[1] 陈计, 二次根式的三角代换, 中学数学教师(丛刊), 1982年第1期, 42-44.[2] 陈计, 艾尔兑斯——莫迪尔不等式的推广, 数学通讯, 1984年第1期(总第149期), 27-31. [3] 陈计, 反向Fermat问题的推广, 数学通讯, 1984年第5期(总第153期), 26. [4] 陈计, Kummer判别法的增补, 工科数学, 1984年第2期(总第2期), 55-56. [5] 陈计, 朱尧辰不等式的推广, 中学数学教学参考, 1985年第3期(总第77期), 15. [6] 陈计, 初等对称函数的一个不等式, 厦门数学通讯, 1986年第1期, 15-16, 26. [7] 陈计, 一个不等式的推广, 数学教学研究, 1986年第4期(总第16期), 34. [8] 陈计, 关于Hardy不等式, 玉溪师专学报(综合版), 1987年第3期(总第10期), 57-60. [9] 陈计, 王振, 罗承辉, 关于几个猜想的讨论, 玉溪师专学报(综合版), 1987年第6期(总第13期), 39-44. [10] 陈计, Polya-Szego不等式的多边形推广, 数学通讯, 1987年第6期(总第190期), 7. [11] 陈计, Heron公式的指数推广及其应用, 数学通讯, 1987年第12期(总第196期), 3-4. [12] 王挽澜, 王鹏飞, 陈计, 一些新不等式的注, 成都大学学报(自然科学版), 1988年第1期(总第7期), 15-17. [13] 陈计, 林祖成, 关于若干平均值不等式的推广, 成都大学学报(自然科学版), 1988年第2期(总第8期),75-76. [14] 陈计, 何明秋, 涉及两个三角形的不等式, 数学通讯, 1988年第1期(总第197期), 3-4. [15] 陈计, 舒海斌, Ostle-Terwilliger不等式的推广, 数学通讯, 1988年第3期(总第199期), 7-8. [16] 陈计, 马援, Neuberg-Pedoe不等式的四边形推广, 数学通讯, 1988年第5期(总第201期), 5-6. [17] 陈计, 王振, Garfunkel-Bankoff不等式的一个证明, 数学通讯, 1988年第10期(总第206期), 7-8. [18] 陈计, 王振, Barrow-Lenhard不等式的指数推广, 数学通讯, 1988年第12期(总第208期), 7-8. [19] 陈计, 王振, Heron平均和幂平均的不等式, 湖南数学通讯, 1988年第2期(总第43期), 15-16. [20] Ji Chen, Zhen Wang, The power mean and the Heron mean inequalities, Crux Mathematicorum, (1988), No. 4, 97-99. [21] 陈计, Mitrinovic-Djokovic不等式的推广, 中学数学教学(上海), 1988年第4期, 18, 35. [22] 陈计, 张焕明, 费恩斯列尔哈德维格尔不等式的一个类似, 数学教学研究, 1988年第5期(总第27期), 26-27. [23] 王挽澜, 李广兴, 陈计, 关于平均值的比的一些不等式,成都科技大学学报, 1988年第6期(总第42期), 83-88. [24] 张在明, 陈计, 刘竞欧,Woodall不等式的一个证明, 六盘水师专学报, 1989年第1期, 86-87. [25] 陈计, 刘竞欧, 关于圆形区域的最初几个Heilbronn数, 宁波大学学报(理工版), 1989年第1期(总第3期), 6-9. [26] 陈计, Mitrinovic-Djokovic不等式的推广, 宁波大学学报(理工版), 1989年第1期(总第3期), 115-117. [27] 陈计, 李广兴, Erdos-Florian不等式的加强(英文), 宁波大学学报(理工版), 1989年第2期(总第4期), 12-14. [28] Ji Chen, An extension of Oppenheim's area inequality for triangles, Crux Mathematicorum, (1989), No. 1, 1-3. [29] Ji Chen, Zhen Wang, A generalization of Lenhard's inequality, Crux Mathematicorum, (1989), , 257-259. [30] 陈计, 马援, 涉及两个单形的一类不等式, 数学研究与评论, (1989), , 282-284; 几何不等式在中国, 江苏教育出版社, 1996年第一版, 397-400. [31] 陈计, 李广兴, 多边形中的不等式, 湖南数学通讯, 1989年第3期(总第50期), 32-33. [32] 李广兴, 陈计, 樊畿不等式的推广, 湖南数学通讯, 1989年第4期(总第51期), 37-39. [33] 陈计, 胡波, Klamkin不等式的推广, 数学教学研究, 1989年第4期(总第32期), 2-3. [34] 李文志, 陈计, 一道有奖征解题的推广, 成都大学学报(自然科学版), 1989年第4期(总第12期), 13-15. [35] 陈计, 王振, 关于Erdos和Fejes Toth的猜想, 数学通讯, 1989年第5期(总第213期), 3-4. [36] 陈计, Barrow-Oppenheim不等式的推广及其应用, 数学通讯, 1989年第6期(总第214期), 3-4. [37] 陈计, 高海明, 一道征解题的拓广和加强, 数学通讯, 1989年第8期(总第217期), 4-5. [38] 陈计, 刘竞欧, Catalan不等式的指数推广, 数学通迅, 1989年第11期(总第220期), 3. [39] 陈计, Guggenheimer不等式的指数推广, 数学通讯, 1989年第12期(总第221期), 3. [40] Ji Chen, Bo Hu, The identric mean and the power mean inequalities of Ky Fan type, Facta Universitatis(Nis), Series: Mathematics and Informatics, 4 (1989), 9-12. [41] 王振, 陈计, Ky Fan不等式的推广(英文), 宁波大学学报(理工版), 1990年第1期(总第5期), 23-26. [42] 胡波, 陈计, Heron平均和幂平均的樊畿型不等式, 宁波大学学报(理工版), 1990年第2期(总第6期), 32-35. [43] 陈计, 王振, 关于对数平均的下界, 成都科技大学学报, 1990年第2期(总第50期), 100-102. [44] 刘启铭, 陈计, 关于Beckenbach不等式的推广, 成都科技大学学报, 1990年第2期(总第50期), 117-118, 124. [45] 陈计, 关于单位分数的一个定理的初等证明, 成都科技大学学报, 1990年第2期(总第50期), 119-123. [46] 陈计, Makowski-Berkes不等式的变形, 数学教学研究, 1990年第2期(总第36期), 34. [47] 陈计, Padoa不等式的加权推广(研究通讯2), 湖南数学通讯, 1990年第3期(总第56期), 40. [48] 王振, 陈计, n(≥5)边形的最大面积一般不能用边长的根式表示, 成都大学学报(自然科学版), 1991年第1期, 38-42. [49] 陈计, 关于多边形面积的Oppenheim不等式的推广(英文), 宁波大学学报(理工版), 1991年第1期(总第7期), 17-20. [50] Mitrinovic, Pecaric, Volence, 陈计, 专著《几何不等式新进展》的补遗(I)(英文), 宁波大学学报(理工版),1991年第2期(总第8期), 79-145. (定价: 元) [51] 王振, 陈计, 关于Erdos-Mordell不等式, 数学通讯, 1991年第7期(总第240期), 28-29. [52] 陈计, Janous不等式的初等证明, 数学通讯, 1991年第11期(总第244期), 14. [53] 陈计, 《几何不等式》中译本序, 北京大学出版社, 1991年9月第一版, 1-2. (定价: 元) [54] Zhen Wang, Ji Chen, A generalization of Ky Fan inequality, Math. Balkanica, 5 (1991), 373-380. [55] 陈计, Bencze不等式的加强, 苏州教育学院学报(自然科学版), 1992年第1期(总第28期), 37-38, 40. [56] 陈计, 王振, 一个分析不等式的证明, 宁波大学学报(理工版), 1992年第2期(总第10期), 12-14. [57] 李国富, 陈计, 次数k≤10的Steinhaus循环的计算, 宁波大学学报(理工版), 1992年第2期(总第10期), 15-25. [58] 陈计, 关于Kooistra不等式的推广, 成都大学学报(自然科学版), 1992年第3期(总第23期), 43-46, 13. [59] 王振, 陈计, Mitrinovic-Djakovic不等式的推广(英文), 数学季刊, 1992年第4期, 95-99. [60] 陈计, 埃德温·福特·贝肯巴赫教授逝世十周年纪念, 玉溪师专学报(自然科学版), 1992年第5期(总第42期), 34-35. [61] 陈计, 关于Gerber不等式的加强, 福建中学数学, 1992年第5期(总第75期), 8-9. [62] 陈计, Janous不等式的一个加强, 福建中学数学, 1992年第6期(总第76期), 8-9. [63] 陈计, 《几何不等式》书评, 数学通讯, 1992年第5期, (总第250期), 40. [64] 陈计, Janous猜想的简单证明, 数学通讯, 1992年第9期(总第254期), 16-17. [65] 陈计, 泰国提供给第31届IMO的预选题2创作的一些看法, 数学通讯, 1992年第10期(总第255期), 39-40. [66] 陈计, 一个三角不等式的加强, 湖南数学通迅, 1992年第6期(总第71期), 27, 7. [67] 陈计, 一个三角不等式的加强, 中学数学(武汉), 1992年第8期(总第126期), 23-24. [68] 陈计, 关于三角形的一个不等式的新证, 中学数学(武汉), 1992年第10期(总第128期), 33. [69] 陈计, 两个新发现的三角不等式, 中学数学(武汉), 1992年第12期(总第130期), 21. [70] 陈计, 一个几何不等式的加强, 中学数学(苏州), 1992年第10期(总第113期), 20. [71] 陈计, 关于三角形的不等式族, 中学教研(数学版), 1992年第10期(总第139期), 29-30. [72] 陈计, 一个新的三角不等式, 中学教研(数学版), 1992年第12期(总第141期), 23-24. [73] 陈计, 王振, Neuberg-Pedoe不等式与Oppenheim不等式, 初等数学研究论文选, 上海教育出版社, 1992年10月第一版, 303-334. (定价:元) [74] 陈计, Erdos-Klamkin不等式的推广(英文), 宁波大学学报(理工版), 1993年第1期(总第11期), 98-100. [75] 王振, 陈计, OYZ不等式的初等证明, 宁波大学学报(理工版), 1993年第2期(总第12期), 25-27. [76] 王振, 陈计, 三角形角平分线的平方和, 中学教研(数学版), 1993年第1期(总第142期), 34-36. [77] 陈计, 谈一个三角不等式的加强及其它, 中学教研(数学版), 1993年第7期(总第148期), 29-30. [78] 陈计, 两个三角形不等式链的加细, 中学教研(数学版), 1993年第11期(总第152期), 15-17. [79] 何明秋, 陈计, 平面凸图形内n点问题, 中学教研(数学版), 1993年第12期(总第153期), 23-24. [80] 陈计, 一个三角不等式的加强, 数学通讯, 1993年第1期(总第258期), 22-23. [81] 陈计, 从Garfunkel的猜想谈起, 数学通讯, 1993年第9期(总第266期), 22-23. [82] 陈计, 两个新的三角不等式, 上海中学数学, 1993年第2期, 37-38. [83] 陈计, 一个新的三角形不等式链, 中学数学(武汉), 1993年第2期(总第132期), 2, 22. [84] 陈计, 何明秋, 三角形内八点问题, 中学数学(武汉), 1993年第8期(总第138期), 26-27. [85] 王振, 陈计, Mitrinovic-Djakovic不等式的另一个扩展(英文), 数学季刊, 1993年第3期, 108-110. [86] 陈计, 王振, 广义Heron平均和幂平均的不等式, 成都大学学报(自然科学版), 1993年第4期(总第28期), 6-8. [87] 王振, 陈计, 一个三角形不等式的再加强(研究简讯40), 湖南数学通讯, 1993年第6期(总第77期), 39. [88] 陈计, 关于一个几何不等式的探讨(一), 福建中学数学, 1993年第6期(总第82期), 10-11. [89] 陈计, 王振, 最初几个Heilbronn数的计算, 福建省初等数学研究文集, 福建教育出版社, 1993年7月第一版, 49-53. (定价: 元) [90] 陈计, 胡波, 指数平均和幂平均的樊畿型不等式, 福建省初等数学研究文集, 福建教育出版社, 1993年7月第一版, 53-56. [91] Ji Chen, Xei-Zhi Yang, On A. Zirakzadeh inequality to the triangles inscribed one inthe other, Univ. Beograd. Publ. Elektrotehn. Fak., Ser.: Mat., 4 (1993), 25-27. [92] 陈计, 王振,一个分析不等式的反向,宁波大学学报(理工版), 1994年第1期(总第13期),13-15. [93] 陈计, Bager第二图的改进,宁波大学学报(理工版),1994年第2期(总第14期), 10-15. [94] 陈计,余切和下界的改进, 福建中学数学, 1994年第1期(总第83期), 12. [95] 陈计, 黄军华,两个三角不等式的加细, 湖南数学通讯, 1994年第1期(总第78期), 44-45. [96] 黄军华,陈计,一个三角不等式链的加细(研究简讯56), 湖南数学通讯, 1994年第5期(总第82期), 44-45. [97] 王振,陈计,第25届IMO第1题的讨论,数学通讯,1994年第1期(总第270期), 33-34. [98] 陈计,王振,Neuberg-Pedoe不等式的四面体推广, 数学通讯, 1994年第2期(总第271期),22-24. [99] 陈计,对一个三角形不等式的加细(标题文摘), 数学通讯,1994年第6期(总第275期), 22. [100]陈计,两个三角形不等式的加细(标题文摘), 数学通讯,1994年第6期(总第275期), 22-23. [101]陈计, 关于∑sin3A-∑cos3A的下界,数学通讯, 1994年第10期(总第279期), 25-26. [102]陈琦, 陈计,凸图形和覆盖问题, 中学数学(武汉), 1994年第3期(总第145期), 33-36. [103]陈计, 关于Carlitz-Klamkin不等式,中学数学教学(合肥), 1994年第6期(总第90期), 41. [104]王振, 陈计,两个猜想不等式的加强及其它, 中学教研(数学版), 1994年第7-8期(总第160期), 51-53. [105]陈计,一个几何不等式的别证, 初中生数学学习, 1994年第7-8期(总第117-118期), 67. [106]王振, 陈计, 从一道Putnam竞赛题谈起,数学竞赛, 第18辑, 湖南教育出版社, 1994年4月第一版, 27-32. (定价: 元) [107]陈计,从三角形的圆心距谈起, 数学竞赛, 第19辑, 湖南教育出版社, 1994年4月第一版, 82-87. (定价: 元) [108]陈计, 王振,一个三角形不等式族的完善, 数学竞赛, 第21辑, 湖南教育出版社, 1994年4月第一版, 105-112. (定价:元) [109]王振, 陈计,一个三角不等式的简证及应用, 宁波大学学报(理工版), 1995年第1期(总第15期),70-72. [110]陈计,季文,某些分析不等式的矩阵类似,宁波大学学报(理工版), 1995年第3期(总第17期),21-26. [111]石世昌, 陈计,三元二次初等对称平均对幂平均的分隔及其应用,成都大学学报(自然科学版), 1995年第2期(总第34期),2-8. [112]陈计, 王振,Garfunkel-Kuczma循环不等式的推广, 安徽教育学院(自然科学版),1995年第2期(总第62期), 8-10. [113]陈计,关于三角形的一个不等式, 中学数学(武汉), 1995年第3期(总第157期),34. [114]陈计,关于四边形旁切圆半径的不等式, 福建中学数学,1995年第3期(总第89期), 10-11. [115]王振, 陈计,初等对称函数的一个不等式, 湖南数学年刊(国际奥林匹克数学专辑),(1995),(Summary ),3-5. [116]陈计,关于三角形重心的垂足三角形, 湖南数学年刊(国际奥林匹克数学专辑),(1995),(Summary ),42-44. [117]陈计,几个樊畿型不等式, 湖南数学通讯, 1995年第5期(总第88期), 30-32. [118]陈计,一道全俄数学奥林匹克试题的推广与改进,数学通讯,1995年第9期(总第290期), 28-29. [119]陈计, 单墫,一个角平分线不等式的推广, 数学通讯, 1995年第11期(总第292期),17-18. [120]朱再宇, 陈计,关于锐角三角形的一个不等式,中国中学数学教师优秀论文集(第二卷),贵州教育出版社, 1995年5月第一版, 177-178. (定价:元) [121]Zhen Wang, Ji Chen, Another extension of the Mitrinovic-Dokovic inequality, Univ. . Elektrotehn. Fak., Ser.: Mat., 6 (1995), 25-28. [122]陈计,有关四面体的一个不等式的加强, 中学数学教学(合肥),1996年第1期(总第97期), 36. [123]陈计,关于中线的若干估计(研究简讯), 湖南数学通讯,1996年第1期(总第90期), 39. [124]陈计, 王振, Oppenheim不等式推广的简单证明,数学研究与评论, Vol. 16 (1996), No. 1, 62-64;几何不等式在中国, 江苏教育出版社, 1996年9月,第一版, 213-217. [125]陈计, 庞火茂, 陈聪杰,角平分线构成的三角形, 数学通讯, 1996年第3期(总第296期), 29-31. [126]陈琦, 陈计,关于三角形半径的一个不等式链,中国中学数学教师优秀论文集(第三卷),内蒙古人民出版社, 1996年3月第一版, 95-96. (定价:元) [127]王振, 陈计, 互补型Ky Fan不等式的推广, 初等数学前沿(第一辑),江苏教育出版社, 1996年4月第一版, 56-69. (定价:元) [128]王振, 陈计, Zirakzadeh不等式的推广,初等数学前沿(第一辑), 江苏教育出版社, 1996年4月第一版, 104-111. [129]王巧林, 陈计, 叶中豪,编后记, 初等数学前沿(第一辑), 江苏教育出版社, 1996年4月第一版, 470-471. [130]陈计, 陈聪杰,三角形中的线性不等式, 几何不等式在中国, 江苏教育出版社, 1996年9月第一版, 87-110. (定价:元) [131]陈计, 陈聪杰,三角形中的负一次不等式, 几何不等式在中国, 江苏教育出版社, 1996年9月第一版, 111-121. [132]Zhen Wang, Ji Chen, Guang-Xing Li, A generalization of the Ky Fan inequality, Univ. Beograd. Publ. Elektrotehn. Fak., Ser.: Mat., 7 (1996), 9-17. [133]陈计, 庞火茂, Bager第三图的完善, 宁波大学学报(理工版),1997年第1期(总第23期), 12-15. [134]王振, 陈计, 盛宓杰,Bager第四图的完善,宁波大学学报(理工版),1997年第3期(总第25期),74-78. [135]陈计, 陈聪杰, Bager第五图的完善,宁波大学学报(理工版),1997年第4期(总第26期), 49-55. [136] 陈计, 王振,一个三角形不等式的推广和加强,成都大学学报(自然科学版),1998年第2期(总第46期), 1-5. [137]陈计, 夏时洪,虞立军,Bager第六图的完善,宁波大学学报(理工版), 1998年第3期(总第29期),52-56. [138] 陈计,黄勇,夏时洪,关于Neuberg-Pedoe不等式高维推广的一个注记, 四川大学学报(自然科学版), 1999年第2期(总第128期), 197-200. [139] 许康华,陈计,Euclid平面上8点间的不同距离,宁波大学学报(理工版), 1999年第4期(总第34期), 16-22. [140] 陈计,通用数学软件及其网址,科学,1999年(第51卷)第5期,61-62. [141] 田廷彦,陈计,凸四边形的边长与直径的不等式,宁波大学学报(理工版), 2000年第2期(总第36期), 43-47. [142] 陈计,量词对7种联结词的分配律 --计算机自动推理的1个实例,宁波大学学报(理工版), 2001年第3期(总第41期),60-63.[143] 季潮丞, 陈计, 一道越南竞赛题的推广, 中学教研(数学版), 2007年第6期, 44-45. [144] 季潮丞, 陈计, Gordon不等式的推广, 中学教研(数学版), 2008年第5期, 48. [145] 季潮丞, 陈计, 浅谈不等式与恒等式的关系, 中学教研(数学版), 2009年第12期,26-28. 陈计翻译的文著目录 [1] Albert W. Marshall, Ingram Olkin 著; 陈计, 曹冬极 译; 张在明 校,不等式优超方法引论, 玉溪师专学报(自然科学版),1989年第4期(总第23期), 86-101. [2] R. E. Woodrow 编选; 陈计提供, 初等数学问题选, 福建省初等数学研究文集, 福建教育出版社, 1993年7月第一版, 235-242. [3] H. Harborth, A. Kemnitz著,陈计 编译,Fibonacci三角形, 数学通讯, 1994年第5期(总第274期),41-42. [4] S. Vajda著, 陈计 编译,广义Fibonacci数列简介, 数学通讯, 1994年第12期(总第281期), 24-25. [5] O. Bottema著, 陈聪杰,陈计, 陈胜利 译, 关于R, r与s的不等式, 初等数学前沿(第一辑), 江苏教育出版社, 1996年4月第一版,378-391. (定价: 元) 陈计指导的学生论文目录 [1] 杨任尔, 曹冬极, 对数平均的推广(英文), 宁波大学学报(理工版), 1989年第2期(总第4期), 105-108. [2] 王呈斌, 章建成, 关于SOP数的估计, 宁波大学学报(理工版), 1990年第2期(总第6期), 125-129. [3] 连加志, Garfunkel-Kuczma不等式的多边形推广, 数学通讯, 1992年第1期(总第246期), 22-23. [4] 徐一萍, 反调和平均与幂平均的Ky Fan型不等式(英文), 成都大学学报(自然科学版), 1992年第2期(总第22期), 10-12. [5] 杨任尔, 一个三角形不等式的加强, 数学通讯, 1992年第11期(总第256期), 20-21. [6] 杨任尔, Child不等式与Kooistra不等式的加强, 初等数学研究论文选, 上海教育出版社, 1992年10月第一版, 359-364. [7] 丁义明, 再谈自生数, 数学通讯, 1993年第4期(总第261期), 35-36. [8] 丁义明, 自守数, 宁波大学学报(理工版), 1993年第2期(总第12期), 39-48. [9] 陈聪杰,一个几何问题的解与推广, 宁波大学学报(理工版), 1995年第3期(总第17期),76-78. [10] 丁义明, 裘伟平,连加志, Kaprekar映射周期轨的衍生性, 初等数学前沿(第一辑), 江苏教育出版社, 1996年第一版,24-47.
以下是 无 为大家整理的关于高中优秀议论文:不等式的文章,希望大家能够喜欢! 自古以来,就有了名副其实、名实相符、实至名归等成语,似乎名与实二者本应构成联系,也就是说,有其实当享其名,有其名当具其实。但是现实世界中,二者却又时常分离,各行其道。无奈,世间阴错阳差的事从来就有。就像成语中也有名实相背、名不副实、名存实亡一样,名与实之间时常构成不等式关系。 有实无名,这是一种让人惋惜的情况。而历,确实不缺少这类人和事。曹雪芹就是如此,他晚年“蓬牖茅椽,绳床瓦灶”,生活穷困潦倒,无人知他是谁,然而他用心血铸就的《红楼梦》,却立起了小说创作的一座丰碑,成为古代小说的杰出代表,其成就令后人叹为观止。凡高的作品现在可以拍卖至几千万美元,但是他生前在别人眼中却不过个疯子,最后无奈自杀,自己残杀了自己高贵的灵魂!卡夫卡去世后,他的作品被高度赞扬,被赋予了各种美誉。但是生前呢?他不过是个无名的作家,谁也不会多瞧他一眼。 人们对这类实绩高于、大于、重于声誉的现象,多持肯定态度,也就是说,人们赞成多做实事少说空话,人们需要脚踏实地,干出实绩。但仔细一想,这种名不副实仍是一种不等式。不等式就意味着有某一方吃亏,不是理想状态。人们之所以对此褒奖肯定,在某种程度上是出于对当事者的同情和敬意。 还有另一种名不副实,那就是有名无实。样的人和事,我们似乎见得更多。如今的文坛、书画圈中,花钱进展览、投机入协会、钻营入典集、遍地是大师之类现象屡见不鲜,说到底是弄虚作假。正像商家广告常干的把戏,把广告词当作粉脂,专拣好的往脸上涂抹,不厌其多,不厌其厚,而实质呢,往往叫人失望的多。社会允许竞争,人们本可通过“争实”而获得声誉,可就偏有人直奔结果而来,即直接“争名”,而不管“实”了。这正如排队中的加塞,你认为他没有守规矩,他却认为自己找到了捷径。 名作家名演员多起来是好事,但他们中几部作品几部戏一经闻名,这些人士的其他作品也随名而振,随风而飘,以至于一些金玉其外、败絮其中式的低劣作品,也被自我吹嘘或他人捧场为“当代佳作”、“空前绝后”。有一部“满纸荒唐言,多为**事”的长篇小说,未付样时就被“称誉”为“当代《红楼梦》”,真是造名有术而名实相背远矣! 例如郭敬明,自从《幻城》名声大躁以后,他的其他作品也跟着大受欢迎。实际上,仔细品读,那些不过是一个关在家里幻想的疯子写出来的除了能让人感动一时的作品!可是,他偏偏十分受欢迎。还有什么可爱淘,董羡妮…… 名对人的诱惑是相当大的,因此有人忙于逐名,为名所累。名也能惑众,美名的背后,有时另有勾当,使人上当。因此我们在察人观物上,不能徒信其名,而要擦亮眼睛,仔细看看盛名之下,名能副实否。 惟名不惟实,只能浪得虚名,这是逐利和图虚的产物。惟名是一种伪币,依靠虚伪流通,而最终落脚在利益上。实至名归,这种既取实又取名的作法,则是坦诚的,问心无愧的,同时也不做作,不虚伪。通过奋斗、依靠成绩获取声名,人们是不会反对的,社会是会认同的。这样的情况应该是多多益善。 因此,我们这一代人更应该脚踏实地,同时要敢于奋斗,敢于竞争,为名与实画上一个等号!
学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!
↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓
★ 数学应用数学毕业论文 ★
★ 大学生数学毕业论文 ★
★ 大学毕业论文评语大全 ★
★ 毕业论文答辩致谢词10篇 ★
中学数学论文题目
1、用面积思想 方法 解题
2、向量空间与矩阵
3、向量空间与等价关系
4、代数中美学思想新探
5、谈在数学中数学情景的创设
6、数学 创新思维 及其培养
7、用函数奇偶性解题
8、用方程思想方法解题
9、用数形结合思想方法解题
10、浅谈数学教学中的幽默风趣
11、中学数学教学与女中学生发展
12、论代数中同构思想在解题中的应用
13、论教师的人格魅力
14、论农村中小学数学 教育
15、论师范院校数学教育
16、数学在母校的发展
17、数学学习兴趣的激发和培养
18、谈新课程理念下的数学教师角色的转变
19、数学新课程教材教学探索
20、利用函数单调性解题
21、数学毕业论文题目汇总
22、浅谈中学数学教学中学生能力的培养
23、变异思维与学生的创新精神
24、试论数学中的美学
25、数学课堂中的提问艺术
26、不等式的证明方法
27、数列问题研究
28、复数方程的解法
29、函数最值方法研究
30、图象法在中学数学中的应用
31、近年来高考命题研究
32、边数最少的自然图的构造
33、向量线性相关性讨论
34、组合数学在中学数学中的应用
35、函数最值研究
36、中学数学符号浅谈
37、论数学交流能力培养(数学语言、图形、 符号等)
38、探影响解决数学问题的心理因素
39、数学后进学生的心理分析
40、生活中处处有数学
41、数学毕业论文题目汇总
42、生活中的数学
43、欧几里得第五公设产生背景及对数学发展影响
44、略谈我国古代的数学成就
45、论数学史的教育价值
46、课程改革与数学教师
47、数学差生非智力因素的分析及对策
48、高考应用问题研究
49、“数形结合”思想在竞赛中的应用
50、浅谈数学的 文化 价值
51、浅谈数学中的对称美
52、三阶幻方性质的探究
53、试谈数学竞赛中的对称性
54、学竞赛中的信息型问题探究
55、柯西不等式分析
56、中国剩余定理应用
57、不定方程的研究
58、一些数学思维方法的证明
59、分类讨论思想在中学数学中的应用
60、生活数学文化分析
数学研究生论文题目推荐
1、混杂随机时滞微分方程的稳定性与可控性
2、多目标单元构建技术在圆锯片生产企业的应用研究
3、基于区间直觉模糊集的多属性群决策研究
4、排队论在交通控制系统中的应用研究
5、若干类新形式的预条件迭代法的收敛性研究
6、高职微积分教学引入数学文化的实践研究
7、分数阶微分方程的Hyers-Ulam稳定性
8、三维面板数据模型的序列相关检验
9、半参数近似因子模型中的高维协方差矩阵估计
10、高职院校高等数学教学改革研究
11、若干模型的分位数变量选择
12、若干变点模型的 经验 似然推断
13、基于Navier-Stokes方程的图像处理与应用研究
14、基于ESMD方法的模态统计特征研究
15、基于复杂网络的影响力节点识别算法的研究
16、基于不确定信息一致性及相关问题研究
17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究
18、广义时变脉冲系统的时域控制
19、正六边形铺砌上H-三角形边界H-点数的研究
20、外来物种入侵的广义生物经济系统建模与控制
21、具有较少顶点个数的有限群元阶素图
22、基于支持向量机的混合时间序列模型的研究与应用
23、基于Copula函数的某些金融风险的研究
24、基于智能算法的时间序列预测方法研究
25、基于Copula函数的非寿险多元索赔准备金评估方法的研究
26、具有五个顶点的共轭类类长图
27、刚体系统的优化方法数值模拟
28、基于差分进化算法的多准则决策问题研究
29、广义切换系统的指数稳定与H_∞控制问题研究
30、基于神经网络的混沌时间序列研究与应用
31、具有较少顶点的共轭类长素图
32、两类共扰食饵-捕食者模型的动力学行为分析
33、复杂网络社团划分及城市公交网络研究
34、在线核极限学习机的改进与应用研究
35、共振微分方程边值问题正解存在性的研究
36、几类非线性离散系统的自适应控制算法设计
37、数据维数约简及分类算法研究
38、几类非线性不确定系统的自适应模糊控制研究
39、区间二型TSK模糊逻辑系统的混合学习算法的研究
40、基于节点调用关系的软件执行网络结构特征分析
41、基于复杂网络的软件网络关键节点挖掘算法研究
42、圈图谱半径问题研究
43、非线性状态约束系统的自适应控制方法研究
44、多维power-normal分布及其参数估计问题的研究
45、旋流式系统的混沌仿真及其控制与同步研究
46、具有可选服务的M/M/1排队系统驱动的流模型
47、动力系统的混沌反控制与同步研究
48、载流矩形薄板在磁场中的随机分岔
49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制
50、带有非线性功能响应函数的食饵-捕食系统的研究
51、基于观测器的饱和时滞广义系统的鲁棒控制
52、高职数学课程培养学生关键技能的研究
53、基于生存分析和似然理论的数控机床可靠性评估方法研究
54、面向不完全数据的疲劳可靠性分析方法研究
55、带平方根俘获率的可变生物种群模型的稳定性研究
56、一类非线性分数阶动力系统混沌同步控制研究
57、带有不耐烦顾客的M/M/m排队系统的顾客损失率
58、小波方法求解三类变分数阶微积分问题研究
59、乘积空间上拓扑度和不动点指数的计算及其应用
60、浓度对流扩散方程高精度并行格式的构造及其应用
专业微积分数学论文题目
1、一元微积分概念教学的设计研究
2、基于分数阶微积分的飞航式导弹控制系统设计方法研究
3、分数阶微积分运算数字滤波器设计与电路实现及其应用
4、分数阶微积分在现代信号分析与处理中应用的研究
5、广义分数阶微积分中若干问题的研究
6、分数阶微积分及其在粘弹性材料和控制理论中的应用
7、Riemann-Liouville分数阶微积分及其性质证明
8、中学微积分的教与学研究
9、高中数学教科书中微积分的变迁研究
10、HPM视域下的高中微积分教学研究
11、基于分数阶微积分理论的控制器设计及应用
12、微积分在高中数学教学中的作用
13、高中微积分的教学策略研究
14、高中微积分教学中数学史的渗透
15、关于高中微积分的教学研究
16、微积分与中学数学的关联
17、中学微积分课程的教学研究
18、高中微积分课程内容选择的探索
19、高中微积分教学研究
20、高中微积分教学现状的调查与分析
21、微分方程理论中的若干问题
22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程
23、基于偏微分方程图像分割技术的研究
24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性
25、几类分数阶微分方程的数值方法研究
26、几类随机延迟微分方程的数值分析
27、微分求积法和微分求积单元法--原理与应用
28、基于偏微分方程的图像平滑与分割研究
29、小波与偏微分方程在图像处理中的应用研究
30、基于粒子群和微分进化的优化算法研究
31、基于变分问题和偏微分方程的图像处理技术研究
32、基于偏微分方程的图像去噪和增强研究
33、分数阶微分方程的理论分析与数值计算
34、基于偏微分方程的数字图象处理的研究
35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程
36、反射倒向随机微分方程及其在混合零和微分对策
37、基于偏微分方程的图像降噪和图像恢复研究
38、基于偏微分方程理论的机械故障诊断技术研究
39、几类分数阶微分方程和随机延迟微分方程数值解的研究
40、非零和随机微分博弈及相关的高维倒向随机微分方程
41、高中微积分教学中数学史的渗透
42、关于高中微积分的教学研究
43、微积分与中学数学的关联
44、中学微积分课程的教学研究
45、大学一年级学生对微积分基本概念的理解
46、中学微积分课程教学研究
47、中美两国高中数学教材中微积分内容的比较研究
48、高中生微积分知识理解现状的调查研究
49、高中微积分教学研究
50、中美高校微积分教材比较研究
51、分数阶微积分方程的一种数值解法
52、HPM视域下的高中微积分教学研究
53、高中微积分课程内容选择的探索
54、新课程理念下高中微积分教学设计研究
55、基于分数阶微积分的线控转向系统控制策略研究
56、基于分数阶微积分的数字图像去噪与增强算法研究
57、高中微积分教学现状的调查与分析
58、高三学生微积分认知状况的思维层次研究
59、分数微积分理论在车辆底盘控制中的应用研究
60、新课程理念下高中微积分课程的教育价值及其教学研究
新颖的数学论文题目有:
1、数学模型在解决实际问题中的作用。
2、中学数学中不等式的证明。
3、组合数学与中学数学。
4、构造方法在数学解题中的应用。
5、高中新教材中数学教学方法探讨。
6、组合数学恒等式的证明方法。
7、浅谈中学数学教育。
8、浅谈中学不等式的几何证明方法。
9、数学教育中学生创造性思维能力的培养。
10、高等数学在初等数学中的应用。
11、向量在几何中的应用。
12、情境认识在数学教学中的应用。
13、高中数学应用题的编制和一些解题方法。
14、浅谈反证法在中学教学中的应用。
15、探索证明线段相等的方法。
16、几个带参数的二阶边界值问题的正解的存在性研究。
17、关于丢番图方程1+x+y=z的一类特殊情况的研究。
18、变限积分函数的性质及应用。
19、有限集上函数的迭代及其应用。
20、小学课堂环境改着的行动研究。
21、网络环境下小学数学主题教学模式应用研究。
22、培养小学生数学学习兴趣的教学策略研究。
23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。
24、小学生数学创新思维的培养。
25、促进小学生数学课堂参与的数学策略研究。
26、使学生真正成为学习的主人。
27、改革课堂教学的着力点。
28、谈素质教育在小学数学教学中的实施。
29、素质教育与小学数学教育改革。
30、浅谈学生数学思维能力的培养。
在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考
数学在生活中的应用 数学是一门很有用的学科。早在远古时代,就有原始人“涉猎计数”与“结绳记事” 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们 购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便 利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门” ;运动场跑 道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定; 折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解 Rt 三角形有关知识的应 用。 因此我们的研究性课题是数学在生活中的运用,希望通过这次小研究,提高我们的数 学能力,能够在生活中自觉地运用数学知识。 结合高中知识:函数、不等式、数列等方面,我们上网查了资料相关资料,并结合自身生活 实际思考,整理归纳如下。 第一部分 函数的应用 我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、 对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关 系,因此代数中的函数知识是与生产实践及生活实际密切相关的。 一、一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。 当人们在社会生活中从事买卖特别是 消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。 例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往 往会为我们提供两种或多种付款方案或优惠办法。 这时我们应三思而后行, 深入发掘自己头 脑中的数学知识,做出明智的选择。俗话说: “从南京到北京,买的没有卖的精。 ”我们切不 可盲从,以免上了商家设下的小圈套,吃了眼前亏。 过年这几天和家人上街购物, 商家纷纷采取各种优惠措施, 我就运用自己的数学函数知 识精打细算了一次。 我去“好日子”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠, 这似乎很少见。更奇怪的是,居然有两种优惠方法: (1)卖一送一(即买一只茶壶送一只茶 杯)(2)打九折(即按购买总价的 90% 付款) ; 。其下还有前提条件是:购买茶壶 3 只以上 (茶壶 20 元/个,茶杯 5 元/个) 。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种 更便宜呢?我便很自然的联想到了函数关系式, 决心应用所学的函数知识, 运用解析法将此 问题解决。 我在纸上写道: 设某顾客买茶杯 x 只,付款 y 元,(x>3 且 x∈N),则 用第一种方法付款 y1=4×20+(x-4)×5=5x+60; 用第二种方法付款 y2=(20×4+5x)×90%=. 接着比较 y1y2 的相对大小. 设 d=y1-y2=5x+60-()=. 然后便要进行讨论: 当 d>0 时,>0,即 x>24; 当 d=0 时,x=24; 当 d<0 时,x<24. 综上所述,当所购茶杯多于 24 只时,法(2)省钱;恰好购买 24 只时,两种方法价格相等; 购买只数在 4—23 之间时,法(1)便宜. 可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜 绝了浪费,真是一举两得啊! 二、一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表示。 企业经营者经常依据这方面的知识预计企 业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益, 从而判断企业经济效益是否得到提高、 企业是否有被兼并的危险、 项目有无开发前景等问题。 常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。 三、三角函数的应用 三角函数的应用极其广泛,最简的也是最常见的一类——锐角三角函数的应用: “山林 绿化”问题。 在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地 树木间距保持一致。 (如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。 这便要用到锐角三角函数的知识。 第二部分 不等式的应用 日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两 类不等式的应用与其对应函数及方程的应用如出一辙, 而平均值不等式在生产生活中起到了 不容忽视的作用。下面,我们主要谈一下均值不等式和均值定理的应用。 在生产和建设中, 许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。 平均 值不等式知识在日常生活中的应用, 均值不等式和极值定理通常可有如下几方面的极其重要 的应用: (表后重点分析“包装罐设计”问题) 实践活动 已知条件 最优方案 解决办法 设计花坛绿地 周长或斜边 面积最大 极值定理一 经营成本 各项费用单价及销售量 成本最低 函数、极值定理二 车船票价设计 航行里程、限载人数、 票价最低 用极值定理二求出 速度、各项费用及相应 最低成本,再由此 比例关系 计算出最低票价 (票价=最低票价+ +平均利润) 包装罐设计 (见表后) (见表后) (见表后) 包装罐设计问题 1、 “白猫”洗衣粉桶 “白猫”洗衣粉桶的形状是等边圆柱(如右图所示) , 若容积一定且底面与侧面厚度一样,问高与底面半径是 什么关系时用料最省(即表面积最小)? 分析:容积一定=>лr h=V(定值) =>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2) ≥2л3 (r h) /4 =3 2лV (当且仅当 r =rh/2=>h=2r 时取等号), ∴应设计为 h=d 的等边圆柱体. 2、 “易拉罐”问题 圆柱体上下第半径为 R,高为 h,若体积为定值 V,且上下底 厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最 省(即表面积最小)? 分析:应用均值定理,同理可得 h=2d∴应设计为 h=2d 的圆柱体. 事实上, 不等式特别是均值不等式在生产实践中的应用远不止这些, 在这里就不一一列 举了。 第二部分 第二部分 数列的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人 口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。 重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大 地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知, 按揭货款 (公积金贷款) 中都实行按月等额还本付息。 这个等额数是如何得来的, 此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这 一问题的解决办法。 若贷款数额 a0 元,贷款月利率为 p,还款方式每月等额还本付息 a 元.设第 n 月还款后的本 金为 an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以 a1-a/p 为首项,1+p 为公比的等比数列。日常生活中一切有关 按揭货款的问题,均可根据此式计算。 研究总结 第三部分 研究总结这次研究运用数学知识解决实际问题给我们带来了许多发现和思考的愉快,这也正验证 了苏霍姆林斯基所说的: “在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是 一个发现者 、研究者、探索者。 ”这也正是研究性学习的意义所在。作为中学生,我们不仅 要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地 适应社会的发展和需要。 但这次研究性学习也有不足之处, 首先寒假大家联系不便, 也较难取得辅导老师的帮助, 我们想,毕竟高中所学数学知识有限,如果能在数学老师指导下,学习一些大学深入研究的 数学应用知识,可以更好的拓宽知识面,加深理解。其次,我们的生活和经济理财打交道较 少, 如果能结合学校的饭卡使用过程中的经济问题问题结合统计学知识, 调查出同学们的消 费水平,一些节俭消费的措施和手段,那数学知识就真的帮上大忙了。最后,希望学校能将 其他同学较为优秀的研究性学习成果进行展示,为我们提供借鉴。 高二(22)班 刘丽华 张晶晶 洪泓 曹静 沈彤 夏叶宁 潘玥
[1] 熊斌. Schur不等式和H�lder不等式及其应用[J]. 数学通讯, 2005,(15) [2] 段志强. 一个不等式的妙用[J]. 数学通讯, 2004,(17) [3] 赵国松, 张晓东. 一个Cordon型不等式[J]. 许昌学院学报, 2004,(05) [4] 刘宁超. of multiply from i=1 to n (ai+bi) ≥{n~1/[ multiply from i=1 to n (ai)] +n~1/[multiply from i=1 to n (bi)]}~n的证明推广及应用[J]. 阜阳师范学院学报(自然科学版), 1997,(03) [5] 佟成军. 一个不等式的加强及证明[J]. 数学通讯, 2006,(07) [6] 曾峰. 一个不等式的证明及应用[J]. 中学课程辅导(初二版), 2005,(02) [7] 黄长风. 联想证明不等式[J]. 数学教学研究, 2005,(03) [8] 李歆. 不等式a~2+b~2≥2ab的几个推论及应用[J]. 中学生数学, 2005,(05) [9] 方辉. 浅谈哥西不等式的应用[J]. 黄山学院学报, 1997,(01) [10] 孔小波, 孙文迪. 权方和不等式的改进及其姊妹不等式[J]. 数学通报, 2008,(11)
有呀,汉斯的应用数学进展这本刊上的文献就是呀,你有时间可以去看看呐
可以,主要应该写一下不等式的证明方法有哪些?分一下类,对每一类都进行展开说明。并且要好好总结一下,在写得有点深度,这样应该就没问题了。
初等 教育 是整个国民教育的基础,初等教育质量的高低影响着新一代 儿童 的素质发展,同时也影响着我国整体教育水平的发展。下面是我为大家整理的关于初等教育的论文,供大家参考。
初等教育(理科)专业对学生的培养目标是:掌握初等教育(理科)专业知识和专业技能,具有现代教育理念和一定的教育教学研究能力,能够胜任小学数学和小学科学课程教育教学工作的、一专多能的大学专科学历教师。那么如何围绕这一目标做好课程设置呢?本文将试做探析。
初等教育专业课程设置综合化当前师范专科学校在办学过程中课程设置中存在着一些困难和不足,主要表现在:一是专业目标定位不准。为了招生需要,往往把专业的定位拔高,名不符实,较少关注全体师范生的全面培养。二是课程设置缺乏合作举措。小教师资的培养与小学联系不紧密,没有合作 措施 ,共同教研活动很少,许多方案闭门造车。三是技能课程训练不够。学生基本功训练大多数是应付式的作业,纸上谈兵,缺乏行之有效的考核机制。四是课程内容老化陈旧,本科化倾向严重,开发校本教材的政策和措施不多,教师没有针对性教学的积极性,实际教学效果不佳。为此,笔者从课程设置的原则和重点、课程体系构建的过程序以及课程基本体系谈谈一些体会。
一、课程设置的原则
1.思想性原则,即坚持科学理论的指导并注重科学性与思想性的统一,注重学生正确的人生观、世界观和良好师德的培养,注重完善学生的人格结构。
2.师范性原则,即课程设置必须紧紧围绕小学教育、教学实际需要,突出小学教育的特点,坚持为小学教育服务的方向。
3.综合性原则,初等教育专业课程设置应注重学科之间的相互渗透,这不仅包括文理之间的相互渗透,也包括文科各学科和理科各学科之间的相互渗透,以培养教师全面化、多样化,一专多能的素质。
4.实践性原则,课程设置应注重学生的专业知识水准和从教实践能力的提高,使学生既具备坚实的专业知识基础,又具备良好的从教实践能力,并通过实践将知识内化为教师素质。
5.前瞻性原则,课程结构体系应具备适当的弹性和超前性,以满足现代社会快速发展的需要。
二、课程设置的重点
1.课程设置要强化小学教师专业化水平,突出小学教师综合培养。
(1)课程设置要全面化、多样化
课程设置要全面考虑小学教师综合技能及与小学生的沟通及照顾其成长的能力。小学教师除了需具备宽厚基础课程的相关知识,精通任教科目,还要求具有进行教学实践、与人沟通和参与社会竞争的能力。主要体现在职业知识、职业实践、职业关系三个方面。
(2)课程设置要综合化、弹性化
小学教师要有广泛的知识,在课程设置方 面相 对多样化、弹性化。给学生提供较大的选择空间,强调综合性,具有弹性,学生可以通过多种方式选修到自己感兴趣的学科。
重视学科的交叉设置,为师范生成为小学教师所需的广博的综合 文化 知识打下坚实的基础。专业教育课程要重视实践能力的培养,有效促成教师专业化成长。克服通识课程内容相对狭窄、观点陈旧,实践性不强,教育类课程内容普遍抽象,缺乏实践性的缺点。重视师范生综合素质的培养、教师实践能力的培养。
2.课程设置要重视教学实践能力的培养
(1)建立大学与小学长期合作关系
建立大学与小学长期合作关系是教师专业化的有效手段。联系周边的所有小学,与他们建立长期的合作,由大学教师和小学一线教师共同培养师范生,增加在小学进行的专业课程,加强师范生对小学情况包括小学每个年级的年龄特征的了解。让师范生在实践中发现问题,解决问题。
(2)重视教学实践能力的培养
注重实践能力的培养是提高教师整体素质的必由之路。加大实践实习在师范课程体系中的比重。加强教育见习、实习,小学教师的培养过程中,首先,保证实习时间,优化实习内容,让学生参与到实习学校的一切活动中,包括教研活动、班级管理、教工大会等。其次,进行分段实习,将实习贯穿于每个学期的教学中,这样不仅有利于学生在连续的实践过程中逐步认识小学教师职业,还能使学生有时间对其教学体验和感悟进行消化。
三、课程体系的构建过程
1.组建由专业带头人、骨干教师和兼职教师构成的课程体系建设团队。
2.调研、分析专业定位、岗位能力,写出分析 报告 ,提出对应课程模块。
3.依据专业定位,设计岗位需求的课程内容。根据专业知识、岗位能力、素质结构,设置课程及实践教学项目。
4.根据小学理科教师的职业素质、能力要求、国家教育改革与发展的政策和趋势,分解支撑该能力的知识点,制定相应的课程教学大纲、教学计划、考核标准,形成职业能力评价与考核标准与实施办法。
四、课程体系的基本结构
根据培养目标和初等教育(理科)专业“以能力形成为主线”的要求,确立构建如下合理、健全的初等教育专业课程体系与结构。
1.学年课程分布体系
(1)三年制高中 毕业 起点学生:学年为理论课(含校内实践课)+学年为校外实践课,即。
(2)五年制初中毕业起点学生:2学年为高中课程+学年为大专理论课(含校内实践课)+学年为校外实践课,即2+。
2.必、选课程体系
必修课程达到“理论够用”目的;选修课程达到“知识面广”目的。
3.课程模块体系
(1)理论课程模块:公共课(基本素质课程)、专业课(专业基础课、核心主干课、其他主干课)、职业素质课(职业基本素质课、教师基本技艺课)三类六模块课程体系。
(2)校内外实践课程模块:实验课、综合训练课、教育见习课、教育实习课和教育调查课共五类实践课程模块体系。
4.理论实践课程比体系
逐渐提高实践课程比例,达到“技术精湛”目的。实践课程占总课时的。
5.选修方向课程体系
在完成专业必须的基本知识、基础理论和基本技能课程后,设立若干个专业选修方向供学生选择,拓宽学生在小学教学的教学空间。
参考文献:
[1]高应东.学前教育三年建设方案(2013-2015年).
[2]王智秋.小学教育专业人才培养模式的研究与探索.教育研究,2007,(5).
[3]惠中.高等师范教育体系中小学教育专业建设的思考[J].高等师范教育研究,2003,(2):35-41.
[4]高璐.经济欠发达地区小学教育专业的定位与发展[J].教育理论与实践,2005,(3):30-32.
[5]王万良.小学数学教育与小学教育专业数学课程设计[J].课程・教材・教法,2006,(1):77-80.
[6]郭黎岩.发达国家小学教师培养的 经验 研究.比较教育研究,2007,(11):27
摘要:职业教育是培养应用型人才和具有一定文化水平和专业知识技能的劳动者。高等职业教育的发展使得我们必将教师这一特殊职业技能岗位的教育纳 入职 业教育的思考范畴。本文在职业教育的思想下讨论了初等教育专业的特性,并根据职业特性对小学教师的培养提出了几点思考。
关键词:职业教育 职业特性 初等教育
中图分类号:G712 文献标识码:C DOI:
职业教育是让受教育者获得职业或生产劳动所需要的职业知识、技能和职业道德的教育。与普通教育和成人教育相比较,职业教育侧重于实践技能和实际工作能力的培养。目前,我国的职业教育类专业大都采用“工学结合、校企合作、顶岗实习”的培养模式,每年培养数十万的职业类人才。传统认为,初等教育是属于普通教育下的师范教育,尽管有着知识积累与传承的这层特殊面纱,使得教师教育带有普通教育的知识特点,但是这无法遮掩“教师”是一个特殊职业技能岗位,也无法回避我们必将用职业教育的视角来看待教师教育。
1 初等教育专业的职业特性
职业教育的特性是其“职业性”,其基本内涵是“职业导向”。职业教育成效如何取决于它所培养的人才能否胜任其面临的岗位。我国初等教育专业所培养的大多是面向小学及教育岗位的人才。专家认为学前教育的主要职业特性是保育,是小学教育的前奏;中学教育的主要职业特性是学科教育,是小学教育的后续篇章;小学教育是两者的衔接,其低学段具有一定的保育性,高学段具有一定的学科教育性,它不仅要传递知识,更为重要的在于把握儿童成长的方向,不仅要保证儿童掌握基本知识和技能,而且更要帮助儿童学会学习,注重培养儿童的社会意识、创造能力、合作精神以及对 自然科学知识 的兴趣等,为其今后一生的可持续学习,成为开放的、具有全球视野的人打下基础。因此,促进小学生养成良好的品德与学习习惯是小学教育的基本目标。由此而言,养成性成为初等教育的主要职业特性。
2 职业特性对教师的要求
小学教师以小学生的教育为己任,而不仅仅以小学学科知识的传授为己任。小学生教育过程中育人是目的,知识的传授是手段。养成性作为初等教育的主要职业特性决定了初等教育的重心在于养成教育,这要求养成教育的执行者――小学教师必须具备以下素养:
知识体系――全科发展
职业视野下的小学教师知识结构与其职业对象密不可分。小学教师的职业对象是小学生。就认知特点来看,小学生的思维感知技能等方面都处于迅速发展的阶段。无论多么复杂的新事物,小学生都可以将其作为整体逐步同化纳入自己的认知体系进而掌握事物的整体特征。这一阶段的儿童不会像成人一样面对新鲜事物就立即将事物划分为各个零部件,了解零部件之后再加以整合进而认识新事物,小学生认识世界的过程是综合的整体的。美国卡内基教学促进基金会前主席波伊尔也曾指出初等教育区别于学前教育、中等教育、高等教育的最基本要素就是联系:人与人是互相联系的,各门课程与知识是互相联系的,课堂内容与文娱生活是互相联系的,学习与学生生活是互相联系的。因此,小学阶段需要有全科型教师对学生进行全方面知识的讲授,这有利于教师引导其更加全面发展的同时加强对学生整体素质的把握。目前,不少国家实行全科小学教师即是一个有力的佐证。
教学技能――知识传授的保证
目前,中国的教师国编招考政策允许综合型大学的学生通过统一考试进入教育行列。而教育专业的学生有别于其他专业学生的特殊性之一是学生在校期间的接受了专门的教学技能培养。初等教育专业定性在教育,决定了初等教育专业培养的学生必须通晓教育理论,熟练教学实践技能。当前,无论是国外还是国内,对职前教育培养都加强了实践教学教育。大多数采用2+1的培养模式和院-校合作的方式。但是小学教师的职业技能与中学教育技能不同,小学生模仿能力强,有很强的向师性,教师往往是学生的榜样,因此教师的教学技能必须规范。其次,理论研究和实践经验都表明,教育对象越是低龄,对教师的教育教学技能性和艺术性要求越高。儿童知觉过程的直觉性,使他们喜欢教师采用直观的教学呈现方式进行教学。因为儿童记忆的具体形象性,使他们更容易记住那些形象生动的事物。另外,儿童思维想象的独特性和情感的易感染性和弥散性等心理特点也都使得他们特别喜欢艺术活动。这些都要求小学教师在教学过程中,能结合小学生的心理特点,借助图片、声音、影像等生动活泼的载体,必要时辅之以儿歌、 童谣 、舞蹈、 简笔画 等形式帮助学生加深对知识的理解,并吸引学生的注意力,提高课堂效果。
职业的认识
教师职业是一种特殊的职业,是一种用生命感动生命,用心灵去浇灌心灵的职业。作为小学教师的初等教育专业毕业生对小学生的影响可以说是终身的,他们的工作态度,有时甚至一个随意的动作、一个不经意的眼神,都会在小学生们幼嫩的心里激起阵阵涟漪。小学教师的培养应该强调文化底蕴、通识教育、养成教育,使之具有较高的职业水准,使他们深刻认识什么叫教育,什么叫孩子,什么是初等教育,明确初等教育的养成教育意识,懂得养成教育的原理与 方法 ,这样才能促进他们的学生养成良好品德、良好习惯,才可能促进其生命的健康成长,真正实现对人的教育意义。
参考文献:
[1]陈莹.“职业性”:德国职业教育本质特征之研究[D].华东师范大学,2012.
[2]刘慧.初等教育学学科:高师小学教育专业的学科基础[J].课程・教材・教法,2011,(5).
[3]王佳艺.全科型小学教师培养的必要性及其途径[J].湖南第一师范大学学报,2012,(2).
[4]国家中长期教育改革和发展规划纲要2010-2020[EB/OL]..
[5]刘春玲.论小学教育专业学生应具备的语文教学技能[J].赤峰学院学报,2008,(8).
[6]司成勇.当代小学教育专业教师职业技能训练的内容、途径与策略[J].当代教师教育,2009,(9).
[7]雅斯贝尔斯著,邹进译.什么是教育[M].三联书店,1991.
[8]夏小林.初等教育专业毕业生素质问题研究[D].华中师范大学,2008.
关于初等教育的论文相关 文章 :
1. 有关初等教育毕业论文
2. 浅谈初等教育毕业论文范文
3. 初等教育专业论文参考
4. 初等教育毕业论文
5. 初等教育论文范文
6. 浅谈基础教育毕业论文范文
毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。
本科数学毕业论文题目
★浅谈奥数竟赛的利与弊
★浅谈中学数学中数形结合的思想
★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学
★中数教学研究
★XXX课程网上教学系统分析与设计
★数学CAI课件开发研究
★中等职业学校数学教学改革研究与探讨
★中等职业学校数学教学设计研究
★中等职业学校中外数学教学的比较研究
★中等职业学校数学教材研究
★关于数学学科案例教学法的探讨
★中外著名数学家学术思想探讨
★试论数学美
★数学中的研究性学习
★数字危机
★中学数学中的化归方法
★高斯分布的启示
★a二+b二≧二ab的变形推广及应用
★网络优化
★泰勒公式及其应用
★浅谈中学数学中的反证法
★数学选择题的利和弊
★浅谈计算机辅助数学教学
★论研究性学习
★浅谈发展数学思维的学习方法
★关于整系数多项式有理根的几个定理及求解方法
★数学教学中课堂提问的误区与对策
★怎样发掘数学题中的隐含条件
★数学概念探索式教学
★从一个实际问题谈概率统计教学
★教学媒体在数学教学中的作用
★数学问题解决及其教学
★数学概念课的特征及教学原则
★数学美与解题
★创造性思维能力的培养和数学教学
★教材顺序的教学过程设计创新
★排列组合问题的探讨
★浅谈初中数学教材的思考
★整除在数学应用中的探索
★浅谈协作机制在数学教学中的运用
★课堂标准与数学课堂教学的研究与实践
★浅谈研究性学习在数学教学中的渗透与实践
★关于现代中学数学教育的思考
★在中学数学教学中教材的使用
★情境教学的认识与实践
★浅谈初中代数中的二次函数
★略论数学教育创新与数学素质提高
★高中数学“分层教学”的初探与实践
★在中学数学课堂教学中如何培养学生的创新思维
★中小学数学的教学衔接与教法初探
★如何在初中数学教学中进行思想方法的渗透
★培养学生创新思维全面推进课程改革
★数学问题解决活动中的反思
★数学:让我们合理猜想
★如何优化数学课堂教学
★中学数学教学中的创造性思维的培养
★浅谈数学教学中的“问题情境”
★市场经济中的蛛网模型
★中学数学教学设计前期分析的研究
★数学课堂差异教学
★一种函数方程的解法
★浅析数学教学与创新教育
★数学文化的核心—数学思想与数学方法
★漫话探究性问题之解法
★浅论数学教学的策略
★当前初中数学教学存在的问题及其对策
★例谈用“构造法”证明不等式
★数学研究性学习的探索与实践
★数学教学中创新思维的培养
★数学教育中的科学人文精神
★教学媒体在数学教学中的应用
★“三角形的积化和差”课例大家评
★谈谈类比法
★直觉思维在解题中的应用
★数学几种课型的问题设计
★数学教学中的情境创设
★在探索中发展学生的创新思维
★精心设计习题提高教学质量
★对数学教育现状的分析与建议
★创设情景教学生猜想
★反思教学中的一题多解
★在不等式教学中培养学生的探究思维能力
★浅谈数学学法指导
★中学生数学能力的培养
★数学探究性活动的内容形式及教学设计
★浅谈数学学习兴趣的培养
★浅谈课堂教学的师生互动
★新世纪对初中数学的教材的思考
★数学教学的现代研究
★关于学生数学能力培养的几点设想
★在数学教学中培养学生创新能力的尝试
★积分中值定理的再讨论
★二阶变系数齐次微分方程的求解问题
★浅谈培养学生的空间想象能力
★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育
★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计
★培养学生学习数学的兴趣
★课堂教学与素质教育探讨
★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施
★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题
★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣
★数学教学中探究性学习策略
★论数学课堂教学的语言艺术
★数学概念的教与学
★优化课堂教学推进素质教育
★数学教学中的情商因素
★浅谈创新教育
★培养学生的数学兴趣的实施途径
★论数学学法指导
★学生能力在数学教学中的培养
★浅论数学直觉思维及培养
★论数学学法指导
★优化课堂教学焕发课堂活力
★浅谈高初中数学教学衔接
★如何搞好数学教育教学研究
★浅谈线性变换的对角化问题
本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。
1数学建模在煤矿安全生产中的意义
在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。
只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。
2煤矿生产计划的优化方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。
基于数学模型的方法
(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。
(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。
基于人工智能方法
(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。
(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。
3煤矿安全生产中数学模型的优化建立
根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。
建立简化模型
模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。
很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式
式中x2---B工作面瓦斯体积分数;
u2---B工作面采煤进度;
w1---B矿井所对应的空气流速;
w2---相邻A工作面的空气流速;
a2、b2、c2、d2---未知量系数。
CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】
式中x3、x4---C、D工作面的瓦斯体积分数;
e1、e2---A、B工作面的瓦斯体积分数;
a3、b3、c3、d3---未知量系数:
f1、f2---A、B工作面的瓦斯绝对涌出量。
系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。
模型的转型及其离散化
因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】
在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。
依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。
模型的应用效果及降低瓦斯体积分数的措施
以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。
综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。
4结语
应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。
参考文献:
[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.
[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.
[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.
给你个提示吧,自己看看能不能用毕业论文是我院工商管理专业人才培养计划的重要组成部分,是学生进行专业综合训练,强化专业技能、能力的重要教学环节,也是学生获得毕业证书的必要条件,对提高学生综合职业素质,确保人才培养质量具有重要意义。 工商专业学生撰写毕业论文的主要目的是: 1、培养学生综合运用工商管理知识和相关专业知识分析问题和解决问题,达到学以致用的目的。 2、检查学生对所学专业理论知识和基本技能的掌握程度,并将论文成绩作为学生能否毕业的主要依据之一。 3、学生根据选定的题目,搜集相关资料,开展调查研究,培养学生理论联系实际,增强独立思考问题与解决问题的能力。 4、学生通过毕业论文的写作,训练专业研究文章的写作能力,学会并运用专业文献资料的检索技术与方法,专业分析、调查和研究的技术与方法。 二、毕业论文写作的程序与步骤 (一)动员准备 1、由学院教务处、管理系组织召开按规定可以进入毕业论文准备阶段的学生参加的毕业论文写作动员会,介绍学生与指导教师见面。学院邀请专家讲解毕业论文写作基本规范与要求。 2、学生自选与系安排结合,确定指导教师。指导教师指导学生在校进行相关资料、文献、参考书阅读与学习,确定写作及选题方向。 (二)选题开题 在指导教师的帮助下,学生根据本指导书提供的选题范围(见附件),从中选择论文题目方向。 学生提交开题报告,提交500字论文写作提纲,指导教师审查提纲,提出修改意见,指导教师与学生确定论文写作进程。 选题时要注意: 1、本指导书给出的课题仅仅是论文选题的方向,供学生参考之用,并非指定题目; 2、如选择其它课题,可以和指导教师讨论确定; 3、非专业方面的内容不宜作为论文选题; 4、选题应该是自己比较熟悉、资料占有比较多、和自己的社会实践、实习联系密切的题目。 5、论文题目一经选定,不得随意变动。如特殊原因确需变动,应征得指导教师的同意。 (三)实习调研及论文写作 学生由学院统一安排到 “好又多”成都亚太店进行专业实习与调查研究。其间,学生应有重点地、有针对性地搜集资料、调查分析。实习调研期间必须保持与指导教师的联系并定期沟通,并在指导教师的指导下,在规定时间完成初稿。 (四)论文定稿 论文辅导的时间由指导教师和学生讨论确定。每个学生应主动和教师取得联系,并根据事先安排的辅导时间和地点,准时参加辅导。指导教师对每位学生的指导、辅导时间不少于12学时。指导教师应指导学生规范论文格式,督促学生按时提交论文定稿及读书、调研笔记和其他相关原始资料。 (五)论文成绩与论文答辩 指导教师依据学院制定的毕业论文成绩评定标准,评阅学生毕业论文、评估毕业论文写作期间综合情况,并提出初评成绩。系指导小组共同讨论确定论文的最后成绩。 凡指导教师初评建议毕业论文成绩为优秀的学生,应按规定的时间和要求参加答辩。 论文答辩程序如下: 1、按规定的顺序参加答辩 2、每位答辩人答辩自述时间约为20分钟,答辩教师组提问5—10分钟,答辩人回答问题5-10分钟。 3、答辩教师组共同讨论确定答辩论文的最后成绩。 三、毕业论文体例和成文要求 毕业论文包括:封面、目录、内容摘要、关键词、正文、参考文献、致谢、附件。
简单,给钱,给你个千字质量论文
你的电影方面论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。毕业论文怎么写?毕业设计和毕业论文是本科生培养方案中的重要环节。学生通过毕业论文,综合性地运用几年内所学知识去分析、解决一个问题,在作毕业论文的过程中,所学知识得到疏理和运用,它既是一次检阅,又是一次锻炼。不少学生在作完毕业设计后,感到自己的实践动手、动笔能力得到锻炼,增强了即将跨入社会去竞争,去创造的自信心。这里仅将我们教研室老师近年指导本科毕业生论文中的体会整理出来,希望能对学生毕业论文有所帮助。选择一个相关的题目,应该是你感兴趣并且和你所学的专业相关的。进行文献检索,查找有关这个主题的所有研究成果,并且进行深入的研究。在广泛的吸收别人的成果的同时,思考自己在这个问题上的观点和看法,这是你能做的最重要的一步。参考科技论文的写作规范,先写出大纲,再增加内容形成草稿,反复修改,最后定稿。需要注意地问题: 标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。毕业论文的标题一般分为总标题、副标题、分标题几种。一般说来,篇幅较长的毕业论文,都没有分标题。设置分标题的论文,因其内容的层次较多,整个理论体系较庞大、复杂,故通常设目录。参考文献又叫参考书目,它是指作者在撰写毕业论文过程中所查阅参考过的著作和报刊杂志,它应列在毕业论文的末尾。列出参考文献有三个好处:一是当作者本人发现引文有差错时,便于查找校正。二是可以使毕业论文答辩委员会的教师了解学生阅读资料的广度,作为审查毕业论文的一种参考依据。三是便于研究同类问题的读者查阅相关的观点和材料。
我的回答没那么多费话你在百度搜索打上四个字母IMDB``一定能照到你电影类毕业论文合适的东西``