可以上国内几大数据库查查,比如维普、知网
SCI,即《科学引文索引》,是自然科学领域基础理论学科方面的重要的期刊文摘索引数据库。它创建于1961年,创始人为美国科学情报研究所所长Eugene Garfield()。利用它,可以检索数学、物理学、化学、天文学、生物学、医学、农业科学以及计算机科学、材料科学等学科方面自1945年以来(我馆购买了1994年至今的数据使用权)重要的学术成果信息;SCI还被国内外学术界当做制定学科发展规划和进行学术排名的重要依据。Ei,即《工程索引》,创刊于1884年,由Elsevier Engineering Information Inc.编辑出版。主要收录工程技术领域的论文(主要为科技期刊和会议录论文),数据覆盖了核技术、生物工程、交通运输、化学和工艺工程、照明和光学技术、农业工程和食品技术、计算机和数据处理、应用物理、电子和通信、控制工程、土木工程、机械工程、材料工程、石油、宇航、汽车工程等学科领域。 从SCI、Ei两大数据库里可以反映国际科技发展最新动态。
如果是以下这些领域,可以考虑汉斯出版社的《数据挖掘》期刊:数据结构、数据安全与计算机安全、数据库、数据处理、知识工程、计算机信息管理系统、计算机决策支持系统、计算机应用其他学科、模式识别、人工智能其他学科。
有大数据信息的新闻杂志有:《数据挖掘》《大数据时代》《大数据》《物联网与云计算》《数据之巅》等等
另外推荐一个与大数据有关的网站——中国大数据,里边有商业动态、技术方案、大数据分析、商业平台等信息可供你参考及学习;另外还有入门和论坛,可以供大家一起交流经验~
OJCAS(Online Journals in Computer and Applied Sciences)是一个致力于发表关于计算机和应用科学方面研究的在线期刊。它提供最新的科学与技术文章,从最新技术到发展中的计算机科学领域。期刊内容涵盖范围广泛,包括互联网IT从业者,计算机网络,信息安全,软件工程,数据挖掘,社会媒体,大数据及其他相关领域。
涉及到大数据方面的其实很多,数据挖掘,这本里面算是比较专业针对数据的了,其他的像社会科学前沿,水资源研究,都是涉及到用大数据来处理的相关论文了
如果是以下这些领域,可以考虑汉斯出版社的《数据挖掘》期刊:数据结构、数据安全与计算机安全、数据库、数据处理、知识工程、计算机信息管理系统、计算机决策支持系统、计算机应用其他学科、模式识别、人工智能其他学科。
一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。现在大数据这么流行,ITjob官网有关于大数据的文章和帖子,其他论坛和博客也有很多大牛独到的见解,不一定要看期刊才能了解大数据的。希望对你有帮助。
大数据是分为很多方面的,比如农业类的,消费类的,舆情类的。期刊的话,理论性较强,如果想与实际联系紧密,应该多看看运用大数据的实际案例。
我说说自己擅长的舆情大数据吧。
原理如下:
实际应用很多,局一个例子说明。
舆情热点分析-江苏老太遭拆迁活埋
9月7日中午12点左右,徐州沛县城区歌风一村拆迁地块,92岁的王世兰被发现死于自家屋内。当地警方据此回应称,事因拆迁公司在对相邻房屋实施拆除作业时,作业人员“操作失误”,误将王世兰所在房屋碰倒。目前,挖掘机司机因过失致人死亡,已被警方刑拘。
当地政府人员声称:事故发生时,被征收人赵某已经和县住建局签订了征收补偿安置协议,钥匙也交了。而遇难者家属出示了一张《申请说明》原件,说明由于家母多年卧床不起,租房十分困难,不能按目前要求的时间搬走,特申请给予一定时间,在搬迁问题上绝不会拖后腿。说明下方盖有“沛县沛城街道香城社区居民委员会”的红色公章。家属认为街道和拆迁公司至少应该负有监管责任,对于还有人的房屋要谨慎对待。
以上这例子就是大数据的应用案例,胜过读10本理论书。
数据挖掘,人工智能与机器人研究好像都行-
涉及到大数据方面的其实很多,数据挖掘,这本里面算是比较专业针对数据的了,其他的像社会科学前沿,水资源研究,都是涉及到用大数据来处理的相关论文了
计算机测量与控制
计算机应用研究
计算机应用与软件
电力大数据技术满足电力数据飞速增长,满足各专业工作需要,满足提高电力工业发展需要,服务经济发展需要。电力大数据技术包括:高性能计算、数据挖掘、统计分析、数据可视化等。 数据挖掘技术是通过分析大量数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等等。 统计分析,常指对收集到的有关数据资料进行整理归类并进行解释的过程。 统计分析可分为描述统计和推断统计。1、描述统计描述统计是将研究中所得的数据加以整理、归类、简化或绘制成图表,以此描述和归纳数据的特征及变量之间的关系的一种最基本的统计方法。描述统计主要涉及数据的集中趋势、离散程度和相关强度,最常用的指标有平均数、标准差、相关系数等。2、推断统计推断统计指用概率形式来决断数据之间是否存在某种关系及用样本统计值来推测总体特征的一种重要的统计方法。推断统计包括总体参数估计和假设检验,最常用的方法有Z检验、T检验、卡方检验等 2012年7月10日,信通公司成功举办大数据开启智能电网新时代研讨会。本次研讨会作为公司大数据战略推进重要一环,总结公司大数据战略实施以来的重点工作,加深理解大数据对电力信息通信事业的意义,促进大数据生态环境建设,并展望公司及大数据未来发展方向。本次研讨会特别邀请了中国宽带资本基金董事长田溯宁博士、《证析》作者郑毅先生、浙江海盐供电局徐光年主任做专题演讲。研讨会的成功举办,使大家进一步了解了大数据、信息通信技术在智能电网发展、未来科技发展的重要意义,同与会各位专家的交流也使大家开阔了视野、增长了知识。本次研讨会也标志了电力大数据战略将进入攻坚实战阶段,与会人员纷纷表示,要牢牢把握住电力信息通信引领智能电网飞速发展的宝贵机遇,以昂扬的斗志面对新的挑战! 2012电力行业信息化年会于2012年11月3-4日在北京举行。年会由中国电机工程学会电力信息化专业委员会、国网信息通信有限公司联合主办,南瑞集团国电通公司承办。国家电监会信息中心、国家电网公司信息化工作部、中国南方电网公司信息中心、中国电力建设集团公司信息中心、中国能源建设集团有限公司科技信息部以及各发电集团公司、各省电网公司信息部门等为会议的支持单位。本次年会主题为“大数据与宽带中国”。“大数据”将给电力企业带来新一轮商业模式转变和价值创新,宽带中国战略更为电力信息化发展提速。来自国家电力监管委员会、国家电网公司、国网信息通信有限公司、辅业集团公司、发电集团公司、网省公司等单位的30多位专家和代表将围绕主题在年会上发言或演讲。
如果是以下这些领域,可以考虑汉斯出版社的《数据挖掘》期刊:数据结构、数据安全与计算机安全、数据库、数据处理、知识工程、计算机信息管理系统、计算机决策支持系统、计算机应用其他学科、模式识别、人工智能其他学科。
大数据只是一个时代背景,具体内容可以班忙做
大数据时代学术期刊的机遇与挑战_数据分析师考试
在数字化再造并融合传统出版的大背景下,就学术期刊而言,其传播方式已经发生巨大变化,数字化、新媒体融合已成期刊传播新常态。在近日中国社会科学院图书馆(调查与数据信息中心)、国家期刊库(NSSD)举办的“大数据时代的学术期刊数字出版??机遇与挑战”研讨会上,学术期刊如何应对大数据时代的机遇和挑战,成为关注的主题。
主动适应“大数据”时代
据社科院图书馆数据网络部主任杨齐介绍,为适应“大数据时代”的需求,中国社会科学院国家期刊库项目组对643种学术期刊的网站建设进行了详细的调研分析,包含社科基金资助期刊195种,非社科基金资助期刊448种,并公布了调研结果。从调研数据中发现,目前大部分学术期刊在大数据时代的数字出版及开放获取意识有待提升,对于数字化和新媒体融合发展前景及方向还在探索之中。
专家认为,从表面上看,“大数据”的概念及其价值更多的是为IT业和企业营销领域所关注,但从深层次看,传媒业将是受到大数据时代冲击较大的行业。在大数据时代,与学术期刊处于同一环境体系的学术创新模式、学术研究范式、知识形态、知识获取、知识交流及处理机制的改变,将直接影响着学术期刊的生存和发展。
“大数据”深刻地改变着学术期刊的边界,使学术期刊面临新的挑战和机遇, “大数据”将造就新意义上的中国学术期刊。因此,各个学刊必须积极主动探索以学术期刊为纽带的大数据全产业链和新业态发展路径,应用大数据技术,跳出传统学术期刊的编辑出版流程局限,实现以学术期刊为纽带的学术研究全流程传播。
数字化时代的诸多挑战
当前,来自数字化潮流的挑战使得学术期刊正经历着一场革命。这场肇始于传播,继而扩展至整个编辑出版流程的革命,使学术期刊抛掉了纸本载体而实现了更为迅捷的网上编辑和传播,在传播流程中,数字化传播已成为学术期刊的主流渠道。学术期刊以综合性为主的结构和分散的布局导致以原期刊为单位的数字化传播意义不大,而经过汇集和重新编排后更能适应读者的需求,大型期刊数据库网站做的正是这样的工作。
另外,当以综合性、分散性和内向性为特征的学术期刊遭遇来自学术国际化、评价数量化和传播数字化的挑战时,处境更是日益艰难,而自然科学期刊尤甚,每年以10万篇计的优秀稿源的流失,使得国内一些顶尖学术期刊也面临着前所未有的稿源荒,更遑论一般期刊了。优稿的外流必然带来学术前沿的失守和读者的流失,使得学术期刊在数字化时代面临着诸多挑战,急需创新观念,走出一条数字化发展的新路径。
对此,中国社会科学院调查与数据信息中心副主任赵胄豪表示,通过高层次的文化碰撞,刷新旧有理念,加速学术期刊数字化、网络化的建设步伐;变革学术期刊投稿、编审、出版、传播及阅读的方式与途径;积极探索哲学社会科学领域学术期刊数字化转型、新媒体应用、开放获取及网络化建设等方面的问题,这是今后学术期刊适应数字化之路的重要途径。
加快数字化转型步伐
在如何探索学术期刊数字化转型上,中国科学院文献情报中心编辑出版中心主任初景利从数字出版环境与技术、学术期刊建设要素、期刊质量与影响力、传播能力的关系、数字出版平台建设、语义出版、开放获取出版等多方面详细介绍了科技期刊的经验,并提出六方面建议:一是期刊质量是期刊的生命;二是学术期刊编辑须承担社会责任与使命;三是采取综合措施提升期刊的传播力与影响力;四是重视数字出版与数字化刊群建设; 五是善于知识分析工具的开发与利用; 六是加强技术的研发和投入。
以上是小编为大家分享的关于大数据时代学术期刊的机遇与挑战的相关内容,更多信息可以关注环球青藤分享更多干货
大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
答:大数据与会计专业论文选题方向大数据比较好。因为大数据就业范围广,题材丰富,比较容易写。