控制细胞发育方向。此外,细胞分化还同样受到细胞外微环境和物理因素的影响,例如细胞所处的生长环境、激素、细胞间相互作用等等。细胞分化的过程需要多个信号通路和因素的协同作用,从而能够确保细胞差异化发生的准确性和可靠性。总的来说,细胞分化的过程非常重要,为组织、器官和整个生物体的形成提供了必要的基础。不同的细胞类型的分化机制也是细胞生物学研究的非常重要的领域之一。

分类: 教育/科学 >> 学习帮助 问题描述: 谁能给个有关细胞生物学综述的好点的连接!或者好的提示什么的!大概要2000左右的字!谢谢! 解析: 细胞生物学[cell biology] 作者:未知 当然这仅是人为地划分,这些方面都不是各自孤立的,而是相互有关连的,一定要把细胞作为一个整体看待,一定要把生命过程和细胞组分的结构和功能联系起来。既然细胞生物学的主要任务是把发育和遗传联系起来,细胞分化这个问题的重要性就不言而喻。因为就整个有机体而言,遗传特点不仅显示在长成的个体,而是在整个生命过程不断地显示出来。在细胞水平,细胞的分化也就是显示遗传特征的过程。 一个经常被引用的例子是红细胞中血红素的转换。人类胚胎早期的红细胞中首先出现胚期血红素,后来逐渐被胎儿期血红素所代替,胎儿三个月之后,后者又被成体型血红素所代替。关于这些血红素已经有很多研究例如它们各自由那些肚链组成,这些肚链在个体发育中交互出现的情况,它们各自的氨基酸组成和排列顺序,各个肽链的基因位点,以至基因的结构都已比较清楚,工作可以说是相当深入了。 但是,追根到底有些问题依然没有得到明确的解答,甚至没有解答——这也适用于关于其他细胞的终末分化的研究。 实现了终末分化的细胞,已经失去了转变为其他细胞类型的潜能,只能向一个方面分化。例如红细胞,虽然发生血红素的转换,但不能转变为其他类型的正常细胞,与胚胎细胞相比,它们的情况要简单些,因为胚胎细胞在尚未获得决定的时候是具有广泛潜能的。拿中胚层细胞来说,它们既可以分化为肌细胞,也可以分化为前肾细胞、血细胞、间质细胞等。 细胞生物学的研究往往乐于使用培养的细胞,它的优点是可以提供足够量的细胞做生化分析,并且只有一种细胞,材料比较单一,分析结果方便。但是对于某些方面的研究则有不足之处,因为细胞在任何一个有机体里都是处于一个社会之中,和别的细胞不同程度地混杂在一起,在其生命活动中不可能不受到相邻的其他细胞的影响,甚至是相邻的同类细胞的影响,其处境要比培养的细胞复杂得多。因此为了研究在一个细胞群中细胞与细胞间的相互关系,细胞社会学被提了出来。 细胞社会学的内容相当广泛,包括不同细胞或相同细胞的相互识别,细胞的聚集与粘连、细胞间的交通和信息交流,细胞与细胞外间质的相互影响,甚至还可包括细胞群中组织分化模式的形成。有些方面已经积累了一些资料,从细胞社会学的角度有目的地深入下去一定会提供更系统的,有用的信息。由于细胞社会学是以细胞群体为对象,而且有些问题也是发育生物学需要了解的,发展下去很可能它会成为细胞生物学与发育生物学之间的桥梁。 展望细胞生物学的研究,除了关于各细胞组分的结构与功能,以及对各种生命现象的研究还要继续深入外。研究是什么原因使得基因能够有序地选择性地表达,可能会成为今后重点研究的问题。此外细胞社会学也会越来越受到重视。 不知这里面有没有你能用到的信息

细胞分化的本质是基因组在时间和空间上的选择性表达,通过不同基因表达的开启或关闭,最终产生标志性蛋白质。一般情况下,细胞分化过程是不可逆的。然而,在某些条件下,分化了的细胞也不稳定,其基因表达模式也可以发生可逆性变化,又回到其未分化状态,这一过程称为去分化(dedifferentiation)。

中华细胞与干细胞杂志

俗话说“常喝黄芪汤,防病保 健康 ”,黄芪在日常的 健康 养生 中如此常见,与它的作用多,效果好是密不可分的。黄芪含有多种微量元素,氨基酸,多糖等物质,对人体有着极大的好处。黄芪中的重要活性成分——黄芪甲苷具有血管药理活性,能诱导血管新生[1,2]。脐带血中含有丰富的干细胞,其中有一种干细胞被称为内皮祖细胞。内皮祖细胞是一种生成血管的干细胞,能参与损伤内皮修复和促进血管新生,因为脐带血中有这种神奇的干细胞,所以有临床医生曾尝试采用脐带血治疗糖尿病的重要并发症——糖尿病足,并取得了很好的治疗效果[3]。内皮祖细胞能够分泌血管生长因子和外泌体,外泌体中包含mRNA、微小RNA(miRNA) 和蛋白质等生物活性物质会增强内皮细胞的成管功能,从而参与血管新生[4]。也正是因为这一机制,脐带血来源的内皮祖细胞在心脑血管疾病、外周血管疾病、肿瘤血管形成及创伤愈合等方面均发挥着重要作用,并为缺血性疾病的研究治疗提供了新思路。 黄芪作为传统中药的代表能诱导血管新生,脐带血来源的内皮祖细胞作为尖端生物 科技 的代表也有类似的功能,两者会有什么关系呢? 一项最新研究将二者巧妙完美的结合在一起,带给人们惊喜的答案。研究选择了1名 健康 足月新生儿的脐带血10 mL, 扩增培养了其中的内皮祖细胞,并将获得的内皮祖细胞分为添加黄芪甲苷组和对照组,在特定条件下培养24 h【5】。结果显示添加黄芪甲苷组的EPC外泌体和对血管新生有重要作用的miRNA-126的含量均高于对照组。在黄芪甲苷的诱导下,使得EPC增加EPC外泌体的分泌, 提升EPC 的细胞活性,改善EPC 的增殖、黏附、迁移和成管等生物学功能。图1(左):培养第四天和第七天EPC形态 图2(右):形态,4A4B分别为黄芪甲苷组和对照组 此项成果不仅为深入研究黄芪甲苷作用于EPC介导的血管新生奠定基础,也预示着传统中医中药在先进的现代医学和生物学领域依然能够发挥巨大的作用。 黄芪甲苷具有抗炎、免疫调节、抗氧化、抗细胞凋亡、调节代谢、 抗纤维化、抑制肿瘤及促进血管新生等功能[6],其中促血管新生的作用尤为重要,可经多种途径参与受损血管的修复和血管新生。与此同时,干细胞与再生医学技术已成为解决临床疑难疾病最有前景的医疗手段,其对坏死组织和器官的替代修复和再生,体现出巨大的技术优势和应用价值。脐带血是干细胞的宝库,含有丰富的造血干细胞、间充质干细胞、内皮祖细胞、神经干细胞等,将脐带血来源干细胞的研究应用与我国传统中医药有机结合,无疑将发挥交叉学科研究的优势,将深化对中医学的认知,有望成为中医药走向现代化的又一新的研究方向。 【1】王玲玲, 孙金玉,林真丹,等. 高效液相色谱多检测器联用并结合光谱、质谱技术对不同黄芪样品中黄芪甲苷伴生组分的研究[ J] . 分子科学学报, 2017 , 33 ( 6 ) : 447 .454 . D0I: 10 .13563 / j. cnki. jmolsci. 2017 . 06 . 002 . 【2】Cheng sY, Zhang xx, Feng O, et al. Astragaloside Ⅳ exerts an. giogenesis and cardioprotection after myocardial infarction via reg. ulating PTEN / PI3 K / Akt signaling pathway[ J] . Life sci, 2019 , 227 : 82 .93 . D0I: 10 . 1016 / j. lfs. 2019 . 04 . 040 . 【3】郭君其,,罗芳等.中华细胞与干细胞杂志(电子版) 2012年11月第2卷第4期:289-290 【4】Li xC, Chen CY, wei LM, et al. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function [ J ] . Cytotherapy, 2016 , 18( 2 ) : 253 .262 . D0I: 10 . 1016 / j. jcyt. 2015 . 11 . 009 . 【5】熊武, 孙安梦, 皇毅, 等. 内皮祖细胞外泌体中与血管生成相关的 miRNAs 生物信息学分析[ J] . 中国医师杂志, 2019 , 21(4 ) : 499 .502 . D0I: 10 . 3760 / cma. j. issn. 1008 .1372 . 2019 . 04 .005 . 【6】Liang C, Ni Cx, shi xL, et al. Astragaloside Ⅳ regulates the HIF / VECF / Notch signaling pathway through to angiogenesis after ischemic stroke [ J ] . Restor Neurol Neurosci, 2020 , 38 (3 ) : 271 .282 . D0I: 10 . 3233 / .

帕金森病是一个锥体外系疾病,主要病变是黑质,蓝斑及迷走神经背核等处色素细胞变性坏死,多巴胺递质生成障碍,导致多巴胺和胆碱能系统不平衡,出现了缓慢进展的震颤,少动,肌强直和姿势步态异常。目前发现,帕金森病患者在临床出现症状之后到最终卧床,大约需要17~20年左右的时间,而研究发现,在帕金森病临床症状出现前20年,在上述部位的多巴胺能神经元就已经开始出现变性减少了,在此期间主要表现为帕金森病的非运动症状,嗅觉减退,便秘,快速眼动期睡眠障碍等等,这样算来一个帕金森病患者在非运动症状出现之后,应该是约有40年左右的时间到达晚期。

帕金森病是一种慢性进行性加重的疾病。与患者治疗的依从性是有非常大的关系的。能多少年到晚期是因人而异的,很多患者得病10年20年也能够保持非常高的生活质量,而有些患者患病以后每天焦虑抑郁,也不按照医生的建议服药,可能3到5年就进入晚期了。

帕金森病的患者通常会出现运动迟缓、肌肉强直、静止性震颤、行走不稳的临床表现,也会出现一些非运动症状。如果患者能够按时、科学的服用药物,加强体育锻炼,保持愉快的心情,定期门诊随诊,可以在很长时间内保持高质量的生活的。但是,如果患病以后就怨天尤人,自己非常的消沉,疾病进展是非常的快的,自己一定要有信心。线上问答内容仅为参考,如有医疗需求,请务必到正规医疗机构就诊

中华细胞与干细胞杂志是3核心期刊。所以是单核

干细胞的研究和进展论文

研究的目的要说明问题是如何发现的,即该研究的研究背景是什么,是根据什么、受什么启发而搞这项研究。也要说明该选题在理论上的创新性,来突出自己选题与各个主流观点的差异。而研究的意义,要对所研究问题的实际用处有所了解从生活实际出发进行解读。

[1]党建红,金志军.脐血干细胞的生物学特性及其应用.国际妇产科学杂志2011;38:89-92.[2] 瞿勇,缪应雷. 干细胞移植在炎症性肠病中的治疗. 世界华人消化杂志2010; 35:3772—377.[3] 魏蕊,洪天配.干细胞技术治疗糖尿病的研究进展与应用前景. 世界华人消化杂志2011;19:441—450.[4] 王紫菲,赖文玉,柯琼,等.Nestin.GFP小鼠胚胎干细胞的建系及体外神经分化. 中山大学学报(医学科学版)2011;32:155-162.[5] 林育辉,何晓青,倪晓彬,等.hBcl一2和hVEGF165双基因重组腺病毒载体转染大鼠骨髓间充质干细胞的实验研究. 广东医学2011;32:548-551.[6] 袁源,但齐琴,刘佳.人脐带干细胞携带NGF基因脑内移植对脑损伤大鼠神经行为学的影响.中华行为医学与脑科学杂志2011;20:298-301.[7] 杨志宏,田诗政.骨髓问充质干细胞在皮肤创面修复中应用的研究进展.中国美容医学2011;20:161-163。[8] 何乐人,庄洪兴.血管内皮祖细胞在整形外科方面的研究进展.中国美容医学2009;18:1213-1217.[9] 徐红珍,苏俭生. 骨组织工程常用间充质干细胞的研究进展. 中国美容医学2010;19:620-622.[10]仝朋飞,杨大平. 脂肪来源干细胞在脂肪移植中的作用及其临床应用进展. 中国美容医学2010;19:1097-1099.[11] 洪晓娅,徐靖宏. 脂肪干细胞在皮下软组织充填中的研究进展. 中国美容医学2008;17:1540-1542.

近期的科学研究新进展,科学家们已经十分接近量产血球细胞了!这个新进展将能解决血液供给不足,以及骨髓疾病患者的问题,将彻底改变需要频繁输血的疾病治疗模式。

近年来,干细胞的相关研究逐渐扩展,除了生物科学的研究外,更尝试应用于人类医学治疗上。干细胞与体内一般细胞不同,他具有特殊的编程,可以透过自然或诱导的方式,分化成为其他细胞。主要可分为两种,一为胚胎干细胞,具有较强的分化能力,可分化成为多种不同的细胞。另一种为成体干细胞,分化能力较为受限,仅能分化成特定几种细胞,用于修复组织或是汰换掉旧的细胞。2006年时,科学家首次将小鼠的细胞,经过诱导后转变成为iPS多能性干细胞。自此之后开启干细胞领域的大量研究。而从此时开始,科学家就不断尝试利用干细胞来生产新的血液细胞,然而,这是首次这么接近将干细胞分化成为完整功能的血球细胞。

利用干细胞生产血液细胞的目标,是希望可以透过提取患者自身的细胞,将其转变为iPS多能性干细胞后,利用此干细胞不断分化产生新的血液细胞,这样患者就可以自己生产无限供给的血球,不需要倚靠其他健康人们的捐赠。另外,这样的作法也能应用在一般的血液捐赠上,可以使用一般健康捐血者的细胞并将其转变为iPS多能性干细胞,这样将能大幅增加血液供给,提供需要输血的病患使用。来自波士顿儿童医院的Rio Sugimura研究员表示,遗传性的血液疾病患者,甚至可以利用基因编辑的方式,修复遗传缺陷,并成功制造出健康的血球细胞。

第一个发表相关研究的论文中,研究人员使用了iPS和胚胎干细胞,给予他们特殊的化学信号,使干细胞转化为血球前驱细胞,接着再给细胞转录因子,使其成为真正具功能的血球细胞。研究人员发现需要五种转录因子,分别为RUNX1、ERG、LCOR、HOXA5和HOXA9,来强制细胞进入正确的分化程序。波士顿儿童医院的研究负责人Gee Daley表示:「我们非常接近能够产生真正的人类血球细胞,这项工作是20多年努力的结果。」

第二篇研究的作法略有不同,来自纽约威尔康奈尔医学中心(Weill Cornell Medicine)的一个小组不再使用iPS多能性干细胞或胚胎干细胞,而是使用从小鼠肺壁获取的成体干细胞,培养于含有四种转录因子Fo *** 、Gfi1、Runx1和Spi1,且模拟人类血管内环境的培养皿中,此方法能够将成体干细胞直接分化为血球细胞,无需经过iPS的过程。带领团队完成研究的Shahin Rafii表示,他们的实验方法有如直航班机,可以挑过中间的复杂程序。而Daley团队的技术则是转机后才到达目的地。虽说如此,但目前结果仅止于动物实验,哪一种方法在人体中会有更好的效果暂时还不得而知。不过可以期待的是,未来人类或许可以透过简单的方式,自给自足需要的血液供给,在医疗上不再需要仰赖他人捐赠,并且可以修复遗传性的血液或骨髓疾病。

  • 索引序列
  • 细胞生长与细胞分化研究进展论文
  • 细胞分化研究进展论文
  • 细胞生物学细胞分化论文范文
  • 中华细胞与干细胞杂志
  • 干细胞的研究和进展论文
  • 返回顶部