首页 > 毕业论文 > 求极值的若干方法毕业论文

求极值的若干方法毕业论文

发布时间:

求极值的若干方法毕业论文

除了求导我不知道有什么办法了比如f(x)=x^2求导以后就是f`(x)=2x当f`(x)=0即x=0时取到极值,当x<0时f`(x)<0(导数小于0时表示单调递减,就是图像一直呈向下的趋势,没有上升的时候),当x<0时,f`(x)>0,所以图像时向下凸出的,那个最低的地方就是极值点,这里为极小值。所以x=0为极小值。不知道求导的话去查查就知道了。

函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。

1、求极大极小值步骤:

求导数f'(x);

求方程f'(x)=0的根;

检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。

f'(x)无意义的点也要讨论。即可先求出f'(x)=0的根和f'(x)无意义的点,再按定义去判别。

2、求极值点步骤:

求出f'(x)=0,f"(x)≠0的x值;

用极值的定义(半径无限小的邻域f(x)值比该点都小或都大的点为极值点),讨论f(x)的间断点。

上述所有点的集合即为极值点集合。

定义:

若函数f(x)在x₀的一个邻域D有定义,且对D中除x₀的所有点,都有f(x)

同理,若对D的所有点,都有f(x)>f(x₀),则称f(x₀)是函数f(x)的一个极小值。

极值的概念来自数学应用中的最大最小值问题。根据极值定律,定义在一个有界闭区域上的每一个连续函数都必定达到它的最大值和最小值,问题在于要确定它在哪些点处达到最大值或最小值。

如果极值点不是边界点,就一定是内点。因此,这里的首要任务是求得一个内点成为一个极值点的必要条件。

百度百科--极值

我知道能函授问题明白道理

极值的求法毕业论文

先判断函数的单调性,若函数在定义域内为单调函数,则最大值为极大值,最小值为极小值

2.导数法

(1)、求导数f'(x);

(2)、求方程f'(x)=0的根;

(3)、检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。

特别注意

f'(x)无意义的点也要讨论。即可先求出f'(x)=0的根和f'(x)无意义的点,这些点都称为可疑点,再用定义去判断。

二阶连续偏导数的函数z = f(x,y)的极值的求法叙述如下:

(1)解方程组fx(x,y) = 0,fy(x,y) = 0,求得一切实数解,即可求得一切驻点;

(2)对于每一个驻点(x0,y0),求出二阶偏导数的值A、B和C;

(3)定出AC-B2的符号,按定理2的结论判定f(x0,y0)是否是极值、是极大值还是极小值。

上面介绍的极值必要条件和充分条件都是对函数在极值点可导的情形才有效的。当函数仅在区域D内的某些孤立点(xi, yi)不可导时,这些点当然不是函数的驻点,但这种点有可能是函数的极值点,要注意另行讨论

函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。

如果遇到的是二次函数,可以很简单求出极值,其实用单调性也很好用像基本不等式,一般出的题不会一眼就让你用,都是在解答的某个关键处用来判断的,尤其像均值定理这种重要的不等式,很有用像△>=0这种,在正规考试中不会单纯的给一不等式题要你解答,一般都会与函数相结合,多参数求不等式,这就又与第一种相关联了还有你要掌握数形结合的方法,学会根据图像解题,这样好理解

极值的求法:

(1)求导数f'(x);

(2)求方程f'(x)=0的根;

(3)检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。

极值函数:

若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。

设函数f(x)在x。附近有定义,如果对x。的去心邻域,都有f(x) f(x),则f(x)是函数f(x)的一个极小值,对应的极值点就是x。

函数的极值和最值毕业论文

b^2-ac未定

区别在于二者概念不同。极值是与它的两侧相比,大于两侧是极大值,小于两侧是极小值;最值则是函数在定义域或指定区间内的最大最小值。除特定函数,两者无必然联系。

联系:一些情况下,函数有极值无最值;另一些情况下,函数有最值无极值,还有一些情况下,最值 = 极值。

极值是一个函数的极大值或极小值。如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。

我知道能函授问题明白道理

极值不一定是最值,最值也不一定是极值。极值是指在某个邻域内取得了最大或最小,但不等于它在整个定义区间内最大或最小。最值可能在极值点,也可能在定义区间的边界上。

关于极值的毕业论文

我知道能函授问题明白道理

首先你要说下研究函数极值的意义:在很多工程实际中,我们经常需要做一些优化。当然,本人是学飞行器设计的,举个简单的例子:飞机的升力主要由机翼提供,那么机翼的截面到底设计成什么形状,或者机翼的平面投影设计成什么形状,其升力可以达到最大,甚至在保证升力的同时还不能让阻力太大,所以这些都涉及到一个最优的问题。(当然,楼主可以就具体工程实际给出例子),再比如,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是浩大的工程,动不动就几百亿的,如何合理布局(要考虑建设成本、怎么选定线路、建成之后为国民经济带来的效益、运营费用、会不会对环境有影响,那么污染治理费也要考虑),才能让这些公共基础建设的利远大于弊。。。。一般实际问题都是一个或者一组多元函数,那么研究清楚这些问题,对我们的工程实际将有莫大的裨益,对节省能源等等问题都有好处

我觉得LS回答得太随意了,我不是学数学专业的,所有帮不了你!

函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。

对称群的若干性质毕业论文

设G为群, ,定义G中元 ,称为a和b的换位子,所有这样的换位子生成的子群 称为G的换位子群 当G为交换群时,任意两个元的换位子 都是单位元,故 , ,故 是G的正规子群 , ,故 ,故 是交换群 引理:设 ,则 为交换群 证明:记 可得G的一个子群链, 其中每个 都是 的正规子群,且 为交换群 定理:G为可解群 使 证明:定理:若G为可解群,则G的子群和商群都是可解群 证明:定理:设 ,则G为可解群 N和 都是可解群 证明:对称群 为交换群,显然 是可解群 对称群 ,令 是偶置换群(交错群),为3阶循环群 又子群链 , 为2阶群,故 , 都是交换群,故 是可解群 对称群 中包含交错群 , 是2阶群, 中包含一个4阶子群 (Klein四元群)是交换群,易证 是 的正规子群,且 是3阶循环群,故 有子群链 ,故 是可解群 引理:当 时,全体长为3的轮换(循环置换)组成 的一个生成元系 证明:注: 1.任一置换 一定可唯一表成相互独立的轮换之积,若长为r( )的轮换有 个,则 称为 的型 2.任一置换可表成若干对换之积,即全体对换组成 的一个生成元系 引理:对称群 中两个置换共轭 它们有相同的型 证明:定理:当 时,交错群 是单群 证明:定理:当 时,对称群 不是可解群 证明:

什么专业??

封闭性、结合律、有单位元、有逆元

对称性是对某个参考物而言的。在空间中呈现大小相同但位置不同的特点即几何性质相同

  • 索引序列
  • 求极值的若干方法毕业论文
  • 极值的求法毕业论文
  • 函数的极值和最值毕业论文
  • 关于极值的毕业论文
  • 对称群的若干性质毕业论文
  • 返回顶部