发表几何论文
如何发表论文
首先你要准备好文章 选择适合刊物投稿
正确的发表步骤应该是:了解期刊——选择合适的期刊——投稿——顺利发表。对于作为本科生的同学来说,期刊无疑是一个很高大上的词汇,对于期刊的分类更是一头雾水。首先:了解你要发表何种类型期刊。接着:如何选择自己专业的期刊。当我们了解自己需要发表何种类型的期刊类型之后,可以通过知网搜索该种类型期刊。第一步:点开知网,选择出版物检索。第二步:选择期刊导航。第三步:根据学科选择自己的专业。第四步:点开对应出版物,了解具体信息。投稿及发表常识:一、论文发表周期及收费1、发表周期与上网周期刊物级别越高,审稿和发表周期越长。一般省级刊物时间一般在1-6个月;核心刊物一般要经过内审外审等多轮审稿,审稿一般3个月,发表周期在3-10个月不等。另外,纸质期刊正式出版,可以在相关网上数据库中检索出来,一般在纸质期刊出版后2-3个月可以检索。不同学科、不同刊物,发表周期各有不同。2、出版周期出版周期指的是期刊在一定时间内出版期刊的版数。常见的出版周期:年刊:一年出版一次。季刊:一个季度出刊一次。双月刊:每两个月出刊一次。月刊:每个月出刊一次。此外还有半月刊、旬刊、周刊。当前出刊周期越长,会被认为论文质量较高。3、收费国内学术期刊,经过国家政策文件的指导,建议收费,目前大多数为收费发表论文,也就是说,作者发表论文需要支付版面费。学术期刊在发行经费方面一向比较艰难,这个问题很容易理解。一般作者是不会花钱买一些学术性质的杂志来看的,多数以单位合作的形式发行。所以自2003年来,学术期刊陆续开始在稿件审核通过后收费发表论文。收费一般按照版面(字数)来衡量。但是对于一部分优秀期刊而言,相关单位会给与经费来办好刊物,促进学术研究的发展。二、投稿常识1、投稿途径之一:官方途径投稿。(1)具体途径官方网站投稿系统、官方邮箱、寄送纸质稿等。该途径投稿一般来说审稿时间较长,2-3个月,易被退稿,拒搞。该途径投稿适合稿子质量较高、单位评优评先要求之下的情况。该途径也是学术界用的最多的,目前各个期刊陆陆续续开通官方网站与官方投稿系统。采用官方投稿系统,方便作者投稿,查看审稿进度,方便编辑一方收稿与外审,是目前期刊投稿的趋势。(2)该途径投稿的流程:作者完稿——稿子投送至官方邮箱或者系统——期刊社初审——期刊社外审——期刊社终审——修改及其完善——录用——出刊——上网在该流程中,不符合的稿子一般在初审就会被拒,外审主要审查论文的质量、观点、科学性与学术价值。(3)被拒搞常见原因该途径投稿难度较大,原因有:稿子不符合期刊内容和期刊征稿方向、论文不符合期刊征稿规范、稿子质量过低、稿件不具备相关硬件条件(例如基金项目资助、作者学历与职称要求、单位要求)。(4)该途径投稿的常见问题:第一,找不到邮箱。第二,投错邮箱。通过百度显示的邮箱一般是网站的邮箱或者部分不良中介的邮箱。第三,进错网站。部分专业从事做网站的互联网用户可以作出与官方网站类似的网站,并且冒充网站征稿与收取高额发表费用,该情况下的副教授、高校博士生较多。第四,期刊官方邮箱被盗取。部分互联网用户采用技术手段,盗取期刊官方邮箱,以征稿和取高额发表费用。(5)寻找官方网站或者邮箱途径:第一,已经出版的纸质期刊上会附有官方网址、邮箱、地址等。第二,知网、维普、万方的该期刊页面,与该期刊官方网站与投稿系统的链接。第三,该期刊在各个数据库的征稿函或者投稿注意事项。2、投稿途径之二:文化公司中介为解决多数作者缺乏投稿知识与投稿途径,加之部分期刊征稿难的问题,部分文化公司获得部分期刊征稿代理权,负责对接作者与期刊社之间的投稿事宜。该途径的特点:信息更新较快、审稿时间较短(一般1-3天)、稿子录用率高、发表周期短(速度快)。论文发表对于学子保研考研、奖学金申请加分等方面都有重要作用,有能力有意愿的同学要尽可能写出一篇优质文章进行投稿喔!
需要先准备论文,然后选适合的期刊,投稿,通过审核后会有录用通知。现在为什么好多在校生开始发表论文了,好处太多了。对于本科想要读研深造的同学来说,发表一篇好论文可以体现自己的科研能力和创新能力,在保研/考研的面试中都是一个加分项;对于想要直接就业的同学来说,虽然工作经验不足,但一篇好论文是你所学专业知识和学术逻辑思维能力的集中体现,也能从众多求职中中脱颖而出;对于想要出国深造的同学来说,一篇优秀的论文,体现的是自身的研究能力和独立思考解决问题的能力,更有利于申请到一流的学校;对于已经是硕博研究生的同学们,自然更不必多说,没有发表论文甚至连学位证都拿不到。
大学生发表论文要准备好其次是需要明确刊物的选择投稿时不要忘记注明信息等例如学校名称亦或单位名称联系电话、邮箱地址等等。
论文如何算发表
首先搞清楚为什么发论文, 一般都是为了保研,学位, 评奖,评职称加分等等, 然后就要了解对应事项对论文方向和所发的杂志(有的会给出一个目录)的要求, 以免发非所要做无用功确定的论文方向, 自己应该要有充分的了解, 可以多看看知网上相关文章, 也可以找老师指导一下, 尽量能写出比较独到的逻辑完整的观点, 还要有充分的论据和比较丰富的论证方法确定目标杂志, 可以先大致圈定几个意向进行详细了解, 包括杂志的周期(有些杂志出刊太慢排队太久等不起), 杂志对作者的偏好(有些较好的杂志只接受一定级别的作者, 本科生不在考虑范围), 投稿审稿或版面费用(一般越好的杂志可能不收费但上稿难度很大), 有可能的话可以在官网或杂志上找到编辑部联系方式, 直接咨询, 不要轻易相信网络上的中介投稿要注意符合杂志社的投稿格式规范, 要检查好文字不要出现低级错误, 那样会严重影响编辑对稿件的印象, 投稿投到官方的邮箱, 然后可以打个电话提醒一下编辑查收, 需要付费的一般是杂志出了用稿通知后才付费, 如果是上来就要钱说包发的十有八九是
很多医务工作者在职位晋升上都需要发表论文,可以说如今想要发表论文是非常难的了,但由于发论文需求的人群数量很大,杂志版面却不多,很多人在投稿后都没有消息,对于首次接触论文发表的人来说,并不清楚医生如何发表论文,下面就一起来听听医生是怎么发表论文的。 医生投稿前准备: 1、投稿方式药正确 发表论文投稿,需要参照规范撰写论文,然后按照刊物的稿件处理方式,有些人会通过发送电子邮件投稿,有些人会纸质投稿。 2、格式要规范文章结构式标题标注到作者单位、参考文献的书写规范,需要书写规范化的论文。3、关注审稿进度 从投稿到发表过程,很多作者最关心期刊的质量和地位,但也有人关心审稿周期和审稿进展。 4、正确的联系方式 编辑部与作者的联系主要通过网上投稿系统和邮件。作者可优先选用这2种方式与编辑部保持联系,亦可通过电话查询稿件进展情况。 5、校对过程要迅速 论文发表前需经过作者校对。主要在于确认著作权和文章内容。也有人将校样稿发给作者,同时将在校对过程中发现的问题一起反馈给作者。 6、退稿的正确处理方式 很多刊物都不是来稿照登,被退稿很大部分的原因始是文章体验不好。大多刊物的退稿率比刊用率高,如创刊比较早的医学杂志《新英格兰医学杂志》的刊用率约为7%,至于国内期刊的刊用率如何,需要查看相关数据。 7、每个退稿阶段的处理方式也不同当作者对于初审、复审的退稿意见不认同,或者因为文章内容表达不清晰,可以联系编辑。如果解释有理有据,编辑部也会给予从新审稿的机会。如果稿件依然无法通过,就需要另投其他刊物了。
如何发表sci论文?这是许多研究者关注的内容。目前,发表sci论文可以给国内作者带来很大的优势。然而,在国际期刊上发表论文是有难度的。发表sci论文都需要掌握一定的技巧。充分的准备才能使论文更顺利地发表,首先需要一篇高质量的论文。这也要求作者阅读大量的英语文学作品,并具有较高的英语水平。如果英文水平不够,你可以先用中文写论文,然后找专业机构翻译成英文,他们也会对论文进行润色,使论文达到投稿的水平。国际sci论文审稿人是不习惯中国式英语的,很多国内作者投稿也是因为语言问题而被拒稿,想要避免这种情况就需要早做准备。 论文写好后都会寻找相关的sci刊物投稿,大家阅读相关文献时也会知道一些与自己研究领域相关的sci刊物,掌握其影响因子及相关期刊的名称非常重要。小编建议先发一些比较高质量的期刊论文,如果能被送审,得到一些修改意见,即使被拒,也可以发表一些影响因子较低的期刊。 选好期刊后根据“Instructions for Authors”,修改自己文章的格式。虽然比较繁琐的事情,却也能修改格式。比如说:文章标题、作者、通讯方式。对于参考文献也有不同的安排方式。总体来说想要发表sci论文并不容易,建议各位国内作者尽早的咨询专业老师,结合你的论文内容投稿相符合的杂志期刊,这样往往通过率会高一些。
首先你得注册,把你的论文弄成你自己的知识产权。不弄的话,发表后别人会盗用。发布论文一般可靠的就是在中国知网上。全国最大的论文网坛
如何发表EI论文
不能照别人的方法只换研究区域写成实验报告,内容上一定要有创新,才有希望发核心具体的还是要看杂志类型的,建议你找个机构代发。不能照别人的方法只换研究区域写成实验报告,内容上一定要有创新,才有希望发核心具体的还是要看杂志类型的,建议你找个机构代发。
很简单,直接找合适的期刊投稿即可。建议投国外的EI期刊,国内的竞争太大,录用难度和SCI一个水准了。但是投国外的期刊,就需要将文章翻译成英文,所以卡了很多学者
上网搜索“高级经济师考试论文网158、高级会计师论文网158、高级统计师考试论文网158、高级政工师论文网158、高级审计师论文网158、高级经营师论文网158、高级营销师论文网158、高级项目管理师论文网158、国际商务师论文网158、高级工程师论文网158、教师论文网158、物流师论文网注册会计师学院158、大专出国读硕158、郑州免费自考158”均可查阅电话、地址等详情。高校智慧,家中接待,诚信可靠。
目前国内能帮忙发表EI的正规机构并不多,如果你自己投稿是比较难的,通过代理机构比较省心,不过花点而已。最近要截稿的是《2012 International Conference on Electrical & Mechanical Education and Medical Devices》 这个5月20号截稿 详情 你可以咨询中国期刊库(zgqkk)
解析几何发展史论文
怎么说例文你是要找范文就好吗
几何学的发展大致经历了四个基本阶段。1、实验几何的形成和发展几何学最早产生于对天空星体形状、排列位置的观察,产生于丈量土地、测量容积、制造器皿与绘制图形等实践活动的需要,人们在观察、实践、实验的基础上积累了丰富的几何经验,形成了一批粗略的概念,反映了某些经验事实之间的联系,形成了实验几何我国古代、古埃及、古印度、巴比伦所研究的几何,大体上就是实验几何的内容。例如,我国古代很早就发现了勾股定理和简易测量知识,《墨经》中载有“圜(圆),一中同长也”,“平(平行),同高也”,古印度人认为“圆面积等于一个矩形的面积,而该矩形的底等于半个圆周,矩形的高等于圆的半径”等等,都属于实验几何学的范畴。2、理论几何的形成和发展随着古埃及、希腊之间贸易与文化的交流,埃及的几何知识逐渐传入古希腊古希腊许多数学家,如泰勒斯(Thales)、毕达哥拉斯(Pythagoras)、柏拉图(Plato)、欧几里德(Euclid)等人都对几何学的研究作出了重大贡献特别是柏拉图把逻辑学的思想方法引入几何学,确立缜密的定义和明晰的公理作为几何学的基础,而后欧几里德在前人已有几何知识的基础上,按照严密的逻辑系统编写的《几何原本》十三卷,奠定了理论几何(又称推理几何、演绎几何、公理几何、欧氏几何等)的基础,成为历史上久负盛名的巨著。《几何原本》尽管存在公理的不完整,论证有时求助于直观等缺陷,但它集古代数学之大成,论证严密,影响深远,所运用的公理化方法对以后数学的发展指出了方向,以至成为整个人类文明发展史上的里程碑,全人类文化遗产中的瑰宝。3、解析几何的产生与发展公元3世纪,《几何原本》的出现,为理论几何奠定了基础与此同时,人们对圆锥曲线也作了一定研究,发现了圆锥曲线的许多性质但在后来较长时间里,封建社会中的神学占有统治地位,科学得不到应有的重视直到15、16世纪欧洲资本主义开始发展起来,随着生产实际的需要,自然科学才得到迅速发展法国笛卡尔(Descartes)在研究中发现,欧氏几何过分依赖于图形,而传统的代数又完全受公式、法则所约束,他们认为传统的研究圆锥曲线的方法,只重视几何方面,而忽略代数方面,竭力主张将几何、代数结合起来取长补短,认为这是促进数学发展的一个新的途径。4、现代几何的产生与发展在初等几何与解析几何的发展过程中,人们不断发现《几何原本》在逻辑上不够严密之处,并不断地充实一些公理,特别是在尝试用其他公理、公设证明第五公设“一条直线与另外两条直线相交,同侧的内角和小于两直角时,这两条直线就在这一侧相交”的失败,促使人们重新考察几何学的逻辑基础,并取得了两方面的突出研究成果。
古希腊数学家梅内克缪斯(Menaechmus)的解题、证明方式与现在使用坐标系十分相似,以至于有时会认为他是解析几何的鼻祖。阿波罗尼奥斯在《论切触》中解题方式在现在被称之为单维解析几何;他使用直线来求得一点与其它点之间的比例。阿波罗尼奥斯在《圆锥曲线论》中进一步发展了这种方式,这种方式与解析几何十分相似,比起笛卡儿早了1800多年。他使用了参照线、直径、切线与现进所使用坐标系没有本质区别,即从切点沿直径所量的距离为横坐标,而与切线平行、并与数轴和曲线向交的线段为纵坐标。他进一步发展了横坐标与纵坐标之间的关系,即两者等同于夸张的曲线。然而,阿波罗尼奥斯的工作接近于解析几何,但它没能完成它,因为他没有将负数纳入系统当中。在此,方程是由曲线来确定的,而曲线不是由方程得出的。坐标、变量、方程不过是一些给定几何题的脚注罢了。十一世纪波斯帝国数学家欧玛尔·海亚姆发现了几何与代数之间的密切联系,在求三次方程使用了代数和几何,取得了巨大进步。但最关键的一步由笛卡儿完成。从传统意义上讲,解析几何是由勒内·笛卡儿(René Descartes)创立的。笛卡儿的创举被记录在《几何学》(La Geometrie)当中,在1637年与他的《方法论》一道发表。这些努力是以法语写成的,其中的哲学思想为创立无穷小提供了基础。最初,这些著作并没有得到认可,部分原因是由于其中论述的间断,方程的复杂所致。直到1649年,著作被翻译为拉丁语,并被冯·斯霍滕(van Schooten)恭维后,才被大众所认可接受。费马也为解析几何的发展做出了贡献。他的《平面与立体轨迹引论》(Ad Locos Planos et Solidos Isagoge)虽然没有在生前发表,但手稿于1637年在巴黎出现,正好早于笛卡儿《方法论》一点。《引论》文字清晰,获得好评,为解析几何提供了铺垫。费马与笛卡儿方法的不同在于出发点。费马从代数公式开始,然后描述它的几何曲线,而笛卡儿从几何曲线开始,以方程的完结告终。结果,笛卡儿的方法可以处理更复杂的方程,并发展到使用高次多项式来解决问题。
几何学的发展史论文
几何学的发展史几何学研究的主要内容,为讨论不同图型的各类性质,它可说是与人类生活最密不可分的远自巴比伦,埃及时代,人们已知道利用一些图的性质来丈量土地,划分田园但是并没有把它当作一门独立的学问来看,只把它当作人类生活中的一些基本常识而已真正认真去研究它,则是从古希腊时代才开始的所以由此,我们约略的将几何学的发展,分为下列几个方向:古希腊的几何学解析几何投影几何非欧几何微分几何几何的公理化 古希腊的几何学的发展 发展阶段 古希腊几何发展的原因 欧基里德的贡献———介绍"Elements" 阿基米德的贡献 阿波罗尼阿斯的贡献 古希腊几何学中的著名问题(1)方圆问题(2)倍积问题(3)三等分角问题(4)平行公设 影响数学发展的人物 古希腊数学衰退的原因 与几何学有关的应用科学古希腊数学的批判 发展阶段:古希腊所发展的几何学是所有近代数学的原动力若要了解整个数学的架构,必定要先了解古希腊几何学的发展我们可将其分为三个阶段:(1)启蒙期:主要人物有泰利斯(Thales),毕达哥拉斯(Pythagoras),尤多沙斯(Eadoxus)泰利斯:为古希腊天文学与几何学之父,他曾正确的预测日蚀的时间他开始对一些几何图形做有系统的研究毕达哥拉斯(毕式学派):首创集体创作,称为毕式学派也是一位音乐家,发明毕式音阶毕式定理为几何学中的重要定理这个学派认为"数"是宇宙万物的基础C,尤多拉斯:创立穷尽法(exhaustion method),所谓穷尽法就是"无穷的逼近"的观念,主要构想是为了求取圆周率π的近似值所予理论上说尤多拉斯是微积分的开山祖师尤多拉斯的另一贡献,为对比例问题做有系统的研究 (2)巅峰期:重要人物有:欧基里德(Euclid)阿基米德(Archimedes)阿波罗尼阿斯(Apollonoius)欧基里德:他将一些前人对数学的结果,加以整理,写成"Elements"这本书(中译为几何原本)这本书是有史以来第一本数学教科书,也是最畅销的在往后数学的每一分支都是由这本书出发的目前初中所学的平面几何学,内容仍以"Elements"这本书为主这本书的详细内容,将在后面单独介绍这本书的另一优点为浅显易读(readable)欧基里德本身并没有什麼重大的数学突破,它是一个数学的集大成者这本书直到明朝中叶以后才传人中国阿基米德:生於西西里岛,曾留学埃及亚历山大城是有史以来三大数学家之一,发明不计其数,以后我们将单独介绍他及他的贡献阿波罗尼阿斯:与阿基米德同一时代最大一贡献是对於圆锥曲线的研究,这对於以后的解析几何,以至於微积分的发明有直接的影响圆锥曲线的应用,直到16世纪才由刻卜勒加以发扬光大(3)衰退期:自阿基米德及阿波罗尼阿斯之后,希腊数学已渐渐走入衰退期在这中间,仍有几位值得一提的人物托勒密:将三角函数发扬光大,并由此将天文学炒热帕布斯:可说是末代时期的代表人物古希腊几何发展的原因:我们不禁要问:为什麼古希腊会发展出这麼伟大的一些数学结果,是什麼原动力使他们如此 在希腊以前的各支文明,都把大自然看成是无秩序的,神秘的,多元的,可怕的自然的现象均为神控制人的生活和运气都是神的意志决定但是希腊文明期,知识份子对自然摆出一种新的姿势,也就是理智的,评价的,现实的,他们主张自然界是有秩序的依照某一公式而表现其作用人类不仅能研究自然的法则,甚至预言什麼事情将发生毕学派首先提出下列观念:"将神秘性,不确定性从自然活动中抹去,并将表面看似纷乱不堪的自然现象,重新整理成可理解的次序和型式,并决定性的关键就在於数学的应用"继承毕式学派观念的就是柏拉图:柏拉图主张:"只有循数学一途,才能了解实体世界的真面目,而科学之成为科学,在於它含有数学的份"就是因为希腊时代的一些学者对於自然的这种看法和确立了依循数学研究自然的做法,给食腊时代本身及后来世世代代的数学创见提供了莫大的诱因而在数学的领域中,几何学是最接近实际的描述对希腊人而言,几何学的原则是宇宙结构的具体表现,本身正一门实际空间的科学几何学就是数学,研究的中心欧基里德的贡献:"Elements"这本书共有13册,其内容为:(1)1-6册:平面几何学,它是以下列五大公设为基础:a,任二点之间可作一直线b,直线可以任意延长,可以以任意点为圆心,任意长为半径,画出一圆d,直角皆相等,平行公设以研究下列性质:三角形的性质—全等,相似,等等平行线的性质—内错角,同位角毕式定理圆的性质 - 内接圆,外切圆比例的问题平行四边形的性质(2)7,8,9册:整数论讨论奇数,偶数,质数的问题,另外也讨论了穷尽法的应用(3)11,12,13册:立体几何讨论角锥,圆锥,圆柱等性质,也提到了穷尽法的应用(4)第10册:不可测问题类似无理数的性质这本书的最大的特色就是:它只引用了几个简单的假设,再根据这些假设,推导出一连串的定理,最后变成一套完整的理论,在因果之间确立了严密的逻辑推理,由此确立了数学为一门演绎的科学这本书也有一些缺点,而事实上这些缺点,就是使日后数学发扬光大的原动力举例来说,在第五个(平行公设)中,有无数的数学家在这假设上打转,最后终於在19世纪造就了非欧式几何学,而直接产生了爱因斯坦的相对论"Elements"为第一部成型的数学著作数学之基本概念,证明模式,定理布局的逻辑性,都经由研读它而得以通晓欧基里德的其他著作:锥线(Conics)它的内容是阿罗尼阿斯的"圆锥曲线"骨架现象讨论天文学的问题阿基米德的贡献:阿基米德在西元前287年生於西西里岛的西那库斯,他在亚力山大城求学 他治学的态度是从一些简单的公理出发,再用无懈可击的逻辑导出其他的定理,把物理及数学联合起来一起叙述,他算是第一人,因此我们也可以称他为物理学之父,他是第一个有科学精神的工程师,他找一般性的原理,然后用到特殊的工程问题上他最重要的贡献是将"穷尽法"发扬光大,它已经将等於这个观念跨向"任意趋近於"的观念,而这已经跨进近代微积分的领域,他曾用穷尽法算π的近似值,得到:1408<π<142858阿基米德创立了流体静力学(浮力原理是最重要的结果),同时发现的杠杆原理,所以可以把他视为一个工艺学家(美劳专家)阿基米德的去世,可代表著希腊数学开始衰退的起点,我们到后面会专门讨论衰败的原因阿基米德著作的一个缺点是内容非常难懂,不具可读性的特性,所以未能像Element这本书流传这样广顺便一提的是,在1906年时在土耳其,发现了一本当年阿基米德的著作"The Method",在当时引起一阵轰动阿波罗尼阿斯的贡献:他居住亚力山大,与阿基米德同一时期他主要的研究对象是圆锥曲线,在他之前也有一些零星的结果,但是由他开始对圆锥曲线作严密的定义与讨论由几何学的观点来看,它所著的"圆锥曲线"这本书可说是古希腊几何学的巅峰这本书计有八册,共有487个项目其真正的实用性,直到16世纪才被发扬事实上,在这以后,任何时期的数学家在启蒙入门时大概都是靠欧基里德的"Element"与阿波罗尼阿斯的"圆锥曲线"起家的希腊数学中的著名问题:所谓的问题,就是只能用圆规与没有刻度的直尺之下,是否可以解决下列问题:方圆问题:是否能将一个已知的圆,变成一个正方形,而使得两者面积相等 这个问题在由尤多拉斯时代,就有许多人在这方面的研究,直到十九世纪才证明其为不可能,但是研究期间,已经另外产生了许多数学的分支倍积问题:对一个已知的正立方体,长,宽,高应该扩大,才可使新的立方体为原来立方体体积的两倍等分角问题:对任意的一个角,如何将其三等分问题2,3到十九世纪才被解决,证明为不可能平行公设:有人认为平行公设不为一公设,所以有人将平行公设这个去除,结果造出一套新的几何学出来,而又不会违背原来的欧式几何,这也就是非欧几何学也就是爱因斯坦相对论的基础也许有人认为希腊人不切实际,这三个问题在当时,可说完全无实用性,只可说是一些有闲阶级的人磨练脑力之用但是就是因为有那麼多人投下心力去研究,才会间接带动几何学研究的风潮而因此产生以后数学蓬勃的发展对数学发展有影响力的人物(1)亚力山大大帝(2)托勒密王朝:建立了亚力山大城,并建立了亚力山大图书馆,为世界当时最大图书馆在这个图书馆中,产生了许多有影响力的学者(阿基米德等人)Hiero国王:为西西里岛国王,阿基米德的直接赞助者苏格拉底,柏拉图,亚里斯多德克利奥派翠亚(埃及艳后)托勒密王朝的末代人物,亚力山大图书馆的第一次大火,就因它而起(第一认浩劫)基督教领袖与回教领袖:对希腊数学作第二次与第三次摧毁的主要角色希腊数学的衰退在阿基米德,阿波罗尼阿斯等人之后,希腊数学开始衰退,以后我们将讨论它所遭受的灾难:第一次浩劫:罗马人的来临,使得希腊数学遭到破坏罗马人都很实际,他们设计完成很多工程,但是却拒绝去深思用的原理罗马的皇帝也不热衷的支持数学家希腊在公元前十四世纪完全被罗马征服当时托勒密王朝的末代君主为克利奥派翠亚(埃及艳后)与凯撒很好,凯撒为了帮助她与她的兄弟的纷争,放火烧了亚力山大港的战舰,结果大火无法控制,将亚力山大图书馆也烧掉了大概有数以百万计的图书及手稿全部付之一炬,造成重大损伤这一次损伤,耗了希腊数学不少元气第二次浩劫:基督教的兴起,使得希腊数学面临第二次浩劫因为他们反对教会外的研究,并且嘲弄数学,天文学及物理学基督徒被迫禁止参与希腊研究,以防止受到污染所以又有成千上万的希腊书被毁第三次浩劫:回教徒征服亚力山大城后连最后的一些图书都被烧掉,当时的回教征服有一句话说:若是这些书的内容在可兰经中已有,则我们不必去读它若在可兰经中没有则更不应该去读它,所以全部图书付之一炬残余的部份:此时,一些学者都移居君士坦丁堡,寄托於东罗马帝国之下,虽然仍感到基督徒的不友好气氛,但是总是较安全,使得知识的库存又慢慢增加,直到14世纪文艺复兴时才又再发扬光大与几何学有关的科学天文学:对希腊人而言,几何学的原则是宇宙空间的具体表现,所以几乎每个数学家都曾在天文学上下过功夫事实上,三角学的发明,就是要研究天文学而发展出来的技术有许多数学家都曾设计过天体间星球运行的模型当时流行的有日心识菟地心说,日心说由阿里斯塔克提出(他是亚力山大城第一位伟大的天文学家),但是当时反对的人很多地心说由托勒密提出来的这个学说直到16世纪时才被推翻在托勒密的时代,也就是天文学发展最巅峰的时期另一位伟大的天文学家是阿波罗尼阿斯,他以数量的观点来描述过星球运动,这已接近18世纪时天文学的研究领域托勒密的Almagest为经典之作另外,中国的历代数学家在几何在也作出了不小的贡献,单列如下:中国几何发展史自明朝后期(十六世纪)欧几里得"几何原本"中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。 中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。 汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。 圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:"圆,一中同长也。"—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。 在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。祖冲之所得的结果π=355/133要比欧洲早一千多年。 在刘徽的"九章算术"注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。 中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果. 江苏吴云超解答 供参考!
几何学的发展史几何学研究的主要内容,为讨论不同图型的各类性质,它可说是与人类生活最密不可分的远自巴比伦,埃及时代,人们已知道利用一些图的性质来丈量土地,划分田园但是并没有把它当作一门独立的学问来看,只把它当作人类生活中的一些基本常识而已真正认真去研究它,则是从古希腊时代才开始的所以由此,我们约略的将几何学的发展,分为下列几个方向:古希腊的几何学解析几何投影几何非欧几何微分几何几何的公理化 古希腊的几何学的发展 发展阶段 古希腊几何发展的原因 欧基里德的贡献———介绍"Elements" 阿基米德的贡献 阿波罗尼阿斯的贡献 古希腊几何学中的著名问题(1)方圆问题(2)倍积问题(3)三等分角问题