首页 > 毕业论文 > 毕业论文如何做统计分析

毕业论文如何做统计分析

发布时间:

毕业论文如何做统计分析

论文常用数据分析方法

论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!

论文常用数据分析方法分类总结

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

《统计学与应用》这本期刊上的文献,你可以去看看学习学习的

撰写统计分析,当然要对所有的数据先行进行统计对比。然后根据统计对比的结果来写出分析报告。报告要根据统计的结果来阐明事物发展的特点。包括优势和劣势!

如果不会写的话可以砸百度里面找一下的哈,或者是在那里都可以、反正挺多地方的。

毕业论文如何做统计表

一般没有,主要是看你的指导老师

一.实习目的 实习是统计学专业教学计划的重要组成部分,是对学生进行实际统计工作能力初步训练的基本形式,是培养学生职业技能与能力的重要环节,是全面检验和提高我校教育教学质量的必要措施。 实习的目的是使学生巩固和运用所学的基础知识和基本技能,建立统计意识和思想,运用收集数据的方法,并能够根据数据的特点选用恰当的统计方法进行分析和推断,获得相关经验,进一步理解统计的特点与规律,培养与提高学生独立从事统计工作的能力,并使学生接受深刻的专业思想教育。 到邯郸市统计局的第一天我就学到了不少。那天统计局的领导为我们精心安排了一天的实习培训。初步介绍了统计工作的有关情况,包括向我们传达了关于建立统计报表关系和开展统计报表网上直报工作的通知。几个部门的领导还分别向我们具体讲解了工业企业、服务业批发和零售业、住宿和餐饮业等如何进行调查询问和填表的情况,告诉我们如何简单快捷的区分三个产业以及大中小企业。为了让我们增强统计工作的法律意识,领导们还特别向我们介绍了统计法。所谓统计法,是指调整国家统计机关行使统计职能而产生的统计关系的法律规范的总称。统计关系,是指国家机关、社会团体和公民在有关搜集、整理、分析、提供、颁布和管理统计资料的统计活动中所产生的社会经济关系。统计的基本任务是对国民经济和社会发展情况进行统计调查、统计分析,提供统计资料,实行统计监督。统计法是国家统计机关行使职能的法律依据,也是国家进行社会经济监督的有力工具。为了有效地、科学地组织统计工作,保障统计资料的准确性和及时性,发挥统计在了解国情国力、指导国民经济和社会发展中的重要作用,促进社会主义现代化建设事业的顺利发展,1983年11月8日第六届全国人民代表大会常务委员会第三次会议通过了《中华人民共和国统计法》,自1984年1月1日起施行。1987年2月15日,经国务院批准,国家统计局又发布了《中华人民共和国统计法实施细则》。另外,还强调了统计工作者的职业道德,要实事求是,依法统计,严守秘密公正透明,服务社会等等。也许他们的讲解不如学校老师那么系统与规范,但平实的语言中却透露了他们丰富的实际经验,我们听起来也觉得易于理解。由于一部分人第二天就要到各区里去做实际调查工作,所以领导们强调了一些工作的具体事项,为了能够完成好工作,我仔细的记录下了每一点,巴望着第二天能把它们用于实践中。而然很可惜的是我并没有被分到区里做调查,而是被留在了局里,分到了服务业。对此我虽然觉得没能把那些刚学来的新知识付诸实践有一点遗憾,但同时对我未来的新工作也充满了期待。 刚到服务业的时候,我的心里很没底。因为这对我来说是完全陌生的,我甚至不知道服务业做哪些主要工作。但也正因为是这样,我也很确定自己能在这里学到很多以前根本不可能知道的东西。刚进入服务业的时候,主任并没有马上让我们做一些复杂的工作,而是由易到难,循序渐进。先让我们在电脑上熟悉了有关文件的路径和数据系统,这对于身为中专生的我们来说自然很容易,但主任丝毫没因为这个简单就随便放过去,而是一再对我们强调要仔细,这使得让我们信心大增的同时,也感叹统计工作者严谨的态度。当我们掌握了基本数据的导出工作之后,主任又逐渐教会我们处理数据,整合表格和审核校对等工作。之后我们每天都重复着同样的工作,那些统计工作给我最大的感觉就是不停地重复,一边又一遍地检查,一个数据一个数据地查、看、找,加上各个部门各个层级的数据又是那么繁杂,没一会工夫我就会觉得有点头晕脑胀,头昏眼花。可但是不能松懈,一定要保持注意力的高度集中,这样才不至于出错。要知道一个小数据的谬误就可能导致整个分析的不准确,统计工作真的是一个精细活!这也就告诉我们在以后的学习生活中,一定要有意识地锻炼自己,做任何事都应该认真仔细。这不仅仅是统计工作者所应具备的特有素质,也是我们做好每一件事的前提。 二。实习过程 第一天到市统计局报到时,一进门,就看到书柜上排列着奖章,先进单位、统计学会先进单位等等,都是国家统计局给予邯郸市统计服务处的表彰,也是对他们工作的肯定,我为自己能有幸到这里认识实习而感到骄傲。 梁处长和所内同事对我们的到来也表示了欢迎。梁处长对我们今后几天实习的具体工作做了安排,具体包括《统计》杂志的出版,统计 论文 出版的校对及统计学会的一些工作。在次,我也就这几个工作做汇报。 首先,是关于论文集的校对工作,也是此次实习中的重点工作,由于这本论文集的重要性,更要求我们校对工作的严格,在次之前,服务处的同事已经对该论文集校对过三遍,但为了确保 论文 集的正确无误,我们又进行了第四次校对工作。我也不得不为服务处里同事们认真负责的工作态度感到钦佩。首先我们学习了校对工作的基本常识,要求我们对哪怕是一个标点符号的错误也不能放过。在校对过程中,印象较深的是关于统计报表的校对,统计报表就严格的编制规则,如规定表号采用一位英文字母或罗马字母和三位数码表示。英文字母或罗马字母表示全局统计报表制度的排列顺序,三位数码分为两段,第一位数码为第一段表示统计报表的报告期别,或报表的性质,即是年报还是定报,是综合表还是基层表;是经常性调查还是一次性调查或是普查、试行表。第二、三位数码为第二段表示统计报表的顺序。还学习了统计报表的性质代码:1、基层年报;2、基层定报;3、综合年报;4、综合定报;5、一次性调查;6、普查。从中不仅学习了如何查找错误遗漏还懂得了如何制表。 其次,是关于服务处网站的建设,也是本次实习过程中工作时间较长的工作。我的主要工作是学会网站建设的一些基本知识,并单独处理网站的文章录入,信息搜集等任务。。 再次,在实习期间,利用服务处书籍多的优点,阅读了大量关于统计方面的书,如《中国统计》、《服务业统计》以及诸多统计专业 论文 ,充实了自己的理论知识,收益非浅,还了解统计学会工作的大致流程。作为一名中专就要毕业的学生能够在邯郸市统计局里实习,我感到非常的荣幸。此次实习,主要实习的内容是学习如何输入报表,汇总数据,日常电话接听、客户接待工作,以及给各种杂活。简单来说就是学习做一位办公室文员。刚开始实习时, 真有些不习惯。面对着这么生疏的环境,心态还没有及时的转变过来。不过经过慢慢的适应自己也就同办公室的同事也可以说是各位哥哥、姐姐、阿姨们都熟的打成一遍了。他们都把我当着小布丁看,也许是因为我年龄比他们小,长得可爱,性格开朗,又刚来实习的缘故吧,嘻嘻。所以大家都很照顾我,无论在工作上还是在生活上。在工作上,如我遇到有不会的东西,请教他们,他们都很乐意的解析给我听和教我。 三、实习心得体会 在此之先,我想向所有为我的实习提供帮助和指导的老师和服务处的领导和同事致谢,感谢你们为我的顺利实习所作的努力和帮助。 通过实习,我在统计学方面获得了一些实际的工作经验,巩固并检验了自己两年学习的知识水平。实习期间,我了解并参与了统计 论文 集的校对工作。在此期间,我进一步学习了统计学的理论知识体系,对统计有了更深的理解,将理论与实践有机结合起来。我的工作得到了实习单位充分的肯定和较好的评价。 本次认识实习是我中专生活中不可或缺的重要经历,其收获和意义可见一般。首先,我可以将自己所学的知识应用于实际的工作中,理论和实际是不可分的,在实践中我的知识得到了巩固,解决问题的能力也受到了锻炼;其次,本次实习开阔了我的视野,使我对统计在现实中的运作有所了解,也对统计也有了进一步的掌握。 在实习过程中还有些其它方面也让我学到了很多东西。在20天的实习时间里,我基本上掌握了统计工作的一些具体操作细节,知道统计工作是一项具有创造性的活动,要出一流成果,就必须要有专业的统计人才和认真严肃的工作态度。在实践的校对工作中,知道一丝不苟的真正内涵。 认识实习期间,我利用此次难得的机会,努力工作,严格要求自己,虚心向领导和同事求教,每天按时报到,严格遵守各种规章制度。认真学习统计专业知识,阅读了大量统计方面的各种杂志, 论文 集,书籍等,进一步掌握了统计技能,从而进一步巩固自己所学到的知识,为以后真正走上工作岗位打下基础。但在短暂的实习过程中,我也深深的感觉到自己所学知识的肤浅和在实际运用中的专业知识的匮乏,刚开始的一段时间里,对一些工作感到无从下手,茫然不知所措,这让我感到非常的难过。在学校总以为自己学的不错,一旦接触到实际,才发现自己知道的是多么少,因此在以后的学习中应更加努力,让自己掌握好更多的专业知识,更好的运用统计这门科学。 最后,我想借此机通过此次实习,让我学到了很多课堂上更本学不到的东西,仿佛自己一下子成熟了,懂得了做人做事的道理,也懂得了学习的意义,时间的宝贵,人生的真谛。明白人世间一生不可能都是一帆风顺的,只要勇敢去面对人生中的每个驿站!这让我清楚地感到了自己肩上的重任,看清了自己的人生方向,也让我认识到了会计工作应支持仔细认真的工作态度,要有一种平和的心态和不耻下问的精神,不管遇到什么事都要总代表地去思考,多听别人的建议,不要太过急燥,要对自己所做事去负责,不要轻易的去承诺,承诺了就要努力去兑现。单位也培养了我的实际动手能力,增加了实际的操作经验,对实际的财务工作的有了一个新的开始,更好地为我们今后的工作积累经验。我知道工作是一项热情的事业,并且要持之以恒的品质精神和吃苦耐劳的品质。我觉得重要的是在这段实习期间里,我第一次真正的融入了社会,在实践中了解社会掌握了一些与人交往的技能,并且在次期间,我注意观察了前辈是怎样与上级交往,怎样处理之间的关系。利用这次难得的机会,也打开了视野,增长了见识,为我们以后进一步走向社会打下坚实的基础。 实习期间,我从末出现无故缺勤。我勤奋好学.谦虚谨慎,认真听取老同志的指导,对于别人提出的工作建议虚心听取。并能够仔细观察、切身体验、独立思考、综合分析,并努力学到把学样学到的知道应用到实际工作中,尽力做到理论和实际相结合的最佳状态,培养了我执着的敬业精神和勤奋踏实的工作作风。也培养了我的耐心和素质。能够做到服从指挥,与同事友好相处,尊重领导,工作认真负责,责任心强,能保质保量完成工作任务。并始终坚持一条原则:要么不做,要做就要做最好。

没有的,我当时的时候是2个老师指导的,一个让我多弄些图表什么的(国外的老师),另外一个让我尽量合并那些图表(国内的老师),所以这个还是问你的指导老师吧,反正毕业论文要改很多次的

摘要:产业在地理空间上的集聚现象已经成为许多学科领域研究关注的焦点,从一般经济学理论、产业经济学、区域经济学、国际贸易理论、管理学到空间经济学理论都有从各自领域对产业在地理空间上集聚有所解释。我们从江苏沿江产业集聚现象的形成和发展着手研究,试图以地理集中度为衡量指标,以制造业为例,根据各学科的相关理论对产业集聚的形成原因进行剖析,指出影响江苏沿江制造业产业集聚的因素。实证结果说明,本地市场规模、产业关联和FDI是影响江苏沿江产业集聚形成的显著因素。关键词:产业集聚;经济地理;因素分析Abstract: This paper examines the micro-foundations of agglomeration economies for Jiangsu industries. Using industries as observations, we regress the LQ measure of spatial concentration on industry characteristics that proxy for the presence of market scale, labor market pooling, input sharing, product shipping costs, natural advantage, FDI and infrastructure construction. Results indicate that proxies for market scale, input sharing and FDI have the most robust effect, positively influencing words: industrial agglomeration; distribution; important factor产业集聚是市场经济条件下伴随着地区工业快速发展的结果,是一个国家或地区产业竞争力的重要来源和集中体现。从著名的美国硅谷、波士顿128公路到英国的剑桥工业园,以色列的特拉维夫地区等等,都是很有代表性的竞争力很强的产业集聚区域。我国自改革开放以来,在对外开放、市场化取向的体制改革推动下,经济活动的空间分布也发生了很大的变化。逐渐形成了一些制造业集聚的中心、一批高集聚、高度专业化的产业集群。代表我国产业空间集聚最迅速的珠江三角洲区域、长江三角洲区域也是我国经济发展最快的区域。产业在空间的分布趋向于在一些地区集聚,在其他地方分散。那存在这种产业分布的空间上的集聚的原因究竟是什么呢?本文在前人文献研究的基础上,试图结合江苏沿江制造业产业集聚的模式,从新经济地理学的角度找出集聚形成的原因。文章第一部分回顾现有文献,介绍对于制造业产业集聚的研究方法、相关理论;第二部分介绍本文的对产业集聚的分析框架;第三部分对中国制造业的集聚现状描述;第四部分是产业空间集聚与相关因素的计量分析及结果;第五部分是文章的结论和政策建议。一、产业集聚及相关理论对于制造业产业在空间集聚的因素研究很多,国外很多研究从不同的理论角度都曾给过解释。从早先马歇尔从外部规模经济的角度阐述了产业集聚的原因,韦伯从集聚带来成本节约的角度解释集聚的产生,到现在的新产业区位论、新贸易理论、新地理经济学等等都对产业集聚做出解释。(一)产业集聚的定义产业在空间上聚集的现象已经是很多学科的共同关注的焦点。但对产业聚集的定义、产生原因、甚至产业聚集的衡量方法,都没有一致的认定。本文将对产业聚集的定义综合现有的研究成果,在不同领域的共性的基础上,总结出几个方面的定义。1.从空间角度看,产业聚集是发生在某一特定地理区域内的经济过程或现象。2.从产业角度看,产业聚集区域内的企业是属于某几种产业或具有直接上下游产业关联或具有其他密切联系的相关产业的企业。3.从相互关系角度看,产业聚集区域内的企业彼此之间必须以各种可能的方式产生互动,使聚集区域内厂商表现较其他非聚集区域的厂商更好。波特(Porter 1990,1998,2002)的定义是:“产业集群指一群特定产业领域内相关联的企业、生产供应商、服务供应商、相关产业厂商及相关机构(如大学、制定标准化的机构、金融机构、贸易协会等)以彼此既竞争又合作的方式在某一地理区内集中的现象”。(二)产业集聚的形成原因综合前人的研究成果,笔者认为以下几个方面是影响我国产业集聚的重要因素:1.资源要素资源要素包括区位要素和生产要素。区位要素指的是具体产业相关的或必须的自然区位、交通区位、经济区位。从理论上看,企业一般倾向于选择聚集再交通要塞,以降低运输成本。生产要素就包含自然资源和社会资源。产业集聚的的形成表现为区域专业化生产,根据赫克歇尔-俄林理论,区域专业化生产的主要原因是自然资源禀赋。早期的产业集聚形成过程中,自然资源起到了根本性的作用。后来的研究证实,相对于早期自然资源,社会资源的作用在后期产业集聚的形成中,具有更大的作用。包括技术、人才、社会网络、文化、制度等社会资源具有不可量化和无限性,已经成为产业集聚形成的关键因素。2.需求条件靠近特定的市场也是产业集聚形成的重要原因。在一定程度上,接近市场有利于厂商掌握客户偏好,有利于厂商掌握新产品信息与走向,这个过程同时也能够促进厂商对产品或服务的升级,增强自己产业的竞争力。市场需求是产生集聚的动力,同时,市场需求也促使着产业的专业化分工过程。根据斯杨定理,专业化分工会提高效率,企业可以获得递增报酬,但由于其受到市场容量的制约,只有市场容量达到最初的临界点才有可能触发专业化分工自我强化的过程。产业集聚才可能持续良性发展。3.外部经济环境“自发性”是产业集聚形成的一个最根本的特征,而这样自发形成的基础是市场机制。市场自由度越高,外向化程度越高,政府的不合理管制程度越低,产业集聚的效应就越能发挥出来。我国对产业集聚的研究中,经济体制因素是我国特色的一个重要影响因素。随着我国市场化程度逐步提高,产业集聚在我国形成的外部经济环境已经越来越好。实践证明,产业集聚在生产、流通两方面都离不开开放的市场环境。产业集聚的形成和经济开放存在这样的关系:凡是经济开放程度高、市场竞争力量强的地区,产业集群的特征就比较突出;凡是经济相对封闭、市场竞争力量弱的地区,产业集群现象就比较弱(徐康宁,2001)。4.产业特征反映产业特征的很多因素如技术溢出因素、产业规模等都是产业集聚形成的重要因素。在产业集聚的形成过程中,通过技术溢出,以带动整个集聚群内部的技术创新能力的提高。技术水平的提高使得区域内的企业特别是学习型企业得到发展的动力,促进与区域内其他企业的合作,推动技术创新的良性循环,推动技术水平的整体提高。技术进步也是实现集聚区企业升级可持续发展的动力。5.政府政府对产业集聚发展的影响是非常重要的。政府通过对某个地域或某个产业制定的种种优惠措施,对产业集聚形成起着非常关键的作用,这在发展中国家尤为明显。此外,政府的教育、文化、税收等政策都可能影响到生产要素,从而影响产业的集聚的形成、发展。(三)地理集中度的衡量指标衡量区域内企业集中度有很多指标,地理经济学上是地理集中度衡量指标,此处借用区位商(Location Quotient)来衡量产业集聚。区位商是产业效率与效益分析的定量工作,是较普遍的识别地区制造业专业化的方法,是衡量某一产业的某一方面,在特定区域专业化程度的方法,也可以说明各地区各产业的相对集聚程度。起计算公式如下:二、对产业集聚的分析与变量的选取近几年,江苏的产业集群发展迅速,苏州工业园区和高新区、南京江宁开发区、昆山高新区等初具规模。产业集群效益在江苏已经凸显。以沿江高新技术产业带为例,据统计,2004年,高新技术产业带实现产值超过2 000亿元。该产业带创造了江苏八成以上的信息产业产值和15%的工业总产值。总的看来江苏省产业集群这些年的发展前景令人鼓舞:一是有一定的规模,目前江苏成型的产业集群约有一百多个;二是行业分布比较广,几乎涉及了纺织、服装、金属制品、电器、建材、轻工等传统行业,也有IT、环保等新兴产业;三是分布比较广泛,苏南、苏中、苏北三大板块都在各个经济领域都有分布;四是已经形成一批品牌,在全国有一定的知名度和比较高的市场占有率。产业集群已成为江苏经济发展的强劲支撑。影响产业集聚形成的因素很多,从前文的叙述和考虑到数据的可得性,我们假设的与产业集聚形成有关是资源要素、需求条件、产业特征、外部经济环境、政府等。本文选取数个相关指标来分析产业空间集聚的决定设立以下联立方程:EDU为该地区的大专以上学历人口所占比例。TEC为该地区的技术市场合同交易金额,用来说明地区的技术创新。NUM为该地区企业数量,用以说明区域产业规模。FDI为外商直接投资,用以说明外资对产业集聚的影响。SPHWY是该地区在总公路里程数的份额。IM指本地市场效应,用以反映的就是本地市场规模的大小,各地区人均GDP与全国人均GDP的比值来衡量。某地区该比值越大那就意味着某地区越接近本地市场。TER第三产业所占比例,用以描述产业集聚的配套设施。LINK指产业关联系数,新经济地理理论认为,投入产出会影响产业的区位集中。但投入产出数据缺乏,采用王业强、魏后凯(2007)的方法,用工业产值中制造业产值所占比例来估算产业关联效应。所用的数据都出自于2006年、2007年《中国统计年鉴》、《江苏统计年鉴》、《中国工业统计年鉴》。三、结果分析运用SPSS统计软件版对数据进行回归分析,结果见下表。EDU,TEC,NUM,SPHWY未通过显著性检验,应从模型中删去,其余变量如下页表。从以上的数据可以看出,模型修正后,可以从需求条件、产业特征、外部环境等几个方面对产业集聚效应影响因素进行了说明。市场容量有利于产业集聚的形成,根据波特的理论,产业集聚与市场需求有很大的联系。而第三产业的配套设施的显著影响为负,这是一个与常理相违背的地方,笔者对此的解释是目前沿江地区的第三产业发展水平严重落后于制造业的发展,还未能体现对产业集聚形成有利的促进效应。产业关联,产业集聚之所以形成,是由于上下游产业的聚集形成的。而产业集聚对区域经济的影响也在于通过产业链影响其他产业。产业关联越是紧密,越是广泛,越是有可能通过聚集效应和乘数效应的作用带动整个区域经济的发展。FDI对江苏沿江制造业产业集聚的发展有着较为显著的推动作用,从实际情况来看,江苏的产业集聚的形成,尤其是苏南的集聚现象很多都是由外资带动的。预期的产业规模没有对产业集聚形成有显著影响,并不代表没有影响,而说明沿江制造业产业集聚并没有以简单的数量的累积,可以解释为重在质量的集约式发展。四、结论和政策含义本文通过对江苏沿江制造业产业集聚的统计描述,并对制造业产业集聚的决定因素建立了一个基于地理经济学分析的理论框架,最终得出一些启示性结论:江苏沿江制造业产业集聚的形成主要由产业关联、市场规模和外商投资等因素推动,地理因素、人口因素、规模经济等特征的作用效果不明显。根据本文的结论,针对目前江苏沿江制造业产业集聚的现状及存在的问题,可以认为,随着我国市场化改革的不断推进,制造业集聚趋势也在不断加强,江苏沿江的制造业产业集聚也会不断加强。这种加强体现在资源的优化配置,区域经济的高速发展,核心竞争力的不断提高。对于沿江制造业的发展有以下启示:一、重视服务支持对产业集聚效应的巨大促进作用,加快相关配套设施的建设,不断完善配套服务;二、适当扩大产业规模,促进龙头企业和大量中小企业共同发展,形成以小促大,以大助小共同发展的局面;三、外部环境方面继续推进国有企业、三资企业的共同发展,寻求投资主体的多元化,积极吸引外资;四、提高区域企业创新能力,鼓励专利发明和企业间的技术溢出。参考文献:[1]段小梅.台湾制造业投资大陆的产业集群分析[J].台湾研究集刊,2007,(2):40-49.[2]迈克尔·波特.竞争战略[M].北京:华夏出版社,2002.[3]徐康宁,陈奇.外商直接投资在产业集群形成中的作用[J].现代经济探讨,2003,(12):3-7.[4]杨树旺,易明.彭响产业集群的因素分析[J].西安财经学院学报,2006,(6):49-53.[5]王业强,魏后凯.产业特征、空间竞争与制造业地理集中[J].管理世界,2007,(4):68-77.[6]魏守华.集群竞争力的动力机制及其实证分析[J].中国工业经济,2002,(10).[7]文玫.中国工业在区域上的重新定位和聚集[J].经济研究,2004,(2):84-94.参考下吧

在毕业论文如何做spss分析

具体要做什么分析,可以

对于论文中用SPSS分析数据的部分,一般需要写以下八个小节:1. Introduction 简介2. Data Screening & Cleaning 数据筛选和整理3. Profile of Respondents 受访者介绍4. Reliability of the Measurement 测量的可靠性分析5. Descriptive of Main Variables 主要变量描述6. Correlation Analysis 相关性分析7. Multiple Regression Analysis 多元回归分析8. Summary of Findings 调查结果总结This chapter focuses on presenting the results of this research. It begins with Data Screening & Cleaning. Next, Profile of Respondents will be presented followed by Reliability of the Measurement, Descriptive of Main Variables and Correlation Analysis.本章重点介绍了本研究的结果。它从数据筛选和清理开始。接下来,将介绍受访者的概况,然后是测量的可靠性、主要变量的描述和相关分析。2. Data Screening & Cleaning 数据筛选和整理调查数据必须首先对数据输入错误进行筛选和清理,然后才能进行分析。我们首先使用函数频率和描述性来筛选数据输入错误来检测回答中的异常。然后我们还评估了是否有很多空白的回答,最后我们还检查了被调查者是否回答相同的回答。首先,将收集来的数据整合成进Excel;然后打开SPSS,按照"File"→"Open"→"Data"的顺序导入文件第二步我们需要定义数据,包括 name, label, label, value首先定义variable name:然后定义value:(这一步是需要根据自己的调查问卷,比如问卷中定义1为男性,2 为女性,那么我们编码的时候也需要这样写)以定义性别为例之后我们就可以进行数据筛选和整理了:下面为输出结果:在这一部分我们需要介绍关于受访者的信息,以确认不同受访者对调查结果是否有影响。我们选择描述性统计中的频率将需要分析的受访者背景数据移到右侧这是频率表输出结果对于这个结果我们不能直接复制到论文中,我们可以另整理一个表格,如下图:4. Reliability of the Measurement 测量的可靠性分析对于可靠性分析的操作:选择分析→刻度→可靠性分析将需要分析的变量移到右侧可靠性分析的输出结果整理为表格写进论文中5. Descriptive of Main Variables 主要变量描述。

spss数据分析论文写法如下:

1、适用于自变量为定类数据且仅为两组时。

2、适用于因变量为定量数据。

3、各个观察值相互独立,不能相互影响,即满足独立性。这个一般根据专业背景考察,如遗传性疾病、传染性疾病的数据就可能存在非独立性问题,也就是不同数据会相互影响,而不同学生身高可认为相互独立,彼此不相互影响。

4、各个样本均来自正态分布的总体,即满足正态性。独立样本t建议对于数据资料的正态性存在一定的耐受能力,一般认为样本量大于30即可满足正态分布。

5、各个样本所在总体方差相等,即满足方差齐性。很多同学对于这个概念不太了解,这没有关系,在SPSS进行独立样本t检验时,自动会进行使用Levene’s检验来方差齐性,我们只需要根据相应结果解读数据即可。

撰写摘要注意事项:

1、不得简单重复题名中已有的信息,忌讳把引言中出现的内容写入摘要,不要照搬论文正文中的小标题(目录)或论文结论部分的文字,也不要诠释论文内容。

2、尽量采用文字叙述,不要将文中的数据罗列在摘要中;文字要简洁,应排除本学科领域已成为常识的内容,应删除无意义的或不必要的字眼;内容不宜展开论证说明,不要列举例证,不介绍研究过程。

3、摘要的内容必须完整,不能把论文中所阐述的主要内容(或观点)遗漏,应写成一篇可以独立使用的短文。

4、摘要一般不分段,切忌以条列式书写法。陈述要客观,对研究过程、方法和成果等不宜作主观评价,也不宜与别人的研究作对比说明。

你要先有论文的目的和分析思路,然后根据目的的论文和分析思路,确定需要收集的数据和类型,最后才考虑 应该用spss什么方法来实现。下面是我自己写的一个 带数据分析的论文写作指导首先,我要说明这里的指导并非常规意义的指导,我这里说的指导是到底应该如何写论文(应该还是很抽象,不过看完就知道了)。迄今为止,我大约也帮忙做了能有上千份的学生论文数据分析部分,包括一部分的整篇论文写作,其中涉及到有医学类、护理类、人文社科类、教育类、经济学类、心理学类等,单凡需要用到数据分析的论文。因为我是做市场研究与数据分析的,擅长的主要工具是spss,不敢说百分百精通spss,但是应付个八九十应该是足够了,很自然的平时就利用下班和业余时间帮学生做一些论文数据分析以及论文写作指导。很多论文的核心部分都包括数据分析,而统计学也应该是所有学科应该学习的一门重要课程,但是恰恰相反,很多学科只是把统计学和数据分析作为一项选修甚至不重要的课程对待,这样导致学生在最后做论文时完全不懂。而在这种情况下,很多学生因为对数据分析的一窍不通,导致论文从开始的设计到后续的数据收集、整理等都会出现问题,最终导致分析出问题。因此,在对数据分析一窍不通的情况下,应该如何从头构建论文及写作呢?很多论文虽然数据分析部分是核心,但是不管哪种论文的写作,都脱离不了论文的框架。因此,具体的过程应该如下:首先是选题,当然很多时候是导师直接给选题,这个没有太多讨论。其次是选题确定后,马上要做的不是想我应该怎么去写作,或者在哪抱怨“哎~~郁闷,完全不知道怎么写嘛”。而是先通过文献查找,看前人在这个选题方面已经做了哪些研究,都是如何做的。通过查找文献找到跟选题有关的资料,然后对这些资料进行整理,整理不需要计较参考文献的结论和数据细节等,而是要把每篇文献的研究目的、采用的研究方法、采用的分析方法整理出来。当然参考文献中的分析方法你可能还完全不懂,但是没关系,你先把这些参考文献中使用的分析方法全部罗列出来,如线性回归、方差分析、均值t检验、logistic回归等,把这些文献中常用的统计方法罗列出来,你需要弄清楚对应关系,即每种分析方法是用来支持和实现什么样的研究目的,以及能够得出什么样的结论,认真阅读文献就能实现这一步。第三.通过上一步,你应该朦胧的知道你选题相关的参考文献中常用的统计方法名称,以及这些统计方法能够帮助实现哪些目的,或者得出什么结论,同时也不会对自己的选题那么恐惧和迷茫了,因为可能你的选题已经有前人做过了,你的论文只是“复制”一遍而已了,我说的复制是重复一遍前人的研究。在这种情况下,可以构思下自己的选题,这一步属于纯理论层面的,你需要将自己的思路具体化,比如要实现什么目的,很自然的需要什么数据分析方法也就能确定了。当然很多论文会预先设计一系列待验证的假设,也是在这一步完成,因为你找到的文献中可能会存在矛盾的结论,可能会存在一些你认为的研究缺陷(文献看多了,自然自己就会有想法出来了),提出自己的一系列假设,能够很清楚的指导后面的数据收集和分析。第四.选题、假设还有研究方法这些经过前面几步都能确定了,接下来就是要考虑具体研究和收集数据的环节了。这个环节最重要的也是首要的是弄清楚你的数据应该是什么类型的,通过哪种方法来获取。其实也容易了,因为前面你已经确定了统计分析方法,而每种方法有它特定的数据类型要求,比如是分类数据(如性别、民族、年级等)、比如连续性数据(如年龄、身高、体重、温度、长度、距离等)。分类数据简单通俗点的理解就是这些数字本身是没有意义的,是人为赋予它一定的含义,这些数据之间不存在连续性,且加减乘除没有意义,而连续性数据是数据本身有意义,且能够进行一些加减乘除运算。确定了所需要的数据类型,就大致能够知道在数据收集时,应该注意的问题。比如一份问卷调查,其中应该如何设计问题也就大致清楚了,通常问卷设计时就要考虑两种数据类型的问题,因为不同的选项设计会导致不同的数据类型。如你设计一个问题的答案选项是“有/没有”、“是/否”这种是属于分类数据,如果你的答案选项是李克特量表式“非常满意----非常不满意”这种,在处理时可以按照分类数据,只能统计出一些百分比,也可能将其按照连续数据如12345打分形式,这样可以求均值,可以做很多其他多元统计分析。因此这一步确定数据类型很关键,如果数据类型弄错的话,则收集的数据完全无用。第五.具体收集数据过程,不细说了,收集回来之后就是数据的录入。记住一定要录入原始的数据,而不是经过加减整理汇总后的数据。数据录入格式也是有要求的,一般大致同样的情况下,都是一行代表一个个案或者一份问卷的数据,而一列对应表示的是问卷中的一个问题,即变量。因此数据录入完成后,应该是有多少样本数据,就有多少行,数据中包含多少个指标,那就有多少列。第六.这一步才是你应该开始头疼的数据分析不会了怎么办。因为到这里才开始是数据的具体分析过程了。不会怎么办,前面已经知道了分析方法,这种情况,只有找本教材,然后找对应的方法介绍学习即可,或者实在不行找人指导,找人帮忙等等。最后。分析完成后,开始整篇论文的写作。其实完成前面的每一步,到最后写文献综述以及讨论时,自然就会得心应手了,很少会需要绞尽脑汁甚至东拼西凑。

如何做毕业论文数据分析

1、获取数据

获取数据也有两种途径,要么就是手上有的或者是能直接使用到的现成数据,还有一种就是二手数据。现在的数据分析库主要分为了调查数据和政府数据。

2、整理数据

整理数据就是对观察、调查、实验所得来的数据资料进行检验与归类。得出能够反映总体综合特征的统计资料的工作过程。并且,对已经整理过的资料(包括历史资料)进行再加工也属于统计整理。

3、呈现数据

当数据收集充分且真实过后,研究者可运用数据,但要清楚的说明数据来源以及如何对原始的数据进行加工的。需要尽可能的描述获取数据的过程,提供足够多的细节,以便同行能重复研究过程,并保障原生作者的创作性。

1、频数分析:

对一组数据的不同数值的频数,或者数据落入指定区域内的频数进行统计,了解其数据分布状况的方式。通过频数分析,能在一定程度上反映出样本是否具有总体代表性,抽样是否存在系统偏差,并以此证明以后相关问题分析的代表性和可信性。

2、描述性统计:

对调查总体所有变量的有关数据进行统计性描述,包括数据的集中趋势与离散趋势。

3、探索性分析:

正态性检验用于检验数据是否满足正态分布,一些算法需要数据满足正态分布(如单样本T检验,独立样本T检验等)。

论文数据处理方法

论文数据处理方法,相信绝大部分的小伙伴都写过毕业论文吧,当然也会有正准备要写毕业论文的小伙伴要写毕业论文了,那么论文数据处理方法大家都知道是什么吗?接下来让我们一起来看看吧。

一是列表法。列表法就是将一组实验数据和计算的中间数据依据一定的形式和顺序列成表格。列表法可以简单明确地表示出物理量之间的对应关系,便于分析和发现资料的规律性,也有助于检查和发现实验中的问题,这就是列表法的优点。设计记录表格时要满足以下几点:

1、表格设计要合理,以利于记录、检查、运算和分析。

2、表格中涉及的各物理量,其符号、单位及量值的数量级均要表示清楚。但不要把单位写在数字后。

3、表中数据要正确反映测量结果的有效数字和不确定度。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。

此外,表格要加上必要的说明。通常情况下,实验室所给的数据或查得的单项数据应列在表格的上部,说明写在表格的下部。

二是作图法。作图法是在坐标纸上用图线表示物理量之间的关系,揭示物理量之间的联系。作图法既有简明、形象、直观、便于比较研究实验结果等优点,它是一种最常用的数据处理方法。作图法的基本规则是:

1、根据函数关系选择适当的坐标纸(如直角坐标纸,单对数坐标纸,双对数坐标纸,极坐标纸等)和比例,画出坐标轴,标明物理量符号、单位和刻度值,并写明测试条件。

2、坐标的原点不一定是变量的零点,可根据测试范围加以选择。,坐标分格最好使最低数字的一个单位可靠数与坐标最小分度相当。纵横坐标比例要恰当,以使图线居中。

3、描点和连线。根据测量数据,用直尺和笔尖使其函数对应的实验点准确地落在相应的位置。一张图纸上画上几条实验曲线时,每条图线应用不同的.标记符号标出,以免混淆。连线时,要顾及到数据点,使曲线呈光滑曲线(含直线),并使数据点均匀分布在曲线(直线)的两侧,且尽量贴近曲线。个别偏离过大的点要重新审核,属过失误差的应剔去。

4、标明图名,即做好实验图线后,应在图纸下方或空白的明显位置处,写上图的名称、作者和作图日期,有时还要附上简单的说明,如实验条件等,使读者一目了然。作图时,一般将纵轴代表的物理量写在前面,横轴代表的物理量写在后面,中间用“~”联接。

实验数据的处理离不开绘制成表,列表法和作图法还是有一定区别的。科研工作者在处理数据时,要注意根据实验数据的特点,选择是用列表法还是作图法。

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

写论文常用的数据分析方法如下:

一、描述统计

描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。

二、相关分析

相关分析是研究两个或两个以上处于同等地位的随机变量间的相关关系的统计分析方法。例如,人的身高和体重之间;空气中的相对湿度与降雨量之间的相关关系都是相关分析研究的问题。

1、单相关:是指两个变量之间的相关关系。如产品产量与单位产品成本之间的关系等。只有一个因变量和自变量。

2、复相关:是指一个变量与另外两个或两个以上变量之间的相关关系。

3、偏相关:在某一现象与多种现象相关的场合,两个随机变量在排除了其余部分或全部随机变量影响情形下,称为偏相关。

三、方差分析

通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。各研究来源必须是相互独立,且各总方差相等。

1、单因素方差分析:研究中只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系。

2、多因素有交互方差分析:有两个或者两个以上的因素对因变量产生影响,同时考虑多个因素之间的关系。

3、多因素无交互方差分析:分析多个因素与因变量的关系,但是各因素之间没有影响关系或忽略影响关系。

四、假设检验

1、参数检验:其基本原理是已知总体的特征下,对一些主要的参数进行检验。

2、非参数检验:非参数检验是在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。主要方法有:总体分布的卡方检验、二项分布检验、单样本K-S检验等。

毕业论文如何用python做分析

1、Python数据分析流程及学习路径

数据分析的流程概括起来主要是:读写、处理计算、分析建模和可视化四个部分。在不同的步骤中会用到不同的Python工具。每一步的主题也包含众多内容。

根据每个部分需要用到的工具,Python数据分析的学习路径如下:

相关推荐:《Python入门教程》

2、利用Python读写数据

Python读写数据,主要包括以下内容:

我们以一小段代码来看:

可见,仅需简短的两三行代码即可实现Python读入EXCEL文件。

3、利用Python处理和计算数据

在第一步和第二步,我们主要使用的是Python的工具库NumPy和pandas。其中,NumPy主要用于矢量化的科学计算,pandas主要用于表型数据处理。

4、利用Python分析建模

在分析和建模方面,主要包括Statsmdels和Scikit-learn两个库。

Statsmodels允许用户浏览数据,估计统计模型和执行统计测试。可以为不同类型的数据和每个估算器提供广泛的描述性统计,统计测试,绘图函数和结果统计列表。

Scikit-leran则是著名的机器学习库,可以迅速使用各类机器学习算法。

5、利用Python数据可视化

数据可视化是数据工作中的一项重要内容,它可以辅助分析也可以展示结果。

随着互联网的不断发展,数据分析已经成为指导我们工作方向的主要依据之一,而今天我们就一起来了解一下,如何利用python编程开发来进行数据分析,下面电脑培训就开始今天的主要内容吧。

为什么要学习Python进行数据分析?

Python作为一种用于数据分析的语言,近引起了广泛的兴趣。我以前学过Python的基础知识。下面是一些支持学习Python的原因:

开源-免费安装

很棒的在线社区

简单易学

可以成为数据科学和基于web的分析产品生成的通用语言

不用说,它也有一些缺点:

它是一种解释语言而不是编译语言——因此可能会占用更多的CPU时间。但是,考虑到节省了程序员的时间(由于易于学习),它仍然是一个不错的选择。

这是Python中受争议的话题之一。您一定会遇到它,特别是如果您是初学者的话。这里没有正确/错误的选择。这完全取决于情况和你的需要。我会试着给你一些建议来帮助你做出明智的选择。

为什么

很棒的社区支持!这是你早年需要的东西。Python2于2000年末发布,已经使用了超过15年。

过多的三方库!虽然许多库都提供了支持,但仍然有很多模块只能在版本上工作。如果您计划将Python用于特定的应用程序,比如高度依赖外部模块的web开发,那么使用可能会更好。

链接:

炼数成金:Python数据分析。Python是一种面向对象、直译式计算机程序设计语言。也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python语法简捷而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。

课程将从Python的基本使用方法开始,一步步讲解,从ETL到各种数据分析方法的使用,并结合实例,让学员能从中借鉴学习。

课程目录:

Python基础

Python的概览——Python的基本介绍、安装与基本语法、变量类型与运算符

了解Python流程控制——条件、循环语句与其他语句

常用函数——函数的定义与使用方法、主要内置函数的介绍

.....

作者Wes McKinney是pandas库的主要作者,所以本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。•将IPython这个交互式Shell作为你的首要开发环境。•学习NumPy(Numerical Python)的基础和高级知识。•从pandas库的数据分析工具开始。•利用高性能工具对数据进行加载、清理、转换、合并以及重塑。•利用matplotlib创建散点图以及静态或交互式的可视化结果。•利用pandas的groupby功能对数据集进行切片、切块和汇总操作。•处理各种各样的时间序列数据。•通过详细的案例学习如何解决Web分析、社会科学、金融学以及经•济学等领域的问题。

  • 索引序列
  • 毕业论文如何做统计分析
  • 毕业论文如何做统计表
  • 在毕业论文如何做spss分析
  • 如何做毕业论文数据分析
  • 毕业论文如何用python做分析
  • 返回顶部