首页 > 毕业论文 > 扭转减振器计算毕业论文

扭转减振器计算毕业论文

发布时间:

扭转减振器计算毕业论文

随着国民经济的迅猛发展,汽车产量逐年增加,2006年已达720万辆。我国汽车保有量越来越多,车型也越来越复杂。尤其是高科技的飞速发展,一些新技术、新材料在汽车上的广泛应用后,给汽车故障诊断与排除增加了一定难度。本篇论文重点讨论轿车离合器的故障分析及维修方法。离合器是手动变速汽车必备的一个重要总成。没有离合器手动挡汽车将无法起步,并且难以实现挡位变换。在汽车使用中,离合器难免出现这样、那样的故障,直接影响汽车的正常运行。现在汽车迅速进入家庭,汽车私有化程度提高,所以汽车故障将会影响到我们每一个人。分析研究离合器故障现象、原因、探索离合器故障的排除方法和离合器的维修工艺,具有重大而现实的意义。本文重点通过北京现代轿车离合器故障的探讨,正确认识离合器故障,更好的使用和维护离合器。离合器安装在发动机与变速器之间,用来分离或接合前后两者之间动力联系。其功用是:1)使汽车平稳起步;现今所用的盘片式离合器的先驱的多片盘式离合器,它是直到1925年以后才出现的。多片离合器最主要的优点是,在汽车起步时离合器的接合比较平顺,无冲击。20世纪20年代末,直到进入30年代时,只有工程车辆、赛车和大功率的轿车上使用多片离合器。多年的实践经验和技术上的改进使人们逐渐趋向与首选单片干式摩擦离合器,因为它具有从动部件转动惯量小、散热性好、结构简单、调整方便、尺寸紧凑、分离彻底等优点,而且在结构上采取一定措施,已能做到接合平顺,因此现在广泛用于大、中、小各类车型中。如今单片干式摩擦离合器在结构设计方面相当完善。采用具有轴向弹性的从动盘,提高了离合器接合时的平顺性。离合器从动盘总成中装有扭转减振器,防止了传动系统的扭转共振,减小了传动系噪声和动载荷,随着人们对汽车舒适性要求的提高,离合器已在原有基础上得到不断改进,乘用车上愈来愈多地采用具有双质量飞轮的扭转减振器,能更有效地降低传动系的噪声。汽车离合器有摩擦式离合器、液力偶合器、电磁离合器等几种。液力偶合器靠工作液(油液)传递转矩,外壳与泵轮连为一体,是主动件;涡轮与泵轮相对,是从动件。当泵轮转速较低时,涡轮不能被带动,主动件与从动件之间处于分离状态;随着泵轮转速的提高,涡轮被带动,主动件与从动件之间处于接合状态。电磁离合器靠线圈的通断电来控制离合器的接合与分离。如在主动与从动件之间放置磁粉,则可以加强两者之间的接合力,这样的离合器称为磁粉式电磁离合器。目前,与手动变速器相配合的绝大多数离合器为干式摩擦式离合器,按其从动盘的数目,又分为单盘式、双盘式和多盘式等几种。摩擦式离合器又分为湿式和干式两种。离合器的工作原理离合器的工作原理:离合器的主动部分和从动部分借接触面间的摩擦作用,或是用液体作为传动介质(液力偶合器),或是用磁力传动(电磁离合器)来传递转矩,使两者之间可以暂时分离,又可逐渐接合,在传动过程中又允许两部分相互转动。目前在汽车上广泛采用的是用弹簧压紧的摩擦离合器(简称为摩擦离合器)。发动机飞轮是离合器的主动件。带有摩擦片的从动盘和从动盘毂借滑动花键与从动轴(变速器主动轴)相连。压紧弹簧将从动盘压紧在飞轮端面上。发动机转矩即靠飞轮与从动盘接触面之间的摩擦作用而传到从动盘,再由此经过从动轴和传动系统中一系列部件驱动车轮。弹簧的压紧力越大,则离合器所能传递的转矩也越大。离合器分离轴承缺油时,将产生“吱吱”声。此时应给分离轴承注油或更换分离轴承。分离杠杆(或膜片弹簧分离指端)不在同一平面时,易使减震弹簧折断,起步时将产生连续打滑,引起振动。此外,离合器弹簧折断、弹力变小,也会发生同样现象。分离杠杆的回位弹簧弹力减弱,会导致离合器分离轴承回位不好,从而造成离合器分离不彻底,产生异响。此时应将分离杠杆的高度调整一致,更换弹簧。从动盘毂或离合器从动轴花键磨损,应更换从动盘或离合器从动轴。离合器、变速器、发动机曲轴主轴颈轴线没对准,应予对准。由于前导向轴承(套)损坏引发的噪声。只要离合器分离必定出现噪声,离合器一旦接合噪声就没有了。有时会把这种噪声误解为分离轴承的失效所致,所以要注意分辨。变速器安装不当,往往使导向轴承额外受力,在离合器使用若干次后就使它损坏,很快出县现噪声。任何类型的分离轴承失效后都会出现尖锐噪声。如果分离轴承有故障,那么噪声将随离合器踏板力的增加而增加。如果噪声在离合器分离后才出现,那就是前导向轴承有故障。离合器完全接合后出现的噪声,会来自于变速器。离合器操纵系统轴承预紧度不够,也能引发噪声。如果变速器在空挡,发动机在运转,可以在车厢内听到“格格”声,这就是变速器中发生的噪声。可以说,这是由于发动机的激励,造成传动系统扭转振动在变速器中引发的噪声。这和离合器从动盘中的扭转减振器结构性能改变有很大关系。

;发动机工作时,在周期性变化的扭矩作用下,曲柄之间周期性相对扭转的现象称为扭振,简称扭振。当发动机扭矩的变化频率与曲轴扭转固有频率相同或为其整数倍时,就会发生共振。当共振扭矩幅值增大时,传动机构磨损加剧,发动机功率降低,甚至曲轴断裂。为了降低曲轴的扭转振动,现代汽车发动机往往在扭转幅度最大的曲轴前端安装扭转减振器。橡胶扭振减振器、硅油扭振减振器、硅油橡胶扭振减振器在汽车上应用广泛。1.橡胶扭转减震器阻尼器外壳与曲轴连接,阻尼器外壳和扭转振动惯性质量粘结在硫化橡胶层上。当发动机工作时,减振器壳随曲轴振动。由于惯性质量滞后于减振器壳体,两者之间存在相对运动,使橡胶层来回摩擦,振动能量被橡胶的内摩擦阻尼吸收,从而降低曲轴的扭转振动。橡胶减振器因其结构简单、工作可靠、易于制造而广泛应用于汽车上。但其阻尼作用小,橡胶易老化,所以在大功率发动机上很少使用。2.硅油扭转减震器钢板冲压的减震器外壳与曲轴连接。侧盖和减震器壳体形成一个封闭的腔体,扭转振动惯性质量滑动套装在该腔体中。惯性与封闭腔之间有一定间隙,腔内填充高粘度硅油。发动机工作时,阻尼器外壳随曲轴一起旋转振动,惯性质量由硅油的粘性摩擦阻尼和衬套的摩擦力驱动。因为惯性质量相当大,所以近似匀速旋转,从而造成惯性质量和减震器外壳之间的相对运动。曲轴的振动能量被硅油的内摩擦阻尼吸收,消除或减小了扭转振动。扭转硅油减振器阻尼效果好,性能稳定,工作可靠,结构简单,维修方便,因此在汽车发动机上得到广泛应用。但是,它需要良好的密封和大的惯性质量,这导致减震器的尺寸很大。3.硅油-橡胶扭转减震器硅油-橡胶扭转减震器中的橡胶环6主要用作弹性体以密封硅油并支撑惯性质量1。封闭的空腔中填充有高粘度硅油。硅油-橡胶扭振减振器综合了硅油扭振减振器和橡胶扭振减振器的优点,即体积小、重量轻、减振性能稳定。

汽车ABS技术的发展趋势研究 在汽车防抱死制动系统出现之前,汽车所用的都是开环制动系统。其特点是制动器制动力矩的大小仅与驾驶员的操纵力、制动力的分配调节以及制动器的尺寸和型式有关。由于没有车轮运动状态的反馈信号,无法测知制动过程中车轮的速度和抱死情况,汽车就不可能据此调节轮缸或气室制动压力的大小。因此在紧急制动时,不可避免地出现车轮在地面上抱死拖滑的现象。当车轮抱死时,地面的侧向附着性能很差,所能提供的侧向附着力很小,汽车在受到任何微小外力的作用下就会出现方向失稳问题,极易发生交通事故。在潮湿路面或冰雪路面上制动时,这种方向失稳的现象会更加严重。汽车防抱死制动系统(Anti-lock Braking System简称ABS)的出现从根本上解决了汽车在制动过程中的车轮抱死问题。它的基本功能就是通过传感器感知车轮每一瞬时的运动状态,并根据其运动状态相应地调节制动器制动力矩的大小以避免出现车轮的抱死现象,因而是一个闭环制动系统。 它是电子控制技术在汽车上最有成就的应用项目之一,汽车制动防抱死系统可使汽车在制动时维持方向稳定性和缩短制动距离,有效提高行车的安全性。 一、ABS的工作原理 汽车制动时由于车轮速度与汽车速度之间存在着差异,因而会导致车轮与路面之间产生滑移,当车轮以纯滚动方式与路面接触时,其滑移率为零;当车轮抱死时其滑移率为100%。当滑移率在8%~35%之间时,能传递最大的制动力。制动防抱死的基本原理就是依据上述的研究成果,通过控制调节制动力,使制动过程中车轮滑移率控制在合适的范围内,以取得最佳的制动效果。ABS系统硬件构成主要由传感器(包括轮速传感器、减速度传感器和车速传感器)、电子控制装置、制动压力调节器三大部分组成,形成一个以滑移率为目标的自动控制系统。传感器测量车轮转速并将这一数据传送至电子控制装置上,控制装置是一个微处理器,它根据车轮转速传感器信号来计算车速。在制动过程中,车轮转速可与控制装置中预先编制的理想减速度的特性曲线相比较。如果控制装置判断出车轮减速度太快和车轮即将抱死时,它就发出信号给液压调节器,液压调节器可根据来自控制装置的信号对制动器的卡钳或轮泵的油压进行控制(作用、保持、释放、重新作用)。这一动作,每秒钟能出现10次以上。 二、ABS技术的发展及应用现状 基于制动防抱理论的制动系统首先是应用于火车和飞机上。1936年,德国博世公司(BOSCH)申请一项电液控制的ABS装置专利,促进了ABS技术在汽车上的应用。汽车上开始使用ABS始于1950年代中期福特汽车公司,1954年福特汽车公司在林肯车上装用法国航空公司的ABS装置,这种ABS装置控制部分采用机械式,结构复杂,功能相对单一,只有在特定车辆和工况下防抱死才有效,因此制动效果并不理想。机械结构复杂使ABS装置的可靠性差、控制精度低、价格偏高。ABS技术在汽车上的推广应用举步艰难。直到70年代后期,由于电子技术迅猛发展,为ABS技术在汽车上应用提供了可靠的技术支持。ABS控制部分采用了电子控制,其反应速度、控制精度和可靠性都显著提高,制动效果也明显改善,同时其体积逐步变小,质量逐步减轻,控制与诊断功能不断增强,价格也逐渐降低。这段时期许多家公司都相继研制了形式多样的ABS装置。 进入90年代后,ABS技术不断发展成熟,控制精度、控制功能不断完善。现在发达国家已广泛采用ABS技术,ABS装置已成为汽车的必要装备。北美和西欧的各类客车和轻型货车ABS的装备率已达90%以上,轿车ABS的装备率在60%左右,运送危险品的货车ABS的装备率为100%。ABS装置制造商主要有:德国博世公司(BOSCH),欧、美、日、韩国车采用最多;美国德科公司(DELCO),美国通用及韩国大宇汽车采用;美国本迪克斯公司(BENDIX),美国克莱斯勒汽车采用;还有德国戴维斯公司(TEVES)、德国瓦布科(WABCO)、美国凯尔西海斯公(KELSEYHAYES)等,这些公司的ABS产品都在广泛地应用,而且还在不断发展、更新和换代。 近年来,ABS技术在我国也正在推广和应用,1999年我国制定的国家强制性标准GB12676-1999《汽车制动系统结构、性能和试验方法》中已把装用ABS作为强制性法规。此后一汽大众、二汽富康、上海大众、重庆长安、上海通用等均开始采用ABS技术,但这些ABS装置我国均没有自主的知识产权。 国内研究ABS主要有东风汽车公司、交通部重庆公路研究所、济南捷特汽车电子研究所、清华大学、西安交通大学、吉林大学、华南理工大学、合肥工业大学

二系弹簧减振器毕业论文

弹簧减震器具备低频率和大阻尼的多重优势。融合二者的优势,清除了弹簧减震器共振时的振幅浪涌保护器状况,解决了橡胶减震器共振频率高的问题。它是积和处于被动减振的梦想。是一种多用途通用型减振,适用-20℃-80℃的办公环境,一切正常工作中负载范畴内的共振频率为1。在5Hz和中间,阻尼比为0。

弹簧减震器的特点是:

弹簧减震器的不足之处是:

一、优缺点:空气式减振器是目前隔振效率最高的一种,优于弹簧和橡胶。其优点是隔振效率高,体积小,安装方便。它的缺点是半年需要检查一次,气压低的时候需要补气。二、空气减震器名词解释:空气弹簧减振器是由气室、橡胶弹性膜片和支撑板组成的弹性元件。它是一个充满空气的封闭容器,利用空气内能的变化来达到隔振的目的。空气弹簧减振器固有频率低(),阻尼比高(),因此可以获得较高的隔振效率。空气弹簧减振器承受载荷变化,系统固有频率几乎不变,具有变刚度的特性,设计隔振装置时不必过多考虑设备重心。承载能力大,重量轻。

搜索  友图网        10000多份毕业设计,机械的  计算机的  单片机的   土木工程的。你要多少就多少,不要人民币的哦。

电站保护装置设计.rar

调节盘的数控车床编程与模拟仿真.rar

调速器前壳加工工艺与工装设计.rar

渡槽设计.rar

端盖落料拉深冲孔复合模设计.zip

多用信号发生器系统设计.rar

惰轮轴工艺设计和工装设计(论文+DWG图纸).rar

二级直齿轮减速器设计(论文+DWG图纸).rar

二阶压控电压源低通滤波器

发动机过载模拟实验台.rar

阀销注射模设计(论文+DWG图纸).rar

法兰零件夹具设计 (论文+DWG图纸).rar

法兰盘加工的回转工作台设计.rar

法兰盘夹具设计.rar

法兰盘设计连续模设计.rar

法兰盘钻φ6mm孔夹具设计.rar

方便饭盒上盖设计(论文+DWG图纸).rar

放音机机壳注射模设计(论文+DWG图纸).rar

飞锤支架.rar

飞机起落架机构设计及安全性分析.rar

飞利浦彩色电视机开关电源的维修.rar

飞行模拟转台设计.rar

肥皂盒模具设计(论文+DWG图纸).rar

分离爪工艺规程和工艺装备设计(论文+DWG图纸).rar

风机状态测试系统的总体设计.rar

风力发电的调研报告.rar

风扇叶片注射模具毕业设计论文.rar

复摆腭式破碎机设计.rar

复合形法减速器优化设计.rar

盖”零件的工艺规程及钻孔夹具设计(论文+DWG图纸).rar

盖冒垫片(论文+DWG图纸).rar

钢筋弯曲机设计及其运动过程虚拟.rar

钢丝绳电动葫芦起升用减速器设计.rar

钢丝绳芯胶带输送机故障监测的装置的设计.zip

钢珠式减振器在铣床模型机上的减振实验研究.rar

港件杂货港区总平面布置与码头结构设计.rar

杠杆  零件机械加工工艺规程制订及第  25 工序工艺装备设计.rar

杠杆工艺和工装设计(论文+DWG图纸).rar

杠杆工艺和工装设计.rar

杠杆夹具设计.rar

杠杆零件的机械加工工艺规程与夹具设计.rar

杠杆设计(论文+DWG图纸).rar

高层建筑电气设计.rar

高层建筑外墙清洗机---升降机部分的设计(论文+DWG图纸).rar

高层建筑外墙清洗机---升降机部分的设计.rar

高层建筑消防救生装置总体设计及圆锥齿轮减速器设计.rar

高剪切均质机总体设计.rar

高精度数控旋切机控制系统设计.zip

高速喷水织布机单片机控制系统设计.rar

高速数字多功能土槽试验台车的设计(论文+DWG图纸).rar

高效风能增速机设计.rar

高压均质机传动端的设计及运动仿真.rar

高压开关微机综合保护装置软件设计.rar

隔水管横焊缝自动对中装置(论文+DWG图纸).rar

隔振系统实验台总体方案设计(论文+DWG图纸).rar

隔振系统实验台总体方案设计.rar

工程钻机 的 设 计(论文+DWG图纸).rar

工程钻机的设计(论文+DWG图纸).rar

工艺-WH212减速机壳体加工工艺及夹具设计(论文+DWG图纸).rar

公路铣刨机全套设计.zip

供水管道恒压智能控制系统设计(论文+DWG图纸+开题报告+外文翻译+文献综述).rar

沟槽凸轮机构的设计和运动仿真.rar

骨架模具的设计与制造.zip

刮板输送机设计.rar

管道外圆自动焊接机结构设计.zip

管磨机的总体和结构设计 张攀.zip

管套压装专机(论文+DWG图纸).rar

惯性式汽车制动实验台设计(论文+DWG图纸).rar

光信号示波器接收头研制的设计.rar

滚轮式脚踏式液压升降平台设计.rar

滚筒采煤机截割部的设计.rar

滚筒式抛丸清理机的总体和结构设计.zip

滚筒式输送机.zip

过桥齿轮轴机械加工工艺规程(论文+DWG图纸).rar

过桥齿轮轴机械加工工艺规程.rar

盒形件落料拉深模设计(论文+DWG图纸).rar

后钢板弹簧吊耳的工艺和工装设计(论文+DWG图纸).rar

弧齿锥齿轮盘铣刀刃磨夹具设计(论文+DWG图纸).rar

湖南Y12型拖拉机轮圈落料与首次(论文+DWG图纸).rar

护罩壳侧壁冲孔模设计(论文+DWG图纸).rar

滑道式提升机及其控制电路的设计.rar

环锭设备普通级升装置设计.rar

环面蜗轮蜗杆减速器(论文+DWG图纸).rar

环面蜗轮蜗杆减速器.rar

回旋冲击钻具轴承结构及润滑方式设计.rar

回旋冲击钻钻具星型运动结构设计.rar

回转盘工艺规程设计及镗孔工序夹具设计(论文+DWG图纸).rar

回转盘工艺规程设计及镗孔工序夹具设计(论文+图纸).rar

廻转盘加工工艺和工装规程设计.rar

活塞的机械加工工艺,典型夹具及其CAD设计(论文+DWG图纸).rar

活塞的机械加工工艺典型夹具及其CAD设计.rar

活塞的机械加工工艺设计及夹具设计(论文+DWG图纸).rar

货车底盘布置设计(论文+DWG图纸).rar

机床-S195柴油机机体三面精镗组合机床总体设计及夹具设计(论文+DWG图纸).rar

机床-车床主轴箱箱体右侧10-M8螺纹底孔组合钻床设计(论文+DWG图纸).rar

机床刀架座加工工艺工装设计.rar

机床主传动系统设计.rar

机电一体化PLC控制电梯(论文+DWG图纸).rar

机电一体化T6113电气控制系统的设计(论文+DWG图纸).rar

机电一体化连杆平行度测量仪(论文+DWG图纸).rar

机器人自动火焰切割H型钢的设计.rar

机械手的设计(论文+DWG图纸).rar

机械手夹持器毕业设计论文及装配图.rar

机械手控制装置论文和说明书.rar

机械手设计.rar

机械手完整图纸及毕业设计论文.rar

机油冷却器自动装备线压紧工位装备设计(论文+DWG图纸).rar

机油冷却器自动装备线压紧工位装备设计.rar

机座工艺设计与工装设计(论文+DWG图纸).rar

基 于 ProE 的 齿 轮 油 泵 三 维 建 模 设 计.rar

基于 Intel80Cl96 K B 单片机控制的6 k V 爆开关综合保护系统(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

基于 ProE的液压泵变量活塞Ⅰ零件的工装设计.rar

基于6层建筑用电负荷等级(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

基于840D的曲轴内铣数控系统设计及应用.rar

基于ADAMS的四自由度机械手运动学仿真.rar

基于ANSYS的切削加工过程温度场的分析.rar

基于AT89C51单片机的LED彩灯控制器设计.rar

基于AT98S51单片机板制作(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

基于AWC机架现场扩孔机设计(论文+DWG图纸).rar

基于CA6140法兰盘”零件的机械加工工艺规程及工艺装备(论文+DWG图纸).rar

基于PLC的热水箱恒温控制系统设计.zip

基于PROE的健身器材滑步机的运动仿真.zip

基于可调度性与全局延迟的分布式嵌入系统实时通信中的总线访问优化.zip

加工中心16刀刀库(盘式刀库).zip

加工中心自动换刀系统设计(盘式)—刀库设计.zip

减速箱体工艺设计与工装设计(论文+DWG图纸).rar

健身洗衣机.zip

江水利枢纽坝工设计.rar

绞肉机的设计(论文+DWG图纸).rar

铰链卷圆模具设计与材料失效分析.rar

轿车变速箱设计.rar

轿车双摆臂悬架的设计及产品建模(论文+DWG图纸).rar

教务选课成绩管理系统.rar

教育机械54套.zip

金属粉末成型液压机PLC设计(论文+DWG图纸).rar

金属切削加工车间设备布局与管理(论文+DWG图纸).rar

经济型的数控改造(论文+DWG图纸).rar

精简的ARM-TCPIP接口的开发和研究(开题报告+论文+DWG图纸).rar

精密播种机(论文+DWG图纸).rar

精密播种机设计(论文+DWG图纸).rar

精确高效谷物分离机设计.zip

酒瓶内盖塑料模具设计(论文+DWG图纸).rar

卷板机设计(论文+DWG图纸).rar

开关电源的应用液晶显示器电源的设计(开题报告+论文+外文翻译+文献综述+答辩PPT).rar

开关电源应用POS机的电源设计(开题报告+论文+外文翻译+文献综述).rar

烤箱说明书.rar

颗粒状糖果包装机设计(论文+DWG图纸).rar

壳体的工艺与工装的设计(论文+DWG图纸).rar

壳体的工艺与工装的设计(论文+图纸).rar

可调速钢筋弯曲机的设计(论文+DWG图纸).rar

可调速钢筋弯曲机的设计.rar

课程设计  红外声控报警系统的设计.rar

空气锤的传动机构设计.rar

空气滤清器壳正反拉伸复合模设计(论文+DWG图纸).rar

快速卷积中嵌套算法的设计与实现.rar

立式数控铣床传动系统.zip

连杆夹具设计.rar

连杆孔加工工艺与夹具设计.rar

连杆零件加工工艺(论文+DWG图纸).rar

连杆平行度测量仪(论文+DWG图纸).rar

连杆平行度测量仪设计.rar

林木移栽机液压系统设计.zip

零件图.rar

溜板工艺极其挂架式双引导镗床夹具.rar

楼宇专业智能写字楼综合布线投标方案的设计(论文+图纸).rar

滤油器支架模具设计(论文+DWG图纸).rar

履带式推土机设计.zip

履带式推土机设计

轮式移动机器人的结构设计.rar

螺母盒零件冲压工艺与冲模设计.rar

螺母盒零件冲压工艺与冲模设计

螺旋千斤顶设计(论文+DWG图纸).rar

落叶清扫机设计.rar

马铃薯播种机设计.rar

煤矿井下6 k V电网防爆开关设计(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

面向LED封装的XY二自由度的工作台的设计.rar

民液压式双头套皮辊机(论文+DWG图纸).rar

模糊控制系统仿真技术研究.rar

模具药瓶注塑模设计(论文+DWG图纸).rar

模具-Φ药瓶注塑模设计(论文+DWG图纸).rar

模具-冰箱调温按钮塑模设计(论文+DWG图纸).rar

模具-电机炭刷架冷冲压模具设计(论文+DWG图纸).rar

模具-水泥瓦模具设计与制造工艺分析(论文+DWG图纸).rar

模具把手封条设计.rar

模具电机炭刷架冷冲压模具设计(论文+DWG图纸).rar

模具设计油杯说明书.rar

模具水泥瓦模具设计与制造工艺分析(论文+DWG图纸).rar

膜片式离合器的设计(论文+DWG图纸).rar

摩托车后轮轮毂模具设计.rar

摩托车前减震器的设计.rar

摩托车专用升降平台设计.rar

磨粉机设计(论文+DWG图纸).rar

抹灰机设计(2).zip

抹灰机设计.zip

某大型水压机的驱动系统和控制系统(论文+DWG图纸).rar

某大型水压机的驱动系统和控制系统.rar

某氟制品厂变电所及配电系统设计(论文+DWG图纸).rar

某氟制品厂变电所及配电系统设计(论文+开题报告+外文翻译+文献综述+DWG图纸).rar

某化工厂污水处理过程微机控制系统的设计(论文+DWG图纸+开题报告+外文翻译+文献综述).rar

某化工厂污水处理过程微机控制系统的设计(论文+DWG图纸+外文翻译+文献综述+DWG图纸).rar

某精细化工厂高配所(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

某精细化工厂高压配电所及全厂配电系(论文+DWG图纸+外文翻译).rar

某小区的智能化系统设计(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

某小区的智能化系统设计(论文+DWG图纸+开题报告+文献综述).rar

某型锥口罩冲压工艺及其模具设计.zip

某型自动垂直提升仓储系统方案论证及关键零部件的设计.rar

某中外合资机械厂变电所及配电系统设计(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

某轴盖零件复合模设计.zip

沐浴露瓶盖注射模设计.rar

内循环式烘干机总体及卸料装置设计(论文+DWG图纸).rar

闹钟后盖毕业设计(论文+DWG图纸).rar

闹钟后盖的注塑模具设计.rar

农作物清洗机的设计.rar

盘工艺规程设计及镗孔工序夹具设计(论文+DWG图纸).rar

配合件毕业设计.rar

平板定轮闸门设计.rar

平动转子式汽车空调压缩机设计.rar

平面关节型机械手设计(论文+DWG图纸).rar

平面连杆机构的动态仿真.rar

平面六杆机构的运动仿真 .zip

瓶盖理盖系统设计.zip

瓶装牛肉酱自动生产线- PLC控制系统和测试系统的设计.rar

普通-式双柱汽车举升机设计.rar

普通车床的数控化改造设计.rar

普通车床改造 修改.zip

普通车床主传动系统(附设计图).rar

普通钻床改造为多轴钻床(论文+DWG图纸).rar

齐云百货商场设计.rar

气动机械手升降臂结构设计.rar

气流输送系统设计.rar

气流雾化喷枪的设计.zip

气门摇臂轴支座(论文+DWG图纸).rar

气门摇臂轴支座的机械加工工艺及夹具设计078105301吕途.rar

气门摇臂轴支座加工工艺设计.rar

气体涡轮流量计的设计与制造.rar

汽车半轴(论文+DWG图纸).rar

汽车变速箱加工工艺及夹具设计.rar

汽车差速器设计+锥齿轮设计.rar

汽车大梁生产线全液压铆接机液压系统设计.rar

汽车顶盖模具设计.zip

汽车发动机油路测量设备的机构设计.rar

汽车废气余能回收利用装置设计.rar

汽车回转盘的盘面和驱动的设计.rar

汽车驾驶座椅滑槽的计算机建模及分析.rar

汽车离合器(EQ153)的设计.rar

汽车离合器设计.rar

汽车轮毂盘的反求造型研究.rar

汽车螺旋弹簧离合器的设计.rar

汽车碰撞模拟实验台设计.rar

汽车前灯罩的冲压模具设计.zip

汽车设计.rar

汽车锁座零件冲压工艺分析及模具设计.zip

汽车维修企业服务与管理模式探讨(论文+DWG图纸).rar

汽车行驶状态记录仪的研究与实现.rar

汽车转向液压油箱模具设计.rar

汽车自动变速器三行星排传动系统设计(含全套CAD图纸).zip

千斤顶设计方案.rar

桥梁工程课程式设计.rar

桥式起重机小车运行机构设计(论文+DWG图纸).rar

桥式起重机小车运行机构设计.rar

青饲料切割机(论文+DWG图纸).rar

轻型汽车底盘鼓式液压制动器设计.rar

曲轴工艺及夹具设计.rar

全数字化双闭环可逆直流PWM调速系统的研究(论文+DWG图纸+开题报告+外文翻译+文献综述).rar

全数字化双闭环可逆直流PWM调速系统的研究(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

全数字化双闭环可逆直流PWM调速系统的研究(论文+DWG图纸+外文翻译+任务书+文献综述).rar

全液压升降机设计.rar

绕丝筛管缠绕机 (论文+DWG图纸).rar

绕丝筛管缠绕机(论文+DWG图纸).rar

绕丝筛管缠绕机.rar

热泵干燥装置电控系统设计(完成品).zip

乳化液泵的设计(论文+DWG图纸).rar

软管接头模具设计(论文+DWG图纸).rar

三面翻广告牌传动系统设计.rar

三自由度圆柱坐标型工业机器人设计(论文+DWG图纸).rar

三坐标测量(接触法)典型测量零件的设计三坐标典型测量零件.zip

三坐标测量机的机械结构设计及应用.rar

三坐标典型测量零件.rar

扫雪机.rar

商住楼施工组织设计(九层).rar

设计-AWC机架现场扩孔机设计(论文+DWG图纸).rar

设计-CG2-150型仿型切割机(论文+DWG图纸).rar

设计-CG2-150型仿型切割机.rar

设计AWC机架现场扩孔机设计(论文+DWG图纸).rar

设计CA10B解放汽车中间轴轴承支架.rar

设计工程钻机 的 设 计(论文+DWG图纸).rar

随着社会的进步,工业的发展,我国机械制造业得到了巨大的发展。下文是我为大家整理的关于机械设计方面毕业论文例文参考的内容,欢迎大家阅读参考!

浅析大型机械驾驶室减振设计

摘要:本文概述了工程机械减振技术的发展概况,并以大型机械的驾驶室减振设计为背景,探讨了发动机悬置设计的基本原则,并对发动机减振的布置的力学特性进行分析,最后提出了以驾驶室模态试验为基础来检验现有类型的驾驶室的结构弱点检验和构件加强的方法。

关键词:机械 驾驶室 减振设计

1、概述

工程机械在水利工程、道路施工、矿山等场合得到大量的使用,其性能的可靠性直接影响到工程建设的正常开展。这类机械的设计时通常采用静态设计,设计理念上更多的是考虑机械的强度、耐久性等和机械的工作性质直接相关因素。但从实际使用情况来看,国产的大型工程机械普遍存在着施工过程中振动过大的问题,这将间接影响设备的抗疲劳特性和操作人员的舒适性和操作的稳定性。

由于工程机械的工作环境恶劣,车体结构的振动问题更加明显,直接影响到驾驶员的舒适性和驾驶的安全性。因此对于大型工程机械而言,控制车体振动尤其是驾驶室的振动,寻求有效的减震设计方法,对于提高驾驶员的舒适度和车体驾驶室构件的疲劳寿命都是有重要意义的。大型工程机械的振动控制问题是个非常复杂的问题,本文将这一问题缩小到驾驶室的减振设计上,主要通过发动机悬置位置的优化设计,以及基于模态分析和被动隔振理论来降低驾驶室的振动效应。

早期的汽车发动机减振方法是利用硫化橡胶,但硫化橡胶在耐油和耐高温方面表现不够理想。20世纪40年代设计出了液压悬置装置来降低发动机的振幅,并取得了较好的使用效果。但液压悬置减振装置在高频激励下会出现动态硬化的问题,已经逐渐不适应汽车发动机减振的要求。

上述几类减振方式都属于被动减振技术,在此基础上,随着发动机减振技术的进步,半主动减振技术开始应用到发动机减振中,这类减振技术的代表作是半主动控制式液压悬置装置,这类减振技术的应用最为广泛。尽管后来又出现了由被动减振器、激振器等所构成的主动减振技术,这一技术能够较好的实现降噪性能,但结构非常复杂,在恶劣工作环境下的工程车辆较少使用。

在工程车辆驾驶室的舒适度设计方面,主要所依据的是动态舒适性理论,用以评价驾驶人员在驾驶室振动的条件下对主观舒适程度。从驾驶员所承受的振动来源来看,主要是受发动机的周期性振动和来自于路面的随机激励。其传递机理较为复杂,跟发动机、驾驶室、座椅等的减振都有关系。因此为便于分析,本文中只针对驾驶室的减振问题展开研究。

2、大型工程机械驾驶室的减振设计

如前文所述,驾驶室的振源激励主要来自于路面和发动机及其传动机构。来自于路面的振源激励具有很大的随机性,要进行理论分析非常困难。加之在需要使用大型工程机械的场合机械的运动速度一般都较慢,随之产生的路面激振频率较低。因此相比之下,大型机械的发动机在运行时一直都处在高速运转状态,由此产生的激振频率很高,也更容易导致构件的疲劳损坏,实践证明发动机及其附件的疲劳损坏主要是由发动机周期激振力产生的交变应力引起的。从物理背景来看,工程机械的驾驶室所受到的振动激励主要来从车架传递到台架,驾驶室的振动行为属于被动响应。为了便于分析,将驾驶室的隔振系统进行简化,以单自由度弹簧阻尼系统来对驾驶室受到振动激励过程进行分析。

发动机的悬置设计

发动机在工作过程中的振动原因主要是不平衡力和力矩,这类振动不仅会引起车架的的振动,也会形成较强烈的噪声,不仅会影响到构件的使用寿命也会影响驾驶员的舒适度。要缓解发动机振动所造成的负面影响,采用悬置的设计方式是比较有效的途径,其实现方式是在动力总成和车架之间加入弹性支承元件。悬置设计方式的理论基础是发动机解耦理论,通过解除发动机六个自由度解耦,改变发动机的支撑位置,从而实现发动机自由度间振动耦合的解除。

此外,需要配合使用解除耦合后的各自由度方向的刚度与相应的阻尼系数,但应注意在解耦之后振动最强的自由度方向的共振控制,可应用主动隔振理论来确定减震器的刚度和阻尼系数。采用合适的刚度和阻尼系数的目的在于控制发动机悬置系统的减振区域。

具体到悬置设计的细节方面,主要是确定发动机支撑的数目和相应的布置位置。在考虑发动机动力总成悬置系统的支撑数目时,考虑的因素包括承重量和激振力两大类。在设计时通常都会依据车辆类型的不同选择三点或者四点支撑方式。对于大型机械而言,在实践中一般都会采用四点支撑的方式,本文中作为算例的发动机属于某型重型挖掘机的发动机。因此采用经典的四点支撑。其支撑位置选择在飞轮端和风扇端,上述两个位置分别设置两个对称的支撑点,采用支撑对称的目的在于后期解耦方便。从布置的方式上看,主要有平置、汇聚和斜置三种典型布置方式,具体采用哪种方式取决于发动机周围附属配件的布局方式以及车架所能提供的空间有关。本文中不重点讨论减振支撑的布置方式,因此仍然采用平置式的减振布置方式。

悬置系统的动力学分析

为减少研究成本,在支撑的材料上选用橡胶减振器。由前节所述,由于采用的是四个平置式的橡胶减震器,因此可以在进行力学分析时将其简化为三个互相垂直的弹簧阻尼系统,从而可以构建一个发动机主动隔振的力学模型。

驾驶室模态试验

在上述基本力学分析的基础上,进一步采用驾驶室模态试验的方法来检验整个驾驶室的减振效果,其目的在于掌握驾驶室的动态特性和找出驾驶室结构上的薄弱部位,同时以试验为基础还可以调整驾驶室减震器的系数匹配,减小驾驶室的整体振动响应。在试验时以快速傅里叶变换为以及,测量激振力和振动响应之间的关系,从而得到二者之间的传递函数,而模态分析的目的是通过实现来实现传递函数的曲线拟合和确定结构的模态参数。本试验中采用LMS模态测试分析软件,驾驶室所受的激振用力锤激振器来模拟。

在试验时用力锤敲击驾驶室从而制造出1-200HZ脉冲信号。通过记录下在不同激振频率下驾驶室结构的反应来确定驾驶室各个构件的强度,以及应该避免的激振频率。在得到这些基础数据后可为后续的驾驶室减振设计的选择悬置系统的减振区域的临界值,使得驾驶室所有构件的固有频率都能够位于减振器的减振区域内,从而起到抑制驾驶室结构的振动响应。

参考文献

[1]司爱国.轮式装载机行驶稳定系统开发与研究[D].北京:北京科技大学硕士学位论文.

[2]王敏.轻卡动力总成悬置系统的隔振性能[D].合肥:合肥工业大学硕士学位论文.

浅谈机械的可靠性设计

【摘要】本文主要叙述机械可靠性设计的一些基本内容,在此基础上进一步的分析了机械可靠性的优化设计,以及重点的分析了机械可靠性设计的稳健设计,希望能够对我国的机械可靠性设计发展有所帮助。

【关键词】机械可靠性设计;发展沿革;优化设计;稳健设计

引言:20世纪40年代的时候出现了可靠性设计思想,这种思想主要是将安全度作为主题所研究的可靠性理论,这项技术出现后在理论学术界以及实际工程界都有了很大的关注度,相关的理论以及方式也是不断的出现。比如:M onte C arlo 模拟法 、矩方法和以矩方法为基础的可靠性理论、响应面法、支持向量机法 、最大熵方法、随机有限元法和非概率分析方法等这些理论设计到了静强设计、疲劳强度设计、有限寿命设计的各个方面,对于结构系统、机构系统、震动系统等有这可靠性的研究。

1.机械可靠性设计的概述

在产品质量中可靠性是其最为主要的指标以及最重要的技术指标,工程界对于这一点也是越来越重视。在产品的设计、研制、装配、调试等各个环节中可靠性都有着一定的关联性,所以说在概率统计理论的基础上要加大其的推广认识,这样对于原本传统的相关问题能够很好的解决点,同时将产品质量提升上去而且使得产品成本有所降低。经过多年的发展,可靠性技术的不断发展,使得机械可靠性以及设计方式出现了很好的种类,但是就具体的实质来说,大致的分为数学模型法以及物流原因方式两种。

数学模型法就是通过某种实验数据所得概率统计为基础,逐渐的划分为两点,第一点为时间范畴中所涉及的量是可靠性质的,也是就是说因为依据某种规律在时间变动下,疲劳寿命以及耗损失都是在一定的范围之内的;第二种为,将某种偶然因素所发生结果所表现的可靠性,主要是因为不定期所出现的偶然因素所波动的,都是通过概率可靠性对于随机事件计算的,也会发展为两个方面:第一种是对模型法或者相关扩展方式,这样的方式主要是对于产品实效原因产生与产品上应力大于产品本身的强度,所以说应力概率是低于可靠度强度的,第二种为随即过程中或者是随机场不超出规定水准的概率。

2.可靠性优化设计

可靠性优化设计的基本理论

无论是什么样的机械产品,在最开始的方案构建到后期的生产制造实施,都是需要经过一个设计过程的,但是现在计算不断发展,新的知识、新的材料、新的手工艺、新的会计不断的出现,使得机械产品日益在完善,这就是所谓的知识成就了技术、技术成就了产品时间。使得研究的时间越来越短,但是结构确实越来越复杂,这样的情况下顾客对于产品功能、性能、质量、或者是相关服务都有着很大的要求。

这样的趋势下,对于设计整个过程要加大进度,设计周期要缩短。同时需要注意的是,对于设计是不是能够完善来说,产品的力学性能或者是使用价值、制造成本都是有着一定行的影响的,但是对于产品企业的工作质量或者是仅仅效果也是有着相对影响的,所以说,如何将设计质量提升上去,设计理论怎么发展下去,设计技术怎么做到更好,设计过程怎么才能加快嫉妒,都是现在机械设计中所研究的重要问题。

60年代的时候是机械优化设计发展最为迅速的时候,将数学规划以及计算机技术这两种结合在一起。所谓的数学规划理念在现在已经是不断的成熟起来,计算机技术也是高速的发展和广泛的使用中,在工程设计中为最普遍使用优化设计提供相关理论以及方式。

国家能源以及相关资源的是否被合理使用都受到了产品最佳、最可靠性的问题影响,通过使用最佳或者是最可靠性设计能够得到小体积、轻质量、节能材料的产品,同时这样产品有着一定的可靠性,机械产品所进行优化设计的主要目标就是根据一定的预期点或者是安全需要,通过一种最优化的形式将产品展示处理,在进行设计的同时需要将各种载荷随机性考虑到位,同时不能忽略的是结构参数的随机性,这两点对于产品都有着一定性能的影响。

所谓的可靠性优化设计是指质量、成本、可靠度这三方面的,将产品的总体可靠度进行一定的性能约束优化,将所出现的问题合理安全性的相结合,这样也是在结构布局或者是产品质量有保证情况,使得产品有了最大化的可靠度。

近年来可靠性优化设计发展

最近的30年内,机械设计领域中,因为科技的融入使得现代化设计方式以及相关的科学方式不断的出现,在可靠性设计或者是优化设计方面一定有着很高的水准,但是就单方面来说,无论是可靠性设计或者是优化设计,都不能很好的将其所具备的巨大潜力展示出来。一点是因为可靠性设计和优化设计是不相同的,在机械产品经过可靠性设计之后,不能将其工作性能或者是参数达到最为优秀的一点,还有一点是因为优化设计所包含的不是可靠性设计,机械产品要是在不可靠性情况下所进行的优化设计,不能保证产品在一定的条件下或者是时间内,能够将所规定的功能很好的完成,有的时候也许会出现一定的事故,这样直接都有着经济损失。

除此之外,因为机械产品有着很多的设计参数,要是对于多个设计参数进行确定的时候,单纯的可靠性设计就不是这样有地位了,所以在进行可靠性优化设计研究的前提下,要将机械产品可靠性要求先保证,同时保证所运行的环境是最佳的工作性能以及参数,将可靠性或者是优化性设计很好的结合在一起,然后在发展研究设计,才能得出最为优秀的设计方式。

关于可靠性的稳健设计

产品质量是企业赢得用户的关键因素 。任何一种产品,它的总体质量一般可分为用户质量if't-部质量)和技术质量(内部质量)。前者是指用户所能感受到、见到、触到或听到的体现产品优劣的一些质量特性 ;后者是指产品在优良的设计和制造质量下达到理想功能 的稳健性。稳健设计作为一种低成本和高质量的设计思想和方法,对产 品性能、质量和成本综合考虑,选择出最佳设计,不仅可以提高产品的质量,而且可以降低成本。在机械产 品设计中,正确地应用稳健设计的理论与方法可以使产品在制造和使用中,或是在规定的寿命期 问内当设计因素发生微小变化时都能保证产品质量的稳定 。

结束语:总而言之,对于机械的可靠性设计而言,设计人员应该根据实际,做出最优的设计,只有这样的设计才能将可靠性或者是优化设计巨大潜力发挥出来,将两点所具有的优势已近特长全部发挥出来,才能达到产品最佳以及最可靠点,这样的设计有着最为先进和最实用的设计特点,才能最好的达到预定的目标,和保证在设计中的机械产品的质量以及经济效益。

【参考文献】

[1]杨为民,盛~兴.系统可靠性数字仿真[M ].北京:北京航空航天大学出版社,1990.

[2]谢里阳,何雪法,李佳.机电系统可靠性与安全性设计[M].哈尔滨:哈尔滨工业大学出版社,2006.

[3]阎楚良,杨方飞.机械数字化设计新技术[M ].北京:机械工业 出版.2007.

[4]张义民,刘巧伶.多随机参数结构可靠性分析的随机有限元法[J] 东北工学院学报,2012,13(增刊):

[5] 金雅娟,张义民,张艳林,等.任意分布参数的涡轮盘裂纹扩展寿命可靠性分析[J].工程设计学报,2009,l6(3):196-199 .

双齿减速器设计毕业论文

某大型水压机的驱动系统和控制系统的设计C618数控车床的主传动系统设计CA6140杠杆加工工艺及夹具设计CKP预粉磨设计(总体及壳体)型双动拉伸压力机的设计L-108空气压缩机曲轴零件LED显示屏动态显示和远程监控的实现N10000-OSEPA选粉机PE10自行车无级变速器设计PLC-Z30130X31型钻床控制系统的PLC改造PLC-三菱FX2N PLC在电梯控制中的应用PLC-基于DS1820的室温监测装置的设计PLC-彩瓦成型机的PLC设计PLC-金属粉末成型液压机的PLC设计PLC控制的变频调速恒压供水系统程序TH5940型数控加工中心进给系统设计USB接口设计ZH3100组合式选粉机Z形件弯曲Φ1000 立 轴 锤 击 式 破 碎 机φ2600筒辊磨压辊及加压、卸料装置设计φ2600筒辊磨液压系统及料流控制装置设计Ф×13m管磨机(总体、回转部件)的设计Ф机立窑(总体、窑体、卸料部件)设计三通管的塑料模设计中单链型刮板输送机设计仓库温湿度的监测系统传动盖冲压工艺制定及冲孔模具设计传动装置毕业设计及论文全遥控数字音量控制的D类功率放大器减速器箱体钻口面孔组合机床总体设计及主轴箱设计出租车计费系统的设计制冷专业毕业设计(家用空调)单拐曲轴机械加工工艺单片机16×16点阵(滚动显示)的设计单片机的多功能智能小车单片机的数字钟设计双齿减速器设计可预置的定时显示报警系统后钢板弹簧吊耳加工工艺及夹具设计城市公交查询系统基于AT89C51单片机倒车防撞报警系统设计基于EDA和单片机技术的逻辑分析仪设计课件基于GSM模块的车载防盗系统设计基于PLC高速全自动包装机的控制系统应用基于单片机控制的霓虹灯控制器基于单片机的交通灯控制器的研究与设计基于单片机的多功能转速表基于单片机的数码录音与播放系统基于单片机的电器遥控器设计外行星摆线马达结构设计多功能自动跑步机(机械部分设计)大棚温湿自动控制系统工程机械制造厂供电系统设计(电气工程系)带式输送机传动装置设计悬挂运动控制系统的设计手机恒流充电器的设计托板冲模毕业设计拔叉及夹具设计拖拉机拨叉铣专机的设计拨叉加工加工工艺及夹具设计拨叉钻床夹具指纹U盘的设计推动架的设计推动架零件的机械加工工艺的设计数控机床主传动系统设计数控直流稳压电源数控车床主传动机构设计数控车床纵向进给及导轨润滑机构设计旋转门的设计普通钻床改造为多轴钻床智能型充电器的电源和显示的设计机械毕业设计及论文机械设计课程设计_减速器锥柱二级传动杠杆的设计板材坡口机总体设计某小区的智能化系统设计椭圆盖注射的设计模具-五金-护罩壳侧壁冲孔模设计模具-五金-空气滤清器壳正反拉伸复合模设计模具-五金-笔记本电脑壳上壳冲压模设计模具-冷冲扬声器模具设计模具-注塑-多用工作灯后盖注塑模模具-注塑-对讲机外壳注射模设计模具-注塑-手机充电器塑料模具模具-注塑-水管三通管塑料模具模具-电池板铝边框冲孔模的设计模具-离合器板冲成形模具设计模具-铰链落料冲孔复合模具设计气体泄漏超声检测系统的设计水泥粉磨选粉系统改造汽车离合器(EQ153)的设计汽车离合器(螺旋430)的设计液位平衡控制系统实验装置设计清淤船的设计火灾自动报警系统设计(电气类)电动智能小车电气工程及其自动化(电力)毕业设计电流线圈架塑料模设计电织机导板零件数控直岗拉卡水电站电气一次及发电机继电保护设计移动通信的电波衰落与抗衰落技术分析的设计空气压缩机曲轴设计立式组合机床液压系统论文.doc货车底盘布置的设计轿车双摆臂悬架的设计及产品建模钻四槽铣床与夹具图纸钻法兰四孔夹具的设计钻泵体盖6-φ2孔机床与夹具图纸钻泵体盖6-φ7孔机床与夹具图纸面筋成型机的设计面筋成形生产线颗粒状糖果包装机设计马路保洁车的设计高层建筑外墙清洗机---升降机部分的设计高速数字多功能土槽试验台车的设计齿轮的设计和应用推荐书籍

已经发到你的邮箱了!请注意查收。

1 10L真空搅拌机设计2 8英寸钢管热浸镀锌自动生产线设计3 卧式钢筋切断机的设计4 气门摇臂轴支座毕业设计5 后钢板弹簧吊耳的加工工艺6 环面蜗轮蜗杆减速器7 S195柴油机机体三面精镗组合机床总体设计及夹具设计8 车床主轴箱箱体右侧10-M8螺纹底孔组合钻床设计9 机油盖注塑模具设计10 机油冷却器自动装备线压紧工位装备设计11 5基于AT89C2051单片机的温度控制系统的设计12 基于普通机床的后托架及夹具设计开发13 减速器的整体设计14 搅拌器的设计15 金属粉末成型液压机PLC设计16 精密播种机17 可调速钢筋弯曲机的设计18 空气压缩机V带校核和噪声处理19 冲压拉深模设计20 螺旋管状面筋机总体及坯片导出装置设计21 落料,拉深,冲孔复合模22 膜片式离合器的设计23 内螺纹管接头注塑模具设计24 内循环式烘干机总体及卸料装置设计25 全自动洗衣机控制系统的设计26 生产线上运输升降机的自动化设计27 实验用减速器的设计28 手机充电器的模具设计29 鼠标盖的模具设计30 双齿减速器设计31 双铰接剪叉式液压升降台的设计32 水泥瓦模具设计与制造工艺分析33 四层楼电梯自动控制系统的设计34 塑料电话接线盒注射模设计35 塑料模具设计36 同轴式二级圆柱齿轮减速器的设计37 托板冲模毕业设计38 推动架设计39 椭圆盖注射模设计40 万能外圆磨床液压传动系统设计41 五寸软盘盖注射模具设计42 锡林右轴承座组件工艺及夹具设计43 心型台灯塑料注塑模具毕业设计44 机械手设计45 机械手自动控制系统的PLC实现方法研究46 汽车制动系统实验台设计47 数控多工位钻床设计48 数控车床主轴和转塔刀架毕业设计49 送布凸轮的设计和制造50 CA6140车床后托架夹具设计51 带式输送机毕业设计论文52 电火花加工论文53 机床的数控改造及发展趋势54 机械加工工艺规程毕业论文55 机械手毕业论文56 基于ANSYS的齿轮泵有限元分析57 可编程序控制器在机床数控系统中应用探讨58 矿石铲运机液压系统设计59 汽车连杆加工工艺及夹具设计论文60 数控车床半闭环控制系统设计61 数控多工位钻床设计62 数控机床体积定位精度的测量与补偿63 数控机床维修64 数控加工工艺与编程65 塑料注射模设计与制造66 新型电动执行机构67 液力传动变速箱设计与仿真论文68 轴类零件的加工工艺论文69 中型货车变速器的设计70 数控钻床横、纵两向进给系统的设计71 经济型数控车床控制系统设计72 Y210—2型电动机定子铁芯冲压模具设计73 双坐标十字滑台设计及控制74 注射器盖毕业设计75 二级减速器的毕业设计 联系

一.机械设计课程设计任务书 二.传动方案的拟定及说明 由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。 本传动机构的特点是:减速器横向尺寸较小,两大齿轮浸油深度可以大致相同。结构较复杂,中间轴较长、刚度差,中间轴承润滑较困难。 三.电动机的选择 原始数据 运输机筒转矩 1550 卷筒的直径D(mm) 400 运输带速度V(m/s) 带速允许偏差(%) 5 使用期限 (年) 10 工作制度 (班/日) 2 1. 电动机类型和结构的选择 因为本传动的工作状况是:工作平稳、单向运转。所以选用常用的封闭式Y(IP44)系列的电动机。 2. 电动机容量的选择 1) 卷筒轴的输出功率Pw Pw= 6kW 2) 电动机的输出功率 =Pw/η 传动装置的总效率 η= 式中, ……为从电动机至卷筒轴之间的各传动机构和轴承的效率。由本表2-4查得:V带轮传动 =;滚动轴承 =;圆柱齿轮传动 =;联轴器 =;卷筒轴滑动轴承 =,则 = 故 Pd= = 3)电动机的额定功率 由本表20-1选取电动机的额定功率 =11kW 3. 电动机转速的选择 为了便于选择电动机转速,先推算电动机转速的可选范围,由本表2-1查得V带传动常用的传动比范围 ~4,单级圆柱齿轮传动比范围 ~6,则电动机转速可选范围为 =773~6187r/min 可见同步转速为3000 r/min,1500 r/min,1000 r/min的电动机符合。对于后两者进行比较,如下表: 方案 电动机型号 额定功率(Kw) 电动机转速(r/min) 电动机质量 (Kg) 总传动比 传动比 同步 满载 1 Y160M-4 11 1500 1460 123 2 Y160L-6 11 1000 970 147 由表中数据比较可知道,方案2传动比小,但结构尺寸大,造价高;综合考虑,选用造价较低,结构尺寸较小,总传动比较小的方案1。 4.电动机型号的确定 由本表20-1,本表20-2查出电动机型号为Y160M-4,其额定功率为11 kW,满载转速1460 r/min。基本符合题目所需的要求。 5.传动装置的总传动比及其分配 (1) 计算总传动比 i= = (2) 合理分配各级传动比 由于减速箱是同轴式布置,所以两级传动比相同。 因为i=,取V带轮传动的传动比 =,则单级圆柱齿轮传动的传动比 = 四.计算传动装置的运动和动力参数 1. 各轴转速 电动机轴为0轴,减速器高速轴为I抽,中间轴承为II轴,低速轴为III轴,各轴转速为 =1460 r/min =1460/ r/min = r/min = 2. 各轴输入功率 按电动机额定功率 计算各轴输入功率,即 =11 Kw =11× Kw =×× Kw =×× Kw 3. 各轴转矩 Nm Nm Nm Nm 各轴转速、输入功率、输入转矩如下表: 项 目 电动机轴0 高速轴I 中间轴II 低速轴III 转速(r/min) 1460 43 功率(kW) 11 转矩(N•m) 传动比 效率 五.传动件设计计算 (其设计参数见《机械设计》) 1.高速级齿轮传动设计 1. 选精度等级、材料及齿数 1) 用斜齿圆柱齿轮 2) 材料及热处理; 小齿轮:40Cr(调质),硬度为280 HBS。 大齿轮:45钢(调质),硬度为240 HBS, 精度:7级精度; 3) 齿数 =24, =u =×24=, 取 =85; 4) 选取螺旋角。初选螺旋角β=14° 2. 按齿面接触强度设计 按式(10—21) ≥ 1) 确定公式内的各计算数值 试选 = (1) 由图10-30选取区域系数 = (2) T1=×10 N•mm (3) 由表10-7选取齿宽系数 =1 (4) 由图10-26查得 =, =,则 = + = (5) 由表10-6查得材料的弹性影响系数 = Mp (6) 由图10-21d 按齿面硬度查得 小齿轮的接触疲劳强度极限 =600 MPa;大齿轮的解除疲劳强度极限 =550 MPa; (7) 由式(10-13)计算应力循环次数 N1=60n1jLh=60××1×(2×8×300×10)= N2=N1/= (8) 由图10-19查得接触疲劳寿命系数 =; = (9) 计算接触疲劳许用应力 取失效概率为1%,安全系数S=1,由式(10-12)得 =558MPa =539MPa [σH]=( + )/2= 2) 计算 (1) 试算小齿轮分度圆直径 ≥ = = mm (2) 计算圆周速度 v= = = (3) 计算齿宽b及模数 b=φd =1× mm = = = mm h= =× b/h= (4) 计算纵向重合度

减速器优化设计毕业论文

减速器的计算机辅助设计【摘要】 本文主要阐述了计算机辅助设计减速器的计算过程和减速器各部件的选择。主要包括拟定、分析传动装置的设计方案;选择动力装置、计算传动装置的运动和动力参数;进行传动件的设计计算;绘制减速器装配工作图等。【关键词】传动装置 总体设计 减速器 计算机辅助设计(CAD) 引言减速器常被应用在机械行业的传动系统内,在机械行业中占有不可比拟的作用。常见的减速器有展开式、分流式、和同轴式。按照轴线的布置情况又可分为水平轴式和立轴式。减速器的设计主要是对电动机、传动带、齿轮、传动轴、一些连接件及减速器箱体尺寸的设计。计算机辅助减速器的设计除包括这几方面外,还包括计算机辅助设计软件的应用,对于应用方面可在装配图中体现,本文主要阐述了减速器设计的过程及其他零部件的选择过程。该减速器应用于物料的传送系统,其设计数据如下:输送带工作压力:F=1900N输送带工作速度:V=滚筒直径:D=400mm每日工作时数:T=24h传动工作年限为:5年分析第一章 传动装置的总体设计 选择电动机(1)确定电动机的类型电动机有交流电动机和直流电动机,一般工厂都采用三相交流电,一多采用交流电动机,交流电动机有异步电动机和同步电动机两类,异步电动机又分为笼型和绕线两种,其中以普通笼型三相异步电动机应用最多。目前应用最广的是Y系列自扇冷式笼型三相电动机,其结构简单、起动性能好、工作可靠、价格低廉、维护方便,适用于不易燃、不易爆、无腐蚀性气体、无特殊要求的场合,如运输机、机床、风机、农机、轻工机械等,而在经常需要起动、制动和正、反转的场合,则要求电动机转动惯量小,过载能力大,应选用起重及冶金用三相异步电动机YZ型(笼型)或YZR型(绕线型)。根据题目要求及工作条件,应选用全封闭笼型三相异步电动机。(2) 选择电动机的功率电动机的的功率选择直接影响到电动机工作性能和经济的好坏。由电动机至工作机的传动装置总效率为:ηxηw=η1×η22×η3×η4×η5×η6式中 η1、η2、η3、η4、η5、η6分别为带传动、齿轮传动的轴承、齿轮传动、联轴器、卷筒的轴承及卷筒的效率,取η1= 、η2=、η3=、η4=η5=、η6=,则η×ηw=×××××所以Pd=FV∕1000ηηw=1900×× (3) 确定电动机的转速 同一类型、相同额定功率的电动机也有几种不同的转速,卷筒轴的工作转速为nw=60×1000V∕πD =60×1000×∕×400r∕min=∕min按推荐的合理传动比范围,取V带传动的传动比i1’=2~4单级齿轮传动比i2’=3~5,则合理总传动比的范围为I’=6~20。故电动机转速可选范围为nd’=i’×nw=(6~20)×~1528 r/min符合这一范围的同步带转速有750r/min、1000r/min、1500r/min,再根据计算出的容量,由《机械设计基础》第二版表查出有三种适用的电动机的型号,其技术参数及传动比的比较情况见表1。表1 电动机的技术参数及传动比的比较情况表 方案 电动机型号 额定功率 电动机转速r/min 传动装置的传动比 同步转速 满载转速 总传动比 带 齿轮1 Y160M-8 4 750 720 3 Y132M1-6 4 1000 960 43 Y112M-4 4 1500 1440 综合考虑选方案2比较适合Y132M1-6,Ped=4kw,满载转速nm=960r/min。 计算传动装置的运动和动力参数(1) 各轴转速Ⅰ轴转速:n1=nm/i0=960/ Ⅱ轴转速n2=n1/i1= 卷筒轴效率nw=nⅡ=(2) 各轴的输入功率Ⅰ轴功率PⅠ=pd×η1=×Ⅱ轴功率PⅡ= PⅠ×η12= PⅠ×η2×η3=××卷筒轴功率PⅢ=P×P23=P×η2×η4=××(3) 各轴输出转矩Td=9550×Pd/nm=9550×Ⅰ轴转矩TⅠ=Td×i0×η1=××Ⅱ轴转矩TⅡ=TⅠ×i1×η2×η3=×4××卷筒轴转矩TⅢ= TⅡ×η2×η4=××表2 各轴转速、输入功率、转矩、传动比及效率的比较电动机轴 Ⅰ轴 Ⅱ轴 卷筒轴转速n/(r/min) 960 输入功率P/kw 输入转矩T/NM 传动比i 4 1效率η 第二章 设计带式传输机的带型根据第一章所述,我们知道 :电动机转速n=960r/min,P额=4kw,带传动比i1=小/n大,所以n大=n小/i1=960/,要求中心距a≤500mm。 选择普通V型带查表5-9知KA=(每天工作24小时) Pc=KA×P=×4=由《机械设计基础》第二版图5-10选用A型V带 确定带轮基准直径,并验算带速由《机械设计基础》第二版图5-10知,推荐的小带轮基准直径为112—140mm,则取dd1=125>dmin=112mm 故有dd2=n1/n2×dd1=960÷×125=由《机械设计基础》第二版表5-4取dd2=400mm实际从动轮转速:n2’=n×dd1/dd2=960×125/400r/min=300r/min转速误差(n2-n2’)/n2=()/<,允许带速V=π×dd1×n1/(60×1000)=×125×960/(60×1000)m/s在5~25m/s范围内,带速合适。 确定带长和中心距×(dd1+dd2 )≤a0≤2×(dd1+dd2 ) ×(125+400)≤a0≤2×(125+400)所以有≤a0≤1050 按题意取a0=500mm 由L0=2a0+×(dd1+dd2 )+〔(dd2-dd1)2/4a0〕=2×500+×(125+400)+〔(400-125)2/4×500〕=由《机械设计基础》第二版表5-2,取Ld=1800mm a≈a0+(Ld-L0)/2 =500+()/2 = 验算小带轮包角a1=1800-〔(dd2-dd1)/a〕× =1800-〔(400-125)/〕× =>1200小带轮包角合适 确定带的根数由《机械设计基础》第二版表5-5查得:P1= 由《机械设计基础》第二版表5-6查得 ΔP1=,由《机械设计基础》第二版表5-7查得Kα=,由表5-8查得Kl=〔(P1+ΔP1)×Kα×Kl〕=〔()××〕= 故取Z=4根 计算轴上压力由《机械设计基础》第二版表5-1查得q=,但单根V带的初拉力为F0=(500Pc/zv)×(α-1)+qv2 =〔(500×)/(4×)〕×()+× =则作用在轴上的初拉力FQ=2Z×F0×sin(α1/2) =2×4××sin() =

减速器是各类机械设备中广泛应用的传动装置.传统的减速器设计一般通过反复的试凑、校核确定设计方案,虽然也能获得满足给定条件的设计方案,但一般不是最佳的.论文通过设计变量的选取、目标函数和约束条件的确定,建立了单级圆柱齿轮减速器的优化设计的数学模型,最后借助MATLAB 的优化工具箱进行了优化计算,给出了优化设计程序,得到了优化参数.通过对结果进行比较,该方案的设计减速器的体积比原来的设计方案下降了25%.

我会帮你问问的

仅供参考一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。(2) 原始数据:滚筒圆周力F=;带速V=;滚筒直径D=220mm。运动简图二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=××××(2)电机所需的工作功率:Pd=FV/1000η总=1700××、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD=60×1000×π×220=根据【2】表中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×符合这一范围的同步转速有960 r/min和1420r/min。由【2】表查出有三种适用的电动机型号、如下表方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比KW 同转 满转 总传动比 带 齿轮1 Y132s-6 3 1000 960 3 Y100l2-4 3 1500 1420 3 综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y100l2-4。其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩。三、计算总传动比及分配各级的传动比1、总传动比:i总=n电动/n筒=1420/、分配各级传动比(1) 取i带=3(2) ∵i总=i齿×i 带π∴i齿=i总/i带=四、运动参数及动力参数计算1、计算各轴转速(r/min)nI=nm/i带=1420/3=(r/min)nII=nI/i齿=(r/min)滚筒nw=nII=(r/min)2、 计算各轴的功率(KW)PI=Pd×η带=××η轴承×η齿轮=××、 计算各轴转矩Td=×入/n1 = =入/n2=五、传动零件的设计计算1、 皮带轮传动的设计计算(1) 选择普通V带截型由课本[1]P189表10-8得:kA= P=×据PC=和n1=由课本[1]P189图10-12得:选用A型V带(2) 确定带轮基准直径,并验算带速由[1]课本P190表10-9,取dd1=95mm>dmin=75dd2=i带dd1(1-ε)=3×95×()= mm由课本[1]P190表10-9,取dd2=280带速V:V=πdd1n1/60×1000=π×95×1420/60×1000=在5~25m/s范围内,带速合适。(3) 确定带长和中心距初定中心距a0=500mmLd=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0=2×500+(95+280)+(280-95)2/4×450=根据课本[1]表(10-6)选取相近的Ld=1600mm确定中心距a≈a0+(Ld-Ld0)/2=500+()/2=497mm(4) 验算小带轮包角α1= ×(dd2-dd1)/a=×(280-95)/497=>1200(适用)(5) 确定带的根数单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=查[1]表10-3,得Kα=;查[1]表10-4得 KL= PC/[(P1+△P1)KαKL]=[() ××]= (取3根)(6) 计算轴上压力由课本[1]表10-5查得q=,由课本式(10-20)单根V带的初拉力:F0=500PC/ZV[(α)-1]+qV2=[()]+ =则作用在轴承的压力FQFQ=2ZF0sin(α1/2)=2×3×()=、齿轮传动的设计计算(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;精度等级:运输机是一般机器,速度不高,故选8级精度。(2)按齿面接触疲劳强度设计由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3确定有关参数如下:传动比i齿=取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=取z2=78由课本表6-12取φd=(3)转矩T1T1=×106×P1/n1=×106×(4)载荷系数k : 取k=(5)许用接触应力[σH][σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:σHlim1=610Mpa σHlim2=500Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60××10×300×18= /×108查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=按一般可靠度要求选取安全系数SHmin=[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa[σH]2=σHlim2ZN2/SHmin=故得:d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3=模数:m=d1/Z1=取课本[1]P79标准模数第一数列上的值,m=(6)校核齿根弯曲疲劳强度σ bb=2KT1YFS/bmd1确定有关参数和系数分度圆直径:d1=mZ1=×20mm=50mmd2=mZ2=×78mm=195mm齿宽:b=φdd1=×50mm=55mm取b2=55mm b1=60mm(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=(8)许用弯曲应力[σbb]根据课本[1]P116:[σbb]= σbblim YN/SFmin由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1计算得弯曲疲劳许用应力为[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa校核计算σbb1=2kT1YFS1/ b1md1=< [σbb1]σbb2=2kT1YFS2/ b2md1=< [σbb2]故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩aa=(d1+d2)/2= (50+195)/2=(10)计算齿轮的圆周速度V计算圆周速度V=πn1d1/60×1000=××50/60×1000=因为V<6m/s,故取8级精度合适.六、轴的设计计算从动轴设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×()1/3mm=考虑键槽的影响以及联轴器孔径系列标准,取d=35mm3、齿轮上作用力的计算齿轮所受的转矩:T=×106P/n=×106× N齿轮作用力:圆周力:Ft=2T/d=2×198582/195N=2036N径向力:Fr=Fttan200=2036×tan200=741N4、轴的结构设计轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。(1)、联轴器的选择可采用弹性柱销联轴器,查[2]表可得联轴器的型号为HL3联轴器:35×82 GB5014-85(2)、确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合分别实现轴向定位和周向定位(3)、确定各段轴的直径将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.(5)确定轴各段直径和长度Ⅰ段:d1=35mm 长度取L1=50mmII段:d2=40mm初选用6209深沟球轴承,其内径为45mm,宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:L2=(2+20+19+55)=96mmIII段直径d3=45mmL3=L1-L=50-2=48mmⅣ段直径d4=50mm长度与右面的套筒相同,即L4=20mmⅤ段直径d5=52mm. 长度L5=19mm由上述轴各段长度可算得轴支承跨距L=96mm(6)按弯矩复合强度计算①求分度圆直径:已知d1=195mm②求转矩:已知T2=③求圆周力:Ft根据课本P127(6-34)式得Ft=2T2/d2=2×④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=×tan200=⑤因为该轴两轴承对称,所以:LA=LB=48mm(1)绘制轴受力简图(如图a)(2)绘制垂直面弯矩图(如图b)轴承支反力:FAY=FBY=Fr/2=由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为MC1=FAyL/2=×96÷2=截面C在水平面上弯矩为:MC2=FAZL/2=×96÷2=(4)绘制合弯矩图(如图d)MC=(MC12+MC22)1/2=()1/2=(5)绘制扭矩图(如图e)转矩:T=×(P2/n2)×106=(6)绘制当量弯矩图(如图f)转矩产生的扭剪文治武功力按脉动循环变化,取α=,截面C处的当量弯矩:Mec=[MC2+(αT)2]1/2=[(×)2]1/2=(7)校核危险截面C的强度由式(6-3)σe=×453=< [σ-1]b=60MPa∴该轴强度足够。主动轴的设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×()1/3mm=考虑键槽的影响以系列标准,取d=22mm3、齿轮上作用力的计算齿轮所受的转矩:T=×106P/n=×106× N齿轮作用力:圆周力:Ft=2T/d=2×53265/50N=2130N径向力:Fr=Fttan200=2130×tan200=775N确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,4 确定轴的各段直径和长度初选用6206深沟球轴承,其内径为30mm,宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。(2)按弯扭复合强度计算①求分度圆直径:已知d2=50mm②求转矩:已知T=③求圆周力Ft:根据课本P127(6-34)式得Ft=2T3/d2=2×④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=×⑤∵两轴承对称∴LA=LB=50mm(1)求支反力FAX、FBY、FAZ、FBZFAX=FBY=Fr/2=(2) 截面C在垂直面弯矩为MC1=FAxL/2=×100/2=19N?m(3)截面C在水平面弯矩为MC2=FAZL/2=×100/2=(4)计算合成弯矩MC=(MC12+MC22)1/2=(192+)1/2=(5)计算当量弯矩:根据课本P235得α=[MC2+(αT)2]1/2=[(×)2]1/2=(6)校核危险截面C的强度由式(10-3)σe=Mec/()=(×303)=<[σ-1]b=60Mpa∴此轴强度足够(7) 滚动轴承的选择及校核计算一从动轴上的轴承根据根据条件,轴承预计寿命L'h=10×300×16=48000h(1)由初选的轴承的型号为: 6209,查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=, 基本静载荷CO=,查[2]表可知极限转速9000r/min(1)已知nII=(r/min)两轴承径向反力:FR1=FR2=1083N根据课本P265(11-12)得轴承内部轴向力FS= 则FS1=FS2=(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1=682N FA2=FS2=682N(3)求系数x、yFA1/FR1=682N/1038N = =根据课本P265表(14-14)得e=48000h∴预期寿命足够二.主动轴上的轴承:(1)由初选的轴承的型号为:6206查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,基本额定动载荷C=,基本静载荷CO=,查[2]表可知极限转速13000r/min根据根据条件,轴承预计寿命L'h=10×300×16=48000h(1)已知nI=(r/min)两轴承径向反力:FR1=FR2=1129N根据课本P265(11-12)得轴承内部轴向力FS= 则FS1=FS2=(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1= FA2=FS2=(3)求系数x、yFA1/FR1= = =根据课本P265表(14-14)得e=48000h∴预期寿命足够七、键联接的选择及校核计算1.根据轴径的尺寸,由[1]中表12-6高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79大齿轮与轴连接的键为:键 14×45 GB1096-79轴与联轴器的键为:键10×40 GB1096-792.键的强度校核大齿轮与轴上的键 :键14×45 GB1096-79b×h=14×9,L=45,则Ls=L-b=31mm圆周力:Fr=2TII/d=2×198580/50=挤压强度: =<125~150MPa=[σp]因此挤压强度足够剪切强度: =<120MPa=[ ]因此剪切强度足够键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。八、减速器箱体、箱盖及附件的设计计算~1、减速器附件的选择通气器由于在室内使用,选通气器(一次过滤),采用M18×油面指示器选用游标尺M12起吊装置采用箱盖吊耳、箱座吊耳.放油螺塞选用外六角油塞及垫片M18×根据《机械设计基础课程设计》表选择适当型号:起盖螺钉型号:GB/T5780 M18×30,材料Q235高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235螺栓:GB5782~86 M14×100,材料Q235箱体的主要尺寸::(1)箱座壁厚z=× 取z=8(2)箱盖壁厚z1=× 取z1=8(3)箱盖凸缘厚度b1=×8=12(4)箱座凸缘厚度b=×8=12(5)箱座底凸缘厚度b2=×8=20(6)地脚螺钉直径df =×(取18)(7)地脚螺钉数目n=4 (因为a<250)(8)轴承旁连接螺栓直径d1= =×18= (取14)(9)盖与座连接螺栓直径 d2=()df =× 18= (取10)(10)连接螺栓d2的间距L=150-200(11)轴承端盖螺钉直d3=()df=×18=(取8)(12)检查孔盖螺钉d4=()df=×18= (取6)(13)定位销直径d=()d2=×10=8(14)至外箱壁距离C1(15) (16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。(17)外箱壁至轴承座端面的距离C1+C2+(5~10)(18)齿轮顶圆与内箱壁间的距离:> mm(19)齿轮端面与内箱壁间的距离:=12 mm(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm(21)轴承端盖外径∶D+(5~5.5)d3D~轴承外径(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.九、润滑与密封1.齿轮的润滑采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。2.滚动轴承的润滑由于轴承周向速度为,所以宜开设油沟、飞溅润滑。3.润滑油的选择齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。4.密封方法的选取选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为轴承盖结构尺寸按用其定位的轴承的外径决定。十、设计小结课程设计体会课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。十一、参考资料目录[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版

减速器设计硕士毕业论文

Wheel gears spreading to move is a the most wide kind of the application spreads to move a form in the modern main advantage BE:The① spreads to move to settle, work than in a moment steady, spread to move accurate credibility, can deliver space arbitrarily sport and the motive of the of two stalks;Power and speed scope② applies are wide;③ spreads to move an efficiency high, =;④ work is dependable, service life long;⑤ Outline size outside the is small, structure tightly wheel gear constituted to;;;from wheel gear, stalk, bearings and box body decelerates a machine, useding for prime mover and work machine or performance organization of, have already matched to turn soon and deliver a function of turning , the application is extremely extensive in the modern machine.⑥ Local deceleration machine much with the wheel gear spread to move, the pole spread to move for lord, but widespread exist power and weight ratio small, or spread to move ratio big but the machine efficiency lead a low are also many weaknesses on material quality and craft level moreover, the especially large deceleration machines problem is more outstanding, the service life isnt deceleration machine of abroad, with Germany, Denmark and Japan be placed in to lead a position, occupying advantage in the material and the manufacturing craft specially, decelerating the machine work credibility like, service life it spreads to move a form to still take settling stalk wheel gear to spread to move as lord, physical volume and weight problem, dont also resolve likeThe direction which decelerates a machine to is the facing big power and spread to move ratio, small physical volume, high machine efficiency and service life to grow greatly nowadays the connecting of machine and electric motor body structure is also the form which expands strongly, and have already produced various structure forms and various products of power model close to ten several in the last yearses, control a technical development because of the modern calculator technique and the number, make the machine process accuracy, process an efficiency to raise consumedly, pushed a machine to spread the diversification of movable property article thus, the mold piece of the whole machine kit turns, standardizing, and shape design the art turn, making product more fine, the beauty a set a machine material in 21 centuries medium, the wheel gear is still a machine to spread a dynamic basic tool machine and the craft technical development, pushed a machine to spread to move structure to fly to develop spreading to move the electronics control, liquid in the system design to press to spread to move, wheel gear, take the mixture of chain to spread to move, will become become soon a box to design in excellent turn to spread to move a combination of academics that is in spread move the design crosses, will become new spread a movable property article the important trend of the character:Reduction gear、 Bearing 、gear 、mechanical drive摘要齿轮传动是现代机械中应用最广的一种传动形式.它的主要优点是:① 瞬时传动比恒定、工作平稳、传动准确可靠,可传递空间任意两轴之间的运动和动力;② 适用的功率和速度范围广;③ 传动效率高,=;④ 工作可靠、使用寿命长;⑤ 外轮廓尺寸小、结构紧凑.由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用,在现代机械中应用极为广泛.国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题.另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长.国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长.但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好.当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展.减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品.近十几年来,由于近代计算机技术与数控技术的发展,使得机械加工精度,加工效率大大提高,从而推动了机械传动产品的多样化,整机配套的模块化,标准化,以及造型设计艺术化,使产品更加精致,美观化.在21世纪成套机械装备中,齿轮仍然是机械传动的基本部件.CNC机床和工艺技术的发展,推动了机械传动结构的飞速发展.在传动系统设计中的电子控制、液压传动、齿轮、带链的混合传动,将成为变速箱设计中优化传动组合的方向.在传动设计中的学科交叉,将成为新型传动产品发展的重要趋势.关键字:减速器 轴承 齿轮 机械传动SummaryThis time graduate the design to have the contents a to design concerning the machine that decelerate the complets the machine is a kind of from close to move in the rigid wheel gear in the hull is an independent complete organization .Pass thisa design can then the first step controls general simple a set of complete designs step and methods of the time graduate the design to introduce the type function of the deceleration machine and constitute the etc. primarily , made use of learned the knowledge .Such as:Machine graphics ,the metals material craft learns the theories knowledge that business trip learn. In actual production can analysis definitely reach agreement .The general type that decelerate the machine has:The cylinder wheel gear decelerates the machine ,cone wheel gear decelerates the machine ,wheel pole decelerates the machine ,stalk park type decelerates machine ,assembles type decelerate machine ,couplet type decelerate machine ,couplet type decelerate machine .Further educated in this time design independent ability that engineering design, set up the right design thought controls the in common use machine spare parts ,the machine spread to move the device with the simple machine design of method with step ,the consideration that request synthesize usage the request of economic craft etc . make sure the reasonable design project .Key phrase: reducer rigidity technolic components/zeroporatPrecent/project摘要这次毕业设计是由封闭在刚性壳内所有内容的齿轮传动是一独立完整的机构.通过这一次设计可以初步掌握一般简单机械的一套完整的设计及方法,构成减速器的通用零部件.这次毕业设计主要介绍了减速器的类型作用及构成等,全方位的运用所学过知识.如:机械制图,金属材料工艺学公差等以学过的理论知识.在实际生产中得以分析和解决.减速器的一般类型有:圆柱齿轮减速器、圆锥齿轮减速器、齿轮.蜗杆减速器、轴装式减速器、组装式减速器、轴装式减速器、联体式减速器.在这次设计中进一步培养了工程设计的独立能力,树立正确的设计思想掌握常用的机械零件,机械传动装置和简单机械设计的方法和步骤,要求综合的考虑使用经济工艺等方面的要求.确定合理的设计方案.关键词:减速器 刚性 工艺学 零部件 方案Planetary gear reducer gear reducer than the normal small size, light weight, high efficiency and transmission power range, etc, widely applied gradually. At the same time its drawbacks are: material quality, complex, high precision manufacturing, more difficult to install, design complex calculations than the average speed reducer. but on the planet as people drive technology further in-depth understanding and knowledge as well as the introduction of foreign planetary transmission and absorption of technology to drive the structure and contain its way are constantly improving, and continuously improve the level of production technology, can produce a better planetary gear to a general load of gear strength, geometric dimensions of the design calculation, and then to carry out transmission ratio conditions, concentric condition, the assembly conditions, design and calculation of the adjacent conditions, thanks to the number of planetary gear transmission, also must be contained institutions and the design of floating volume gear drive according to the composition of basic enough pieces can be divided into: 2KH, 3K, and KHV are three. If the meshing of gears by the way, can be divided into: NGW-type, NN-based, WW-type, WGW type, NGWN type and N-type and so on. I designed planetary gear is 2KH NGW planetary transmission type.行星轮系减速器较普通齿轮减速器具有体积小、重量轻、效率高及传递功率范围大等优点,逐渐获得广泛应用.同时它的缺点是:材料优质、结构复杂、制造精度要求较高、安装较困难些、设计计算也较一般减速器复杂.但随着人们对行星传动技术进一步的深入地了解和掌握以及对国外行星传动技术的引进和消化吸收,从而使其传动结构和均载方式都不断完善,同时生产工艺水平也不断提高,完全可以制造出较好的行星齿轮传动减速器.根据负载情况进行一般的齿轮强度、几何尺寸的设计计算,然后要进行传动比条件、同心条件、装配条件、相邻条件的设计计算,由于采用的是多个行星轮传动,还必须进行均载机构及浮动量的设计计算.行星齿轮传动根据基本够件的组成情况可分为:2KH、3K、及KHV三种.若按各对齿轮的啮合方式,又可分为:NGW型、NN型、WW型、WGW型、NGWN型和N型等.我所设计的行星齿轮是2KH行星传动NGW型.● What is the ball screw?So that the movement of objects, generally speaking, the movement will need to generate power, directly or indirectly through other organizations to convey to the Department of the final movement. Case of the automobile, gasoline engine, due to the combustion piston to move up and down, and through intermediaries ultimately delivered to the wheels to make it happen rotary 's world, able to represent the mechanical and plant a variety of sports organizations, we can say without exception, have some form of motor conduction institutions. Ball screw is rotary motion into linear motion, or linear motion into rotary motion of the most reasonable product.● ball screw specialties1, compared with the sliding torque of ball screw 1 / 3As the ball screw of the screw shaft and the wire between the mother doing a lot of ball rolling motion, so the movement can get higher efficiency. And compared to the last slide ball screw drive torque to 1 / 3 of the following, that is required to achieve the same results of dynamic movement to use the scroll ball screw 1 / 3. Was helpful in , high precision to ensureBall screw is made in Japan De mechanical device world's highest level of coherence produced, especially in research and cutting, assembly, Jian Chage processes of the factory environment, the temperature • humidity 进行 a strictly controlled quality management Youyuwanshan system so that accuracy can be fully , micro-feed mayAs the ball screw is the use of ball movement, so a very small starting torque, does not appear as a creeping phenomenon of sliding movement can ensure accurate , no backlash, high rigidityBall screw can be added to the pressure, the pressure due to the axial clearance can reach negative values, and then get a higher rigidity (within the ball screw ball through to add to the pressure in actual use mechanical devices, because of ball The repulsion can increase the rigidity of the Department of silk mother).5, high-speed feed mayBall screw, sport, high efficiency, small heat, so can achieve high-speed feed (Sports).●滚珠丝杠副是什么?使物体运动时,一般来讲需要将动力产生的运动直接或通过其他机构间接地传达到最终运动部。以汽车为例,在发动机内由于汽油的燃烧使活塞上下移动,再通过中间机构最终传递到车轮使之发生回转运动。当今世界中,能代表机械的、有各种运动机构的装置,可以说无一不是具有某种形式的运动传导机构。滚珠丝杠副是将回转运动转化为直线运动,或将直线运动转化为回转运动的最合理的产品。●滚珠丝杠副的特长1、与滑动丝杠副相比驱动力矩为1/3由于滚珠丝杠副的丝杠轴与丝母之间有很多滚珠在做滚动运动,所以能得到较高的运动效率。与过去的滑动丝杠副相比驱动力矩达到1/3以下,即达到同样运动结果所需的动力为使用滚动丝杠副的1/3。在省电方面很有帮助。2、高精度的保证滚珠丝杠副是用日本制造的世界最高水平的机械设备连贯生产出来的,特别是在研削、组装、检查各工序的工厂环境方面,对温度•湿度进行了严格的控制,由于完善的品质管理体制使精度得以充分保证。3、微进给可能滚珠丝杠副由于是利用滚珠运动,所以启动力矩极小,不会出现滑动运动那样的爬行现象,能保证实现精确的微进给。4、无侧隙、刚性高滚珠丝杠副可以加予压,由于予压力可使轴向间隙达到负值,进而得到较高的刚性(滚珠丝杠内通过给滚珠加予压力,在实际用于机械装置等时,由于滚珠的斥力可使丝母部的刚性增强)。5、高速进给可能滚珠丝杠副由于运动效率高、发热小、所以可实现高速进给(运动)。

这个吗

根据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错的毕业论文和毕业设计,对毕业论文的写作有很大的参考价值,希望对你有所帮助。别的相关范文很多的,推荐一些比较好的范文写作网站,希望对你有帮助,这些精选的范文网站,里面有大量的范文,也有各种文章写作方法,注意事项,应该有适合你的,自己动手找一下,可不要照搬啊,参考一下,用自己的语言写出来那才是自己的。如果你不是校园网的话,请在下面的网站找:毕业论文网:分类很细栏目很多毕业论文:毕业设计:开题报告:写作指导:

机械设计课程设计计算说明书 一、传动方案拟定…………….……………………………….2 二、电动机的选择……………………………………….…….2 三、计算总传动比及分配各级的传动比……………….…….4 四、运动参数及动力参数计算………………………….…….5 五、传动零件的设计计算………………………………….….6 六、轴的设计计算………………………………………….....12 七、滚动轴承的选择及校核计算………………………….…19 八、键联接的选择及计算………..……………………………22 设计题目:V带——单级圆柱减速器 第四组 德州科技职业学院青岛校区 设计者:#### 指导教师:%%%% 二○○七年十二月计算过程及计算说明 一、传动方案拟定 第三组:设计单级圆柱齿轮减速器和一级带传动 (1) 工作条件:连续单向运转,载荷平稳,空载启动,使用年限10年,小批量生产,工作为二班工作制,运输带速允许误差正负5%。 (2) 原始数据:工作拉力F=1250N;带速V=; 滚筒直径D=280mm。 二、电动机选择 1、电动机类型的选择: Y系列三相异步电动机 2、电动机功率选择: (1)传动装置的总功率: η总=η带×η2轴承×η齿轮×η联轴器×η滚筒 =××××× = (2)电机所需的工作功率: P工作=FV/1000η总 =1250×× =、确定电动机转速: 计算滚筒工作转速: n筒=60×960V/πD =60×960×π×280 =111r/min 按书P7表2-3推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’a=3~6。取V带传动比I’1=2~4,则总传动比理时范围为I’a=6~24。故电动机转速的可选范围为n筒=(6~24)×111=666~2664r/min 符合这一范围的同步转速有750、1000、和1500r/min。 根据容量和转速,由有关手册查出有三种适用的电动机型号:因此有三种传支比方案:综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第2方案比较适合,则选n=1000r/min 。 4、确定电动机型号 根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y132S-6。 其主要性能:额定功率:3KW,满载转速960r/min,额定转矩。质量63kg。 三、计算总传动比及分配各级的伟动比 1、总传动比:i总=n电动/n筒=960/111= 2、分配各级伟动比 (1) 据指导书,取齿轮i齿轮=6(单级减速器i=3~6合理) (2) ∵i总=i齿轮×I带 ∴i带=i总/i齿轮= 四、运动参数及动力参数计算 1、计算各轴转速(r/min) nI=n电机=960r/min nII=nI/i带=960/(r/min) nIII=nII/i齿轮=686/6=114(r/min) 2、 计算各轴的功率(KW) PI=P工作= PII=PI×η带=× PIII=PII×η轴承×η齿轮=×× =、 计算各轴扭矩(N•mm) TI=×106PI/nI=×106× =25729N•mm TII=×106PII/nII =×106× =•mm TIII=×106PIII/nIII=×106× =232048N•mm 五、传动零件的设计计算 1、 皮带轮传动的设计计算 (1) 选择普通V带截型 由课本表得:kA= Pd=KAP=×3= 由课本得:选用A型V带 (2) 确定带轮基准直径,并验算带速 由课本得,推荐的小带轮基准直径为 75~100mm 则取dd1=100mm dd2=n1/n2•dd1=(960/686)×100=139mm 由课本P74表5-4,取dd2=140mm 实际从动轮转速n2’=n1dd1/dd2=960×100/140 = 转速误差为:n2-n2’/n2=686- =<(允许) 带速V:V=πdd1n1/60×1000 =π×100×960/60×1000 = 在5~25m/s范围内,带速合适。 (3) 确定带长和中心矩 根据课本得 0. 7(dd1+dd2)≤a0≤2(dd1+dd2) 0. 7(100+140)≤a0≤2×(100+140) 所以有:168mm≤a0≤480mm 由课本P84式(5-15)得: L0=2a0+(dd1+dd2)+(dd2-dd1)2/4a0 =2×400+(100+140)+(140-100)2/4×400 =1024mm 根据课本表7-3取Ld=1120mm 根据课本P84式(5-16)得: a≈a0+Ld-L0/2=400+(1120-1024/2) =400+48 =448mm (4)验算小带轮包角 α1=1800-dd2-dd1/a×600 =1800-140-100/448×600 = =>1200(适用) (5)确定带的根数 根据课本(7-5) P0= 根据课本(7-6) △P0= 根据课本(7-7)Kα= 根据课本(7-23)KL= 由课本式(7-23)得 Z= Pd/(P0+△P0)KαKL =() ×× =5 (6)计算轴上压力 由课本查得q=,由式(5-18)单根V带的初拉力: F0=500Pd/ZV(α-1)+qV2 =[500×××()+×]N =160N 则作用在轴承的压力FQ, FQ=2ZF0sinα1/2=2×5× =1250N 2、齿轮传动的设计计算 (1)选择齿轮材料及精度等级 考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45钢,调质,齿面硬度220HBS;根据课本选7级精度。齿面精糙度Ra≤μm (2)按齿面接触疲劳强度设计 由d1≥(kT1(u+1)/φdu[σH]2)1/3 确定有关参数如下:传动比i齿=6 取小齿轮齿数Z1=20。则大齿轮齿数: Z2=iZ1=6×20=120 实际传动比I0=120/2=60 传动比误差:i-i0/I=6-6/6=0%< 可用 齿数比:u=i0=6 由课本取φd= (3)转矩T1 T1=9550×P/n1=9550× =•m (4)载荷系数k 由课本取k=1 (5)许用接触应力[σH] [σH]= σHlimZNT/SH由课本查得: σHlim1=625Mpa σHlim2=470Mpa 由课本查得接触疲劳的寿命系数: ZNT1= ZNT2= 通用齿轮和一般工业齿轮,按一般可靠度要求选取安全系数SH= [σH]1=σHlim1ZNT1/SH=625× =575 [σH]2=σHlim2ZNT2/SH=470× =460 故得: d1≥766(kT1(u+1)/φdu[σH]2)1/3 =766[1××(6+1)/×6×4602]1/3mm = 模数:m=d1/Z1= 根据课本表9-1取标准模数:m=2mm (6)校核齿根弯曲疲劳强度 根据课本式 σF=(2kT1/bm2Z1)YFaYSa≤[σH] 确定有关参数和系数 分度圆直径:d1=mZ1=2×20mm=40mm d2=mZ2=2×120mm=240mm 齿宽:b=φdd1=× 取b=35mm b1=40mm (7)齿形系数YFa和应力修正系数YSa 根据齿数Z1=20,Z2=120由表相得 YFa1= YSa1= YFa2= YSa2= (8)许用弯曲应力[σF] 根据课本P136(6-53)式: [σF]= σFlim YSTYNT/SF 由课本查得: σFlim1=288Mpa σFlim2 =191Mpa 由图6-36查得:YNT1= YNT2= 试验齿轮的应力修正系数YST=2 按一般可靠度选取安全系数SF= 计算两轮的许用弯曲应力 [σF]1=σFlim1 YSTYNT1/SF=288×2× =410Mpa [σF]2=σFlim2 YSTYNT2/SF =191×2× =204Mpa 将求得的各参数代入式(6-49) σF1=(2kT1/bm2Z1)YFa1YSa1 =(2×1××22×20) ×× =8Mpa< [σF]1 σF2=(2kT1/bm2Z2)YFa1YSa1 =(2×1××22×120) ×× =< [σF]2 故轮齿齿根弯曲疲劳强度足够 (9)计算齿轮传动的中心矩a a=m/2(Z1+Z2)=2/2(20+120)=140mm (10)计算齿轮的圆周速度V V=πd1n1/60×1000=×40×960/60×1000 = 六、轴的设计计算 输入轴的设计计算 1、按扭矩初算轴径 选用45#调质,硬度217~255HBS 根据课本并查表,取c=115 d≥115 ()1/3mm= 考虑有键槽,将直径增大5%,则 d=×(1+5%)mm= ∴选d=22mm 2、轴的结构设计 (1)轴上零件的定位,固定和装配 单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定 (2)确定轴各段直径和长度 工段:d1=22mm 长度取L1=50mm ∵h=2c c= II段:d2=d1+2h=22+2×2× ∴d2=28mm 初选用7206c型角接触球轴承,其内径为30mm, 宽度为16mm. 考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长: L2=(2+20+16+55)=93mm III段直径d3=35mm L3=L1-L=50-2=48mm Ⅳ段直径d4=45mm 由手册得:c= h=2c=2× d4=d3+2h=35+2×3=41mm 长度与右面的套筒相同,即L4=20mm 但此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:(30+3×2)=36mm 因此将Ⅳ段设计成阶梯形,左段直径为36mm Ⅴ段直径d5=30mm. 长度L5=19mm 由上述轴各段长度可算得轴支承跨距L=100mm (3)按弯矩复合强度计算 ①求分度圆直径:已知d1=40mm ②求转矩:已知T2=•mm ③求圆周力:Ft 根据课本式得 Ft=2T2/d2=69495/40= ④求径向力Fr 根据课本式得 Fr=Ft•tanα=×tan200=632N ⑤因为该轴两轴承对称,所以:LA=LB=50mm(1)绘制轴受力简图(如图a) (2)绘制垂直面弯矩图(如图b) 轴承支反力: FAY=FBY=Fr/2=316N FAZ=FBZ=Ft/2=868N 由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为 MC1=FAyL/2=×50=•m (3)绘制水平面弯矩图(如图c) 截面C在水平面上弯矩为: MC2=FAZL/2=×50=•m (4)绘制合弯矩图(如图d) MC=(MC12+MC22)1/2=()1/2=•m (5)绘制扭矩图(如图e) 转矩:T=×(P2/n2)×106=35N•m (6)绘制当量弯矩图(如图f) 转矩产生的扭剪文治武功力按脉动循环变化,取α=1,截面C处的当量弯矩: Mec=[MC2+(αT)2]1/2 =[(1×35)2]1/2=•m (7)校核危险截面C的强度 由式(6-3) σe=Mec/×353 =< [σ-1]b=60MPa ∴该轴强度足够。 输出轴的设计计算 1、按扭矩初算轴径 选用45#调质钢,硬度(217~255HBS) 根据课本取c=115 d≥c(P3/n3)1/3=115()1/3= 取d=35mm2、轴的结构设计 (1)轴的零件定位,固定和装配 单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。 (2)确定轴的各段直径和长度 初选7207c型角接球轴承,其内径为35mm,宽度为17mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长41mm,安装齿轮段长度为轮毂宽度为2mm。 (3)按弯扭复合强度计算 ①求分度圆直径:已知d2=300mm ②求转矩:已知T3=271N•m ③求圆周力Ft:根据课本式得 Ft=2T3/d2=2×271×103/300= ④求径向力式得 Fr=Ft•tanα=× ⑤∵两轴承对称 ∴LA=LB=49mm (1)求支反力FAX、FBY、FAZ、FBZ FAX=FBY=Fr/2= FAZ=FBZ=Ft/2= (2)由两边对称,书籍截C的弯矩也对称 截面C在垂直面弯矩为 MC1=FAYL/2=×49=•m (3)截面C在水平面弯矩为 MC2=FAZL/2=×49=•m (4)计算合成弯矩 MC=(MC12+MC22)1/2 =()1/2 =•m (5)计算当量弯矩:根据课本得α=1 Mec=[MC2+(αT)2]1/2=[(1×271)2]1/2 =•m (6)校核危险截面C的强度 由式(10-3) σe=Mec/()=(×453) =<[σ-1]b=60Mpa ∴此轴强度足够七、滚动轴承的选择及校核计算 根据根据条件,轴承预计寿命 16×365×10=58400小时 1、计算输入轴承 (1)已知nⅡ=686r/min 两轴承径向反力:FR1=FR2= 初先两轴承为角接触球轴承7206AC型 根据课本得轴承内部轴向力 FS= 则FS1=FS2= (2) ∵FS1+Fa=FS2 Fa=0 故任意取一端为压紧端,现取1端为压紧端 FA1=FS1= FA2=FS2= (3)求系数x、y FA1/FR1= FA2/FR2= 根据课本得e= FA1/FR158400h ∴预期寿命足够 2、计算输出轴承 (1)已知nⅢ=114r/min Fa=0 FR=FAZ= 试选7207AC型角接触球轴承 根据课本得FS=,则 FS1=FS2=× (2)计算轴向载荷FA1、FA2 ∵FS1+Fa=FS2 Fa=0 ∴任意用一端为压紧端,1为压紧端,2为放松端 两轴承轴向载荷:FA1=FA2=FS1= (3)求系数x、y FA1/FR1= FA2/FR2= 根据课本得:e= ∵FA1/FR158400h ∴此轴承合格 八、键联接的选择及校核计算 轴径d1=22mm,L1=50mm 查手册得,选用C型平键,得: 键A 8×7 GB1096-79 l=L1-b=50-8=42mm T2=48N•m h=7mm 根据课本P243(10-5)式得 σp=4T2/dhl=4×48000/22×7×42 =<[σR](110Mpa) 2、输入轴与齿轮联接采用平键联接 轴径d3=35mm L3=48mm T=271N•m 查手册P51 选A型平键 键10×8 GB1096-79 l=L3-b=48-10=38mm h=8mm σp=4T/dhl=4×271000/35×8×38 =<[σp](110Mpa) 3、输出轴与齿轮2联接用平键联接 轴径d2=51mm L2=50mm T= 查手册选用A型平键 键16×10 GB1096-79 l=L2-b=50-16=34mm h=10mm 据课本得 σp=4T/dhl=4×6100/51×10×34=<[σp]

  • 索引序列
  • 扭转减振器计算毕业论文
  • 二系弹簧减振器毕业论文
  • 双齿减速器设计毕业论文
  • 减速器优化设计毕业论文
  • 减速器设计硕士毕业论文
  • 返回顶部