首页 > 毕业论文 > 本科毕业论文回归stata

本科毕业论文回归stata

发布时间:

本科毕业论文回归stata

你得看人家杂志上的要求。话说只要是国际上承认的统计软件,只要数据符合要求,你想用什么软件就用什么吧。

如果你是做问卷调查类(发放问卷,收集数据<通常学营销的人会这样做>)的,那么就根据你的题项设置变量,并录入数据(通常是用SPSS分析,也有用其他工具比如说Eviews的)。然后做数据的信度和效度检验(此处KMO值是比较重要的),再做基本的描述性统计分析,然后是主成份提取(即因子分析),从多个变量中提取几大因子,结果主要看旋转成分矩阵,然后用几个因子跟因变量做回归,得出影响关系的回归方程。举个例子说,你的问卷中有30个题项(前提是你已经做过小规模问卷测试以验证题项设置的合理性),则对应30个变量X1,X2,......,X29,X30,录入这30个变量的数据,如果你收集了500份问卷,其中420份是有效问卷的话,则你有420条针对30个变量的有效数据。然后做信度效度检验,描述性统计分析,因子分析,假设通过因子分析提取出4个主成份(因子),分别为F1,F2,F3,F4,这个时候对因子命名并将其生成新的变量,然后再将F1,F2,F3,F4和Y做回归分析,得到回归方程,通过R方和系数检验表来判断方程和系数的有效性。这个时候你就能得到影响消费者态度的是哪些因素了。PS:你这里的因变量消费者态度需要量化,在设计问卷的时候要考虑如何量化才有利于后续的分析。

数据可以找找,非得要弄问卷调查吗

研究方法通常可以分为三大类,分别是差异关系,相关关系和其它关系。

参考资料:

stata回归分析毕业论文

我看了,这是一个关于软件的问题,我也不太懂这种方面的问题,也不好和你乱回答,只能是提醒你一下,你可以找这一方面相关的专家,或者是老师去问一问

(1)由于F检验的P值为0,模型总体是统计显著的,模型较好(2)R方接近80%,说明模型的拟合度很高,模型较好(3)教育年限变量和工资具有统计显著的正相关关系(原因:t检验的P值为0),其他因素不变,教育年限每增加1年,工资平均增长990元。(4)工作起薪变量和工资具有统计显著的正相关关系(原因:t检验的P值为0),其他因素不变,工作起薪每增加1元,工资平均增长元。(5)性别变量和工资在5%的显著性下相关(我不知道你性别变量怎么设的,一般是男=1,女=0,我按这个写的,如果不是请告知),男性比女性在其他因素不变的情况下平均多1593元工资。

电脑:WIN10

软件:免费

软件:Stata

1、首先,在Stata中输入代码(ssc install asdoc, replace)安装外部命令asdoc。

2、安装完成后,打开我们的数据,小编这里以Stata自带的数据auto为例。

3、下面,小编做一个mpg和weight变量对price变量的回归分析,并把结果直接导出到Word里。输入命令:asdoc reg price mpg weight 。如图所示,Stata会自动生成一个名为“”的文件。

4、点击打开文件,可以看到,我们想要的回归分析结果已经导出到该Word文档里了。

5、之后我们只需要调整下格式即可,是不是很方便呢?

上面左侧的表是用来计算下面数据的,分析过程中基本不用提到

右侧从上往下

of obs 是样本容量

是模型的F检验值,用来计算下面的P>F

>F是模型F检验落在小概率事件区间的概率,你的模型置信水平是,也就是说P>F值如果大于,那么模型就有足够高的概率落在F函数的小概率区间,简单的说,如果这个值大于你这个模型设定有就问题,要重新设定模型

也就是模型的R²值,拟合优度,这个数越大你的模型和实际值的拟合度就越高,模型越好

.R-squard 这个是调整过的R²,跟上面R²差不多,关注一个就行了

mse 是残差标准差,值越大残差波动越大,模型越不稳定(这个值我分析的时候一般不太关注)

下侧表格

然后分析就选取你有用的参数做了,我学经济的,一般最有用的参数就是P>F,coef,P>t,se等等,还有BIC,VIF这些,在简单回归里这些是不会计算的,需要其他命令

毕业论文stata回归不显著

木有一个变量是显著的……所有变量的p值都好大的说~整个模型的p值也很大……结论就是这个模型本身统计不显著,各个变量也不显著。看回归分析结果,你先看右上角那个prob> F,那个是对整个模型的检验,如果这个值比大,就是不显著的。下面那些变量,你就看那个P>|t|的值,如果比大,也是不显著的。其他还有,但你这个结果一看这俩都不行,就不用往下看了。

变量都是代表什么东西,还有数据都是什么。还有你的no. of obs太少了,所以一眼看过去就知道没有一个变量是significant的,数据太少了

一般相关只是单独地分析两个变量之间的相关,它不会去控制其他变量的影响。回归的话如果放入多个自变量做回归,那么看到的某一个自变量的回归系数其实代表的是控制了其自变量(也就是减去了其他自变量对因变量的效应)后的回归,也就是说,并不代表该变量单独对因变量的影响。差别就在于是否控制了所关注变量外的其他变量

一数据缩尾二加控制变量三更换估计方法四替换指标五尊重客观事实

本科毕业论文回归样本量

不行。在毕业论文当中如果涉及调查的样本,样本数量越多,得出的结论越准确,论文的样本量一般控制在300到500左右。所以,本科毕业论文19个样本不行。毕业论文是检验学生在校学习成果的重要措施,样本是完善论文的重要基础,采用不同数量的抽样样本,可达到不同的研究效果。

样本量大概在300~500左右最为合适。在毕业论文当中如果涉及到调查问卷,那么一定要有调查的样本,样本量不能太少,如果样本量太少的话是不足以说明问题的,所以基本的样本量应该控制在300~500左右。这样才能在论文当中作为数据的支撑,才能在评审过程中通过。

本科毕业论文模型回归

多因素方差分析菜单选择:分析 -> 一般线性模型 -> 单变量将研究变量选入“因变量”框,分组变量都选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框,点击“设定”单选按钮,设置“主效应”、“交互作用”其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面,ok统计专业研究生工作室为您服务,需要专业数据分析可以找我

可以。数学专业本科毕业论文可以写回归分析,需要专业对的上。数学是研究数量、结构、变化、空间以及信息等概念的一门学科。

  • 索引序列
  • 本科毕业论文回归stata
  • stata回归分析毕业论文
  • 毕业论文stata回归不显著
  • 本科毕业论文回归样本量
  • 本科毕业论文模型回归
  • 返回顶部