首页 > 毕业论文 > 乙醇连续精馏毕业论文

乙醇连续精馏毕业论文

发布时间:

乙醇连续精馏毕业论文

通常工业用的的乙醇不能直 接用蒸馏法制取无水乙醇,因乙醇和的水形成恒沸点混合物。要把水除去,第一步是加入氧化钙(生石灰)煮沸回流,使乙醇中的水与生石灰作 用生成氢氧化钙,然后再将无水乙醇蒸出。这样得到无水乙醇,纯度最高越。纯度更高的无水乙醇可用金属镁或金属钠进行处理在250ml的圆底烧瓶中,放置干燥纯净的镁条,乙醇,装上回流冷凝管,并在冷凝管上附加一只无水氯化钙干燥管。在沸水浴或用火直接加热使达微沸,移去热源,立刻加入几粒碘片(此时注意不要振荡),顷刻即在碘粒附近发生作用,最后可以达到相当剧烈的程度。有时作用太慢则需要加热,如果在加碘后,作用仍不开始,则可再加入数粒碘(一般的将,乙醇与镁作用是缓慢的,如所用乙醇含水量超过则作用尤其困难)。待全部镁已经作用完毕后,加入乙醇和几粒沸石。回流1h,蒸馏,产物收存于玻璃瓶中,用一橡皮塞或磨口塞塞住。 [color=red]②[/color] [color=red]用金属钠制取。[/color] 装置和操作同①,在250ml圆底烧瓶中,放置2g金属钠和100ml纯度至少为的乙醇,加入几粒沸石。加热回流300min后,加入4g邻苯二甲酸二乙脂,再回流10min。取下冷凝管改成蒸馏装置,按收集无水乙醇的要求进行蒸馏。产品储于带有磨口塞或橡皮塞的容器中。 [b] [color=red]检验乙醇是否有水分,常用的方法是:取一支干燥试管,加入制得的绝对乙醇1 mL,随即加入少量无水硫酸铜粉末。如乙醇中含水分,则无水硫酸铜变为蓝色硫酸铜。

一、实验目的:⑴了解蒸馏提纯液体有机物的原理、用途。⑵掌握蒸馏提纯液体有机物的操作步骤。⑶了解沸点测定的方法和意义。二、实验原理(参照本章)三、仪器与药品⑴仪器100ml圆底烧瓶 100ml锥形瓶 蒸馏头 接液管 30cm直型冷凝管 150℃温度计200ml量筒 乳胶管 沸石 热源等⑵药品乙醇水溶液(乙醇:水=60:40) 95%的乙醇[1]四、实验步骤:⑴仪器的安装安装的顺序从热源开始,按自下而上、自左至右的方法。高度以热源为准。各固定的铁夹位置应以蒸馏头与冷凝管连接成一直线为宜。冷凝管的进水口应在靠近接收管的一端,完整的仪器装置图见2-5。安装过程中要特别注意:各仪器接口要用凡士林密封;铁夹以夹住仪器又能轻微转动为宜。不可让铁夹的铁柄接触到玻璃仪器,以防损坏仪器;整个装置安装好后要做到端正,使之从正面和侧面观察,全套仪器的各部分都在同一平面。⑵蒸馏操作①加料将60%乙醇水溶液60ml通过长颈漏斗倒入圆底烧瓶中,再加入2-3粒沸石,按图2-5安好装置,接通冷凝水[2]。若蒸馏液体很粘稠或含有很多固体物质,加热时易发生局部过热和暴沸,此时沸石失效。可选用油浴加热。②加热开始加热时可大火加热,温度上升较快,开始沸腾后,蒸汽缓慢上升,温度计读数增加。当蒸汽包围水银球时,温度计读数急速上升,记录第一滴馏出液进入接收器时的温度[3]。此时调节热源,使水银球上始终有液滴,并与周围蒸汽达到平衡,此时的温度即为沸点。③收集馏出液在液体达到沸点时,控制加热,使流出液滴的速度为每秒钟1-2滴。当温度计读数稳定时,另换接收器收集记录下各馏分的温度范围和体积。95%乙醇馏分最多应为77-79℃。在保持加热程度的情况下,不再有馏分且温度突然下降时,应立即停止加热。记下最后一滴液体进入接收器时的温度。关冷凝水,计算产率。要求:a.测定所给乙醇的浓度。b.收集前馏分和77℃~ 79℃的馏分。c.记录乙醇的沸程。d.测定收集的乙醇浓度和残留液的浓度。本实验约需要4小时五、附 注[1]蒸馏法只能提纯到95%的乙醇,因为乙醇和水形成恒沸化合物(沸点℃),若要制得无水乙醇,需用生石灰、金属钠或镁条法等化学方法。[2]接通冷凝水应从下口入水,上口出水,方可达到最好的冷凝效果。[3]加热记录温度时,热源温度不能太高或太低。太高会在圆底烧瓶中出现过热现象,使温度计读数偏高;太低,温度及水银球周围蒸汽短时中断,使温度计读数偏低或不规则。

a.吸收.95-98肠硫酸和乙烯在塔式反应器内逆流通过.操作温度}a},压力为1 . 3----:s'_VIPao未反应的乙烯由最后1台吸收塔放出,经过碱洗作为燃料气或回到乙烯装置进料系统。 b‘水解.吸收液和水进入加水分解器,使硫酸二乙酷进行水解。操作温度so--}o } ,在此温度下,硫酸氢乙醋水解缓慢。水解器的接触时间约z。分钟。加入水解器的水量约为吸收液的倍(重量)口二乙醋水解以后,水解液混合物加热到}s0},恒温i小时,使单酚水解。实质上汽提塔相当于第二水解器口在汽提塔内,,用水蒸汽汽提,使乙醇与乙醚从稀酸中蒸出。经碱洗、冷凝,送入精馏工段.塔底稀酸送往酸提浓工段。 C.精馏。在乙醚塔分馏出乙醚后,乙醚塔釜液送往提纯塔,提纯塔塔顶蒸出9B帕〔体积)的乙醇产品. d.稀酸提浓。稀硫酸的提浓是费用昂贵的操作,亦是造成设备腐蚀的主要原因。稀硫酸经两级真空蒸发系统送往再沸器,把酸浓度提高到9U帕,然后用1U3呱的发烟硫酸掺和,使硫酸含量达到86-88%, 水解‘精馏和稀酸提浓都存在设备} }.',问题,一般设备材质都是低碳钢衬以青铅、祖成 (b)提纯.稀乙1}溶液进入脱轻组分塔中部,塔顶加入水,洗涤稀乙醇蒸气,塔一顶流出的乙醛、乙醚及循环气都进入水合系统以抑制醛、醚的生成.塔底稀乙醇溶液引出后,一部分经汽化返回脱轻组分塔,一部分送往精馏塔。合格的乙醇从精馏塔上部侧线抽出经冷凝送往成品槽. 高沸点物进入辅助精馏塔,在乙醇完全蒸出后,由塔底排出集中处理。 精馏塔废水由塔底抽出,一部分作洗涤塔和轻组分塔的洗涤水,另一部分则排入下水道。 经过精馏得到的乙醇,浓度最高只能达到,为乙醇和水共沸混合物。实验室中要制备无水乙醇时,可将肠乙醇与生石灰(Ca0)共热、蒸得}o乙醇,再用镁处理,除去微量水分而得到”,95肠乙醇。工业上无水乙醇的制法是:在95 . fi呱的乙醉中加入一定量的苯,进行蒸馏,先蒸出的是苯、乙醇和水的三元共沸物(沸点64. 85 `},含苯肠,乙醉肠,水肠),然后蒸出苯和乙醇的二元共沸物(沸点8}.25},乙醇肠,苯肠),最后得到无水乙醇(沸点 0 , (c)工艺条件 ①温度。最佳温度在于乙醇生成速率达到最大值,温度太低:乙烯转化率受催化剂活性限制而偏低,温度太高,反应受平衡限制。、 ②压力。增加压力,使乙醇生成速度增加,但也会加速聚合物的生成,因而压力的增加有一定的限度. ③乙烯与水的比例。乙烯与水的克分子比值高有利于乙烯的转化。 ④空速,体积空速增加,乙醉的产率也增加,但相对来说循环操作费用也有所增加。 ⑥原料乙烯浓度,乙烯浓度越高,对反应越有利.常用聚合级纯度的乙烯作原料,但从经济性考虑亦可采用8} }乙烯作原料。以上节选自《有机化工原料第二卷》。如果想得到PDF版的,请于联系。

乙醇的连续精馏毕业论文

1、降低萃取剂损耗的同时也降低了能耗。2、很好的提高了无水乙醇的产品质量。

a.吸收.95-98肠硫酸和乙烯在塔式反应器内逆流通过.操作温度}a},压力为1 . 3----:s'_VIPao未反应的乙烯由最后1台吸收塔放出,经过碱洗作为燃料气或回到乙烯装置进料系统。 b‘水解.吸收液和水进入加水分解器,使硫酸二乙酷进行水解。操作温度so--}o } ,在此温度下,硫酸氢乙醋水解缓慢。水解器的接触时间约z。分钟。加入水解器的水量约为吸收液的倍(重量)口二乙醋水解以后,水解液混合物加热到}s0},恒温i小时,使单酚水解。实质上汽提塔相当于第二水解器口在汽提塔内,,用水蒸汽汽提,使乙醇与乙醚从稀酸中蒸出。经碱洗、冷凝,送入精馏工段.塔底稀酸送往酸提浓工段。 C.精馏。在乙醚塔分馏出乙醚后,乙醚塔釜液送往提纯塔,提纯塔塔顶蒸出9B帕〔体积)的乙醇产品. d.稀酸提浓。稀硫酸的提浓是费用昂贵的操作,亦是造成设备腐蚀的主要原因。稀硫酸经两级真空蒸发系统送往再沸器,把酸浓度提高到9U帕,然后用1U3呱的发烟硫酸掺和,使硫酸含量达到86-88%, 水解‘精馏和稀酸提浓都存在设备} }.',问题,一般设备材质都是低碳钢衬以青铅、祖成 (b)提纯.稀乙1}溶液进入脱轻组分塔中部,塔顶加入水,洗涤稀乙醇蒸气,塔一顶流出的乙醛、乙醚及循环气都进入水合系统以抑制醛、醚的生成.塔底稀乙醇溶液引出后,一部分经汽化返回脱轻组分塔,一部分送往精馏塔。合格的乙醇从精馏塔上部侧线抽出经冷凝送往成品槽. 高沸点物进入辅助精馏塔,在乙醇完全蒸出后,由塔底排出集中处理。 精馏塔废水由塔底抽出,一部分作洗涤塔和轻组分塔的洗涤水,另一部分则排入下水道。 经过精馏得到的乙醇,浓度最高只能达到,为乙醇和水共沸混合物。实验室中要制备无水乙醇时,可将肠乙醇与生石灰(Ca0)共热、蒸得}o乙醇,再用镁处理,除去微量水分而得到”,95肠乙醇。工业上无水乙醇的制法是:在95 . fi呱的乙醉中加入一定量的苯,进行蒸馏,先蒸出的是苯、乙醇和水的三元共沸物(沸点64. 85 `},含苯肠,乙醉肠,水肠),然后蒸出苯和乙醇的二元共沸物(沸点8}.25},乙醇肠,苯肠),最后得到无水乙醇(沸点 0 , (c)工艺条件 ①温度。最佳温度在于乙醇生成速率达到最大值,温度太低:乙烯转化率受催化剂活性限制而偏低,温度太高,反应受平衡限制。、 ②压力。增加压力,使乙醇生成速度增加,但也会加速聚合物的生成,因而压力的增加有一定的限度. ③乙烯与水的比例。乙烯与水的克分子比值高有利于乙烯的转化。 ④空速,体积空速增加,乙醉的产率也增加,但相对来说循环操作费用也有所增加。 ⑥原料乙烯浓度,乙烯浓度越高,对反应越有利.常用聚合级纯度的乙烯作原料,但从经济性考虑亦可采用8} }乙烯作原料。以上节选自《有机化工原料第二卷》。如果想得到PDF版的,请于联系。

实践总周数:2周 ;总学分:2学分。特别是化学工程与工艺的专业,设计设计步骤。1.性质、目的化工原理课程设计是化工原理教学的一个重要环节,是综合应用本门课程和有关先修课程所学知识,完成以单元操作为主的一次设计实践。通过课程设计使学生掌握化工设计的基本程序和方法,并在查阅技术资料、选用公式和数据、用简洁文字和图表表达设计结果、制图以及计算机辅助计算等能力方面得到一次基本训练,在设计过程中还应培养学生树立正确的设计思想和实事求是、严肃负责的工作作风。2.与其它教学环节或课程之间的先行后续关系本课程是化工原理课程教学的一个实践环节,是使学生得到化工设计的初步训练,为毕业设计奠定基础。3. 教学任务和教学基本内容围绕以某一典型单元设备(板式塔、填料塔、干燥器、蒸发器等)的设计为中心,训练学生非定型设备的设计和定型设备的选型能力。教学时数为2周,其基本内容为:(1)设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。(2)主要设备的工艺设计计算(含计算机辅助计算):物料衡算,能量衡量,工艺参数的选定,设备的结构设计和工艺尺寸的设计计算。(3)辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备的规格、型号的选定。(4)工艺流程图:以单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点。(5).主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。(6).设计说明书的编写。设计说明书的内容应包括:设计任务书,目录,设计方案简介,工艺计算及主要设备设计,辅助设备的计算和选型,设计结果汇总,设计评述,参考文献。整个设计由论述,计算和图表三个部分组成,论述应该条理清晰,观点明确;计算要求方法正确,误差小于设计要求,计算公式和所有数据必需注明出处;图表应能简要表达计算的结果。4. 教学基本要求通过课程设计学生应在下列几个方面得到较好的培养和训练:(1)查阅资料,选用公式和搜集数据的能力。通常设计任务书给出后,有许多数据需由设计者去搜集,有些物性参数要查取或估算,计算公式也由设计者自行选用,这就要求设计者运用各方面的知识,详细而全面的考虑后方能确定。(2)正确选用设计参数,树立从技术上可行和经济上合理两方面考虑的工程观点,同时还需考虑到操作维修的方便和环境保护的要求。也即对于课程设计不仅要求计算正确,还要求从工程的角度综合考虑各种因素,从总体上得到最佳结果。(3)正确、迅速地进行工程计算。设计计算是一个反复试算的过程,计算工作量很大,因此正确与迅速(含必要的编程能力)必需同时强调。(4)掌握化工设计的基本程序和方法,学会用简洁的文字和适当的图表表示自己的设计思想。5. 进行方式及时间安排在教师指导下集中两周时间完成,拟在第6 学期化工原理课程结束后进行 。6. 考核方式及成绩评定标准完成课程设计说明书,绘制主要设备工艺条件图(1张1号图)。课程设计说明书和图纸成绩占总成绩的80%,平时表现、出勤情况占总成绩的20%。7. 组织、要求和说明(1)本课程设计教学由化学工程与工艺教研室组织安排教师指导完成;(2)按基本要求至少应完成某一非定型设备的设计计算。(3)根据我校情况“化学工程与工艺”专业学生还应增作 “定型辅助设备的选用(在第5学期开设)”等内容。(4)此大纲的来源和参考大纲名称:本教学大纲是根据高等学校工科本科《化工原理》课程教学基本要求,并参照华东理工大学《化工原理教学大纲》,结合本校情况修订的。8.主要参考书1.大连理工大学化工原理教研室编《化工原理课程设计》,大连理工大学出版社,19942.柴诚敬等编《化工原理课程设计》,天津科学技术出版社,19943.国家医药管理局上海医药设计院编《化工工艺设计手册》(第二版),化学工业出版社,19964.《化学工程手册》编委会编《化学工程手册》(第二版),化学工业出版社,19965.卢焕章等《石油化工基础数据手册》,化学工业出版社,1982

晕,这种问题人家能回答也需要时间啊,而且你的要求那么高确只给那么点分数,也不知道多给点,至少要200分啊。

氯乙烯精馏毕业论文

氯乙烯单体(VCM)是生产聚氯乙烯的主要原料。氯乙烯单体生产过程反应机理复杂,反应过程具有非线性、不确定性和时变性,它具有一系列复杂化工反应过程的典型特性。目前我国氯乙烯生产的自动化水平很低,大多生产装置都处于手动控制和半自动控制状态,而对氯乙烯生产技术的研究大多着重于工艺性的研究,工艺研究和控制研究还没有有效地结合。如何提高控制水平,优化氯乙烯生产过程已经成为提高氯乙烯生产效率和产品质量的瓶颈。 本文在对氯乙烯生产工艺流程、机理特性深入了解分析的基础上,根据生产的工艺要求和控制要求,提出了生产过程优化方案以及氯乙烯生产过程集成控制系统整体方案设计,采用IPC+PLC+现场总线模块的形式,利用工业以太网技术,组成三层分布式控制系统;针对氯乙烯生产过程四个阶段之一的乙炔生产过程存在的“气柜”问题,提出了PFC-PID串级控制策略解决方案;针对氯乙烯转化过程存在的模型难以建立,转化温度难以控制的问题,采用支持向量机对氯乙烯转化过程进行建模,并将得到的支持向量机模型应用于非线性系统的预测控制,提出了基于支持向量机模型的非线性预测控制算法;最后采用Rsview32组态软件对氯乙烯生产过程进行了上位机组态设计。

真空操作可以降低塔内操作物料的泡点和露点,减少一些物料,尤其是热敏性物料在高温下发生化学反应产生杂质的机会。采用真空蒸馏可以减少杂质,提高氯乙烯的产品纯度。通过真空蒸馏塔的使用,相比于常压蒸馏,可以利用不同真空度下物料的沸点、相对挥发度的不同,提高分离效果。

氯乙烯的生产方法有电石法、二氯乙烷法等工艺,发展到目前世界上最先进的平衡氧氯化工艺。。。现在工业生产氯乙烯的主要方法。分三步进行:第一 步:乙烯氯化生成二氯乙烷;第二步二氯乙烷热裂解为氯乙烯及氯化氢;第三步乙烯、氯化氢和氧发生氧氯化反应生成二氯乙烷。 ①乙烯氯化乙烯和氯加成反应在液相中进行: CH2=CH2 Cl2→CH2ClCH2Cl 采用三氯化铁或氯化铜等作催化剂,产品二氯乙烷为反应介质。反应热可通过冷却水或产品二氯乙烷汽化来移出。反应温度40~110℃,压力~,乙烯的转化率和选择性均在99%以上。 ②二氯乙烷热裂解生成氯乙烯的反应式为: ClCH2CH2Cl─→CH2=CHCl+HCl 反应是强烈的吸热反应,在管式裂解炉中进行,反应温度500~550℃,压力~;控制二氯乙烷单程转化率为50%~70%,以抑制副反应的进行。主要副反应为: CH2=CHCl─→HC呏CH HCl CH2=CHCl HCl─→ClCH3CHCl ClCH2CH2Cl─→2C H2 2HCl 裂解产物进入淬冷塔,用循环的二氯乙烷冷却,以避免继续发生副反应。产物温度冷却到50~150℃后,进入脱氯化氢塔。塔底为氯乙烯和二氯乙烷的混合物,通过氯乙烯精馏塔精馏,由塔顶获得高纯度氯乙烯,塔底重组分主要为未反应的粗二氯乙烷,经精馏除去不纯物后,仍作热裂解原料。 ③氧氯化反应以载在γ-氧化铝上的氯化铜为催化剂,以碱金属或碱土金属盐为助催化剂。主反应式为: H2C=CH2+2HCL+O2→CLCH2CH2CL+H2O 主要副反应为乙烯的深度氧化(生成一氧化碳、二氧化碳和水)和氯乙烯的氧氯化(生成乙烷的多种氯化物)。反应温度200~230℃,压力~1MPa,原料乙烯、氯化氢、氧的摩尔比为 ~。反应器有固定床和流化床两种形式,固定床常用列管式反应器,管内填充颗粒状催化剂,原料乙烯、氯化氢与空气自上而下通过催化剂床层,管间用加压热水作热载体,以移走反应热,并副产压力1MPa的蒸汽。固定床反应器温度较难控制,为使有较合理的温度分布,常采用大量惰性气体作稀释剂,或在催化剂中掺入固体物质。二氯乙烷的选择性可达98%以上。在流化床反应器中进行乙烯氧氯化反应时,采用细颗粒催化剂,原料乙烯、氯化氢和空气分别由底部进入反应器,充分混合均匀后,通入催化剂层,并使催化剂处于流化状态,床内装有换热器,可有效地引出反应热。这种反应器反应温度均匀而易于控制,适宜于大规模生产,但反应器结构较复杂,催化剂磨损大。 由反应器出来的反应产物经水淬冷,再冷凝成液态粗二氯乙烷。冷凝器中未被冷凝的部分二氯乙烷及未转化的乙烯、惰性气体等经溶剂吸收等步骤回收其中二氯乙烷。所得粗二氯乙烷经精制后进入热解炉裂解。 乙烯氧氯化法的主要优点是利用二氯乙烷热裂解所产生的氯化氢作为氯化剂,从而使氯得到了完全利用。

甲醇精馏毕业论文目录

设计条件如下:操作压力: Kpa(绝对压力)进料热状况:泡点进料回流比:自定单板压降:≤ Kpa塔底加热蒸气压力: Kpa(表压)全塔效率:ET=47%建厂地址:宁夏[设计计算](一) 设计方案的确定本设计任务为分离甲醇-水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。(二) 精馏塔的物料衡算1、 原料液及塔顶、塔底产品的摩尔分率甲醇的摩尔质量:MA=32 Kg/Kmol 水的摩尔质量:MB=18 Kg/KmolxF=、 原料液及塔顶、塔底产品的平均摩尔质量MF= *32+*18= Kg/KmolMD= *32+*18= Kg/KmolMW= *32+*18= Kg/Kmol3、 物料衡算原料处理量:F=(*103)/ Kmol/h总物料衡算:甲醇物料衡算:***得D= Kmol/h W= Kmol/h(三) 塔板数的确定1、 理论板层数MT的求取甲醇-水属理想物系,可采用图解法求理论板层数①由手册查得甲醇-水物搦的气液平衡数据,绘出x-y图(附表)②求最小回流比及操作回流比

谁有道客巴巴帐号,借用下。。。。。

参考文献

[1] 崔衍立.城市污水处理常用方法比较研究[J].内江科技,2010.

[2] 殷实.浅谈活性污泥在废水处理中的应用[J].环境研究与监测,2010,(2) :23-24.

[3] 孙惠修.排水工程.第四版.北京:中国建筑工业出版社,1999:105-107.

[4] 苏振中.CODcr与BOD5的相关性研究[J].黑龙江环境通报,2010,34 (2):75-78.

[5] 顾凤妹.李秀霞.重铬酸钾法测定COD影响因素分析[J].小氮肥,2009,37 (3):18-20.

[6] 李国刚,王德龙.生化需氧量BOD测定方法综述[J].中国环境监测,2004,20 (2):54-57.

[7] 肖肖,陈英姿.BOD5测定的影响因素分析[J].化学工程与装备,2009,9:176-177.

[8] 王锐刚.活性污泥法除磷动力学研究[D].中国矿业大学环测学院,2009:9-11.

[9] 徐航.COD重铬酸钾分析法相关问题的探讨[J].化学工程与装备,2010,6: 171-172.

25万吨/年二甲醚精馏系统及二甲醚精馏塔设计

一、课题的目的与意义

二甲醚又称甲醚,简称DME,分 子 式:CH3OCH3 ,结 构 式:CH3—O—CH3 。二甲醚在常温常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃),熔点℃,沸点℃,室温下蒸气压约为,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为 1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。

二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,却具有神经毒性;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。

二甲醚作为一种基本化工原料,由于其良好的易压缩、冷凝、汽化特性,使得二甲醚在制药、燃料、农药等化学工业中有许多独特的用途。如高纯度的二甲醚可代替氟里昂用作气溶胶喷射剂和致冷剂,减少对大气环境的污染和臭氧层的破坏。由于其良好的水溶性、油溶性,使得其应用范围大大优于丙烷、丁烷等石油化学品。代替甲醇用作甲醛生产的新原料,可以明显降低甲醛生产成本,在大型甲醛装置中更显示出其优越性。作为民用燃料气其储运、燃烧安全性,预混气热值和理论燃烧温度等性能指标均优于石油液化气,可作为城市管道煤气的调峰气、液化气掺混气。也是柴油发动机的理想燃料,与甲醇燃料汽车相比,不存在汽车冷启动问题。它还是未来制取低碳烯烃的主要原料之一。由于石油资源短缺 、煤炭资源丰富及人们环保意识的增强,二甲醚作为从煤转化成的清洁燃料而日益受到重视,成为2010年来国内外竞相开发的性能优越的碳一化工产品。作为 LPG和石油类的替代燃料,二甲醚是具有与LPG的物理性质相类似的化学品,在燃烧时不会产生破坏环境的气体,能便宜而大量地生产。与甲烷一样,被期望成为21世纪的能源之一。

二、研究现状和前景展望

1.研究现状

目前DME的制取工艺有合成气一步法以及甲醇两步法,其中两步法包括甲醇液相法以及气相法。甲醇液相硫酸催化法和甲醇气相法制取二甲醚的生产技术较为成熟,两种方法均有工业装置运转。

甲醇脱水法以精甲醇为原料,脱水反应副产物少,二甲醚纯度高达99%,使用于有较高要求的气雾产品,也可以用作制冷剂或医用气雾剂的抛射剂5,且三废排放少。该工艺比较成熟,可以依托老企业建设新装置,也可单独建厂生产。但该方法要经过甲醇合成、甲醇精馏、甲醇脱水和二甲醚精馏等工艺,流程较长,因而设备投资大,产品成本高,受甲醇市场波动的影响也比较大。

合成气法生产二甲醚的生产工艺在淤浆床中,反应温度分布均匀,热平衡较易控制,操作简单且稳定性好,生产成本低。合成气法所用的合成气可由煤、重油、渣油气化以及天然气转化制得,原料经济易得,因而该工艺可用于化肥厂和甲醇厂。这些工厂可将甲醇装置适当改造用于生产二甲醚,形成规模生产。目前一步法生产二甲醚面临的关键问题是:需要高效低价的煤制气工艺及设备;需要能满足大型化二甲醚生产的反应器;解决以煤为原料制二甲醚生产过程中CO2的利用问题; 相关催化剂的开发与生产;成熟而经济的二甲醚分离提纯技术。

2.前景展望

目前,尽管二甲醚产品供大于求,二甲醚在推广应用上遇到一定的困难,但从以下几方面分析,总体上对二甲醚行业来讲是机遇大于挑战。

( 1) 在2009 年5 月18 日国务院办公厅下发的石化行业调整和振兴规划中,已将煤制二甲醚列为重点抓好的五类示范工程之一,说明利用煤炭高效清洁转化生产二甲醚已引起国家的高度重视。国家发改委发布的《关于加强煤化工项目建设管理,促进产业健康发展的通知》中要求一般不应批准规模在1 000 kt /a 以下的二甲醚项目,这对于遏制盲目扩张二甲醚产能、引导二甲醚产业有序发展、保持二甲醚市场的相对稳定将起到积极的作用。

( 2) 2010 年9 月2 日,中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理

委员会2010 年第4 号( 总第159 号) 文( 中华人民共和国国家标准批准发布公告) 联合批准发布了编号为GB 25035—2010 的《城镇燃气用二甲醚》国家标准,标准对二甲醚作为城镇燃气使用的质量要求、试验方法、检验规则、标志、包装、运输和储存提出了严格的规定,已于2011 年7 月1 日起实施。这使得二甲醚作为城镇燃气使用有法可循,二甲醚大规模进入民用燃气市场有了合法的身份。

( 3) 经国务院批准,财政部、税务总局联合发布通知,为支持和促进二甲醚的推广使用,自2008 年7 月1 日起,二甲醚按13% 的增值税税率征收增值税,税收上对二甲醚生产企业给予了一定的优惠。这意味着政府已加大对替代能源———二甲醚的扶持力度。

( 4) 随着二甲醚在城市公交车、出租车上的成功推广使用和相应配套设施的建立和完善,二甲醚需求量会大幅增加,将为二甲醚提供一个稳定的大市场。

( 5) 中国城市燃气协会二甲醚专业委员会的成立,对促进二甲醚作为城镇民用燃气的进程将发挥积极的作用。

( 6) 随着国际原油价格的疯涨,我国作为一个石油进口大国,无疑会带来较大的能源安全风险。在此情况下,国家发展和改革委办公厅[2006] 1404 号文已将发展二甲醚煤基醇醚燃料列为缓解石油供应短缺、高油价矛盾替代工作的重点,这无疑为二甲醚行业带来了良好的发展商机。

三、课题主要内容、拟解决的问题、研究特色和创新之处

1.主要内容

如图所示,甲醇经过处理后进入二甲醚合成塔中反应,得到的产物中主要含有二甲醚、甲醇以及水分,将产物送入二甲醚精馏塔中进行精馏分离。由于分离体系中的泡点的不同,二甲醚泡点最低,故得到的轻组分为二甲醚,从塔顶分离出来,而甲醇和水分则从塔底从来。重组分中含有大量的未被反应的甲醇,再送进甲醇回收塔中进行分离,得到较纯的甲醇再次循环利用。

本次毕业设计中应用的物料衡算是工艺设计的基础,根据所需设计项目的年产量,通过对全过程或单元过程的物料衡算,可以计算出原料的消耗量、副产品量及输出过程物料的损耗量等;并在此基础上作能量衡算,计算出蒸汽、水、电、煤或者其他燃料的消耗定额;最终可以根据这些计算确定所生成产品的技术经济指标。同时根据物料衡算所得的各单元设备的物流量及其组成、能量负荷及其等级,对生产设备和辅助设备进行选型或者设计,从而对过程所需设备的投资及其项目可行性进行估价。

2.需解决的问题

本次设计的流程有多种,根据对三废排放、节能节源的比较,选择工艺流程,并通过对精馏塔的比较以及对于经济效益的比较,选择本次精馏塔的类型,并且根据自己对整个流程的了解画出本设计的物料流程图,最后通过计算机绘制精馏工段的物料流程图、精馏设备的控制流程图、精馏塔的设备图、±平面的设备布置图;用A2图纸手工绘制二甲醚精馏工段的物料流程图、预塔冷却器的控制流程图、预塔冷却器的设备图、±平面的设备布置图。

3.特色和创新

本设计考虑到原料的充分利用,即将未被反应的甲醇通过回收循环利用,这样,既能减少原料的损耗,同时也符合经济效益。同时,被设计中二甲醚采用的是甲醇气相法,其优点:

生产二甲醚的原料可为精甲醇或粗甲醇, 蒸汽消耗和生产成本较低。

二甲醚反应器是列管式反应器,反应温度易控制,且催化剂在反应器中分布较均匀。

采用先进塔器内件和分离工艺, 回收效果好, 流程简化, 醇耗低。

四、研究方法、步骤和措施

查阅并收集与毕业设计内容相关的资料,认真总结,完成文献综述;同时根据文献综述的详细内容进行总结归纳,完成开题报告。

尝试通过ASPEN PLUS,对甲醇精馏流程进行全流程模拟;对单个设备预塔冷却器进行设计和模拟,并分析其操作影响因素从而得到一个较为可行性的优化方案。

对全流程进行物料衡算、能量衡算,并对所使用的换热器的设备尺寸进行计算,从而绘制工艺流程图。

五、参考文献

魏文德. 有机化工原料大全(第二卷)[M]. 北京:化学工业出版社. 1989:177

张正国. 二甲醚(DME)生产技术及传统工艺优化改造(J).气雾剂通讯,(3):1-3.

费金华,王一兆. 二甲醚的生产工艺及其特点(J). 小氮肥设计技术,2003,24(1):57-59

郭俊旺,牛玉琴. 浆态床合成气制二甲醚双功能催化剂的性能(J). 材料化学学报. 1998,26(4):321-325

Fu Yuchuan , Hong Tao , Chen Jieping .Surfaee Acidity and the Dehydration of Methanolto Dimethyl Ether .Thermochimiea Aeta .2005 , 434 ): 22 一2 6

朱炳辰, 化学反应工程.第四版. 北京: 化学工业出版社,

Lide D R. CRC Handbook of Chemistry and Physies .88thed. New York : CRC Press ,2007

Yaws C L. Chemical Properties Hand York : MeGraw 一HillBook Co ,

Deanjohn A. 兰氏化学手册. 魏俊发, 杨安运. 杨祖培等译.第二版. 北京: 科学出版社,2003 .1- 6

刘光启,马连湘,刘杰. 化学化工物性数据手册(有机卷) . 北京: 化学工业出版社, 一613

王守国, 邵允, 王元鸿等. 加压条件下负载型杂多酸复合催化剂催化甲醇脱水制备二甲醚.分子催化, 2001 ,15 (3) : 201 一2 05

慈志敏,储伟,谢在库等. 气相催化法甲醇脱水合成二甲醚的工艺和催化剂研究. 四川大学学报(工程科学版) , 2004 ,36 (1) : 28 一31

朱志渊, 李淑芳. 工业装置精馏高纯二甲醚最佳条件[ J ] . 天然气化工, 2000.

高占笙. 甲醇脱水制二甲醚及其分离精制[ J ] . 化肥工业,1993, ( 5) : 58- 61.

郑丹星, 金红光, 曹文等. 二甲醚分离工艺. CN 1513825 A,2004.

Voss Bodil , Joen sen F, Boegild J H . Preparation of fuel grade dimethyl ether. WO9623755, 1996.

Peng X D, Diamond B W, Robert T T , Lajjaram B B. Separationprocess f or one- step production of dimethyl ether from US6458856, 2002.

不知道你适合什么的,问问你的导师吧~~看看他的研究方向,说不定可以带你作作~~我自己都是结合导师的研究方向做的~~下面的你也可以参考下~~ M300D混合罐设计 残余应力测试技术与计算 聚丙烯酰胺制造工艺流程设计 门窗三性检测过程力学分析(2) 庆大霉素喷雾干燥工业化生产流程的设计 振动时效消除残余应力机理分析及试验研究 Φ1000氨合成塔的机械设计 M300D混合罐的设计(I) 4m3搅拌混合罐结构设计 门窗三性检测仪的计算机控制 可编程控制器在门窗三性检测仪上的应用 钢制压力容器设计——空气储罐设计 可编程控制器在门窗三性检测仪上的应用(2) 12m3混合罐的设计 φ800氨合成塔机械设计 带搅拌设备4M3的混合罐结构设计 陶瓷模用α型高强石膏生产工艺流程 压力容器设计——列管式换热器设计 α型高强半水石膏 工业化生产流程的设计 促动器的设计与分析 气辅注射成型的CAE设计与分析 精馏塔的优化设计 水泥添加剂混合罐的设计 门窗三性检测过程力学分析(1) 注塑模的设计与分析 甲醇精馏塔的优化设计 丙烯酰胺工业化生产流程设计

乙二醇精制工段毕业论文

1. 年产10万吨苯乙烯工艺初步设计 简介:(论文字数:13923,页数:46) 2. 亚硫酸生产工艺设计(1万吨年) 简介:(论文字数:12614,页数:43) 3. 乙醛生产工艺设计(8万吨/年) 简介:(论文字数:15666,页数:49) 4. 膜法除硝中淡盐水的预处理 简介:(论文字数:13025,页数:38) 5. 硫铁矿制硫酸工艺初步设计 简介:(论文字数:15149,页数:62) 6. 年产十万吨PVC中HCl工序的工艺设计 简介:(论文字数:14873,页数:34) 7. 年产10万吨乙炔洁净工艺设计 简介:(论文字数:13187,页数:34) 8. 年产10万吨乙炔工艺设计 简介:(论文字数:13024,页数:33) 9. 20万吨聚氯乙烯生产工艺 简介:(论文字数:19390,页数:44) 10. 脉冲激光沉积法(PLD)制备非晶态BZN薄膜的研究 简介:(论文字数:17096,页数:40) 11. 恒顺达生物能源有限公司安全评价报告 简介:(论文字数:13199,页数:31) 12. 克酮酸的合成研究 简介:(论文字数:8603,页数:23 ) 13. 全膜法工艺在热电厂锅炉补给水系统中的应用及研究 简介:(论文字数:13367,页数:26) 14. 100Kt/a硝基氯苯装置TPS系统工程设计 简介:(论文字数:21679,页数:57) 15. 新井设计 简介:(论文字数:34465,页数:78) 16. 五龙矿 新井采区设计 简介:(论文字数:20446,页数:42) 17. 年产五万吨合成氨变换工段工艺初步设计 简介:(论文字数:10346,页数:37) 18. 高聚物/碳纳米管复合材料研究进展 简介:(论文字数:6289,页数:16 ) 19. 木粉含量对PVC/木粉复合材料性能的影响 简介:(论文字数:5040,页数:11 ) 20. 喜树发根培养及培养基中次生代谢产物的研究 简介:(论文字数:14476,页数:29) 21. 虾下脚料制备多功能叶面肥的研究 简介:(论文字数:12168,页数:25) 22. 缩合型有机硅电子灌封材料交联体系研究 简介:(论文字数:20114,页数:40) 23. 棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究 简介:(论文字数:19997,页数:35) 24. 酶法双甘酯的制备 简介:(论文字数:19829,页数:36) 25. 硅酸锆的提纯毕业论文 简介:(论文字数:12630,页数:27) 26. 腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究 简介:(论文字数:31673,页数:49) 27. 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究 简介:(论文字数:20776 页数:43) 28. 铝合金阳极氧化及封闭处理 简介:(论文字数:25561,页数:51) 29. 贝氏体白口耐磨铸铁磨球的研究 简介:(正文字数:16247,页数:39) 30. 80KW等离子喷涂设备的调试与工艺试验 简介:(正文字数:18733,页数:37) 31. 2800NM3/h高温旋风除尘器开发设计 简介:(正文字数:14802,页数:58) 32. 玻纤增强材料注塑成型工艺特点的研究 简介:(论文字数:6984,页数:13 ) 33. 年处理30万吨铜选矿厂设计 简介:(论文字数:14063,页数:50) 34. 年处理60万吨铁选厂毕业设计 简介:(论文字数:13536,页数:54) 35. 广东省韶关市大宝山铜铁矿井下开采设计 简介:(论文字数:53605页数:140) 36. 日处理1750吨铅锌选矿厂设计 简介:(字数:37308,页数:89) 37. 6000t/a聚氯乙烯乙炔工段初步工艺设计 简介:(字数:26743,页数:61) 38. 年产50万吨焦炉鼓冷工段工艺设计 简介:(字数:33226,页数:49) 39. 年产25万吨合成氨铜洗工段工艺设计 简介:(字数:23904,页数:55) 40. PX装置异构化单元反应器进行自动控制系统设计 简介:(字数:17463,页数:53) 41. PX装置异构化单元脱庚烷塔自动控制系统设计 简介:(字数:22340,页数:54) 42. 金属纳米催化剂的制备及其对环己烷氧化性能的影响 简介:(字数:三万,页数:66 ) 43. 高温高压条件下浆态鼓泡床气液传质特性的研究 简介:(字数:25168.页数:60) 44. 新型纳米电子材料的特性、发展及应用 简介:(字数:8679.页数:10 ) 45. 发达国家安全生产监督管理体制的研究 简介:(字数:17272,页数:22) 46. 工伤保险与事故预防 简介:(字数:15867,页数:20) 47. 氯气生产与储存过程中危险性分析及其预防 简介:(字数:13643,页数:23) 48. 无公害农产品的发展与检测 简介:(字数:9767,页数:16 ) 49. 环氧乙烷工业设计 简介:(字数:20472,页数:67) 50. 年产21000吨乙醇水精馏装置工艺设计 简介:(字数:13464.页数:56) 51. 年产26000吨乙醇精馏装置设计 简介:(论文字数:10089,页数:55) 52. 高层大厦首层至屋面消防给水工程设计 简介:(论文字数:14582,页数:38) 53. 某市航空发动机组试车车间噪声控制设计 简介:(论文字数:11156,页数:36) 54. 一株源于厌氧除磷反应器NL菌的鉴定及活性研究 简介:(论文字数:12064,页数:28) 55. 一株新的短程反硝化聚磷菌的鉴定及活性研究 简介:(论文字数:10316,页数:30) 56. 广州地区酸雨特征及其与气象条件的关系 简介:(论文字数:9031,页数:19 ) 57. 超声协同硝酸提取城市污泥重金属的研究 简介:(论文字数:10981,页数:27) 58. 脱氨剂和铁碳法处理稀土废水氨氮的研究 简介:(论文字数:8209.页数:21 ) 59. 稀土超磁致伸缩材料扬声器研制 简介:(论文字数:19332,页数:29) 60. 纳米氧化铋的发展 简介:(论文字数:18508,页数:39) 61. 海泡石TiO2光敏催化剂的制备及其研究 简介:(论文字数:15350,页数:35) 62. 超磁致伸缩复合材料的制备 简介:(论文字数:22379,页数:35) 63. 钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文 简介:(论文字数:35682,页数:58) 64. APCVD法在硅基板上制备硅化钛纳米线 简介:(论文字数:18638,页数:36) 65. 浅层地热能在热水系统中的利用初探及其工程设计 简介:(论文字数:34502,页数:58) 66. 输配管网的软件开发 简介:(论文字数:24729,页数:59) 67.乙二醇乙醚乙酸酯的合成及分析 (字数:17018,页数:35) 68.四(m-氯苯基)卟啉及其锰络合物的合成 (字数:15464,页数:36)

制备乙二醇,主要有三条工艺路线:

1、直接法:

以煤气化制取合成气(CO+H2),再由合成气一步直接合成乙二醇。此技术的关键是催化剂的选择,在相当长的时期内难以实现工业化。

2、烯烃法:

以煤为原料,通过气化、变换、净化后得到合成气,经甲醇合成,甲醇制烯烃(MTO)得到乙烯,再经乙烯环氧化、环氧乙烷水合及产品精致最终得到乙二醇。

该过程将煤制烯烃与传统石油路线乙二醇相结合,技术较为成熟,但成本相对较高。

3、草酸酯法:

以煤为原料,通过气化、变换、净化及分离提纯后分别得到CO和H2,其中CO通过催化偶联合成及精制生产草酸酯,再经与H2进行加氢反应并通过精制后获得聚酯级乙二醇的过程。

健康危害:国内尚未见本品急慢性中毒报道。国外的急性中毒多系因误服。吸入中毒表现为反复发作性昏厥,并可有眼球震颤,淋巴细胞增多。

口服后急性中毒分三个阶段:

第一阶段主要为中枢神经系统症状,轻者似乙醇中毒表现,重者迅速产生昏迷抽搐,最后死亡;

第二阶段,心肺症状明显,严重病例可有肺水肿,支气管肺炎,心力衰竭;

第三阶段主要表现为不同程度肾功能衰竭。人的本品一次口服致死量估计为()。

急救措施皮肤接触:

脱去污染的衣着,用大量流动清水冲洗。眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。

吸入:

迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸,就医。

食入:

饮足量温水,催吐。洗胃,导泄。就医。如呼吸停止,立即进行人工呼吸。就医。

参考资料:百度百科-煤制乙二醇

制备乙二醇,主要有三条工艺路线:

1、直接法:以煤气化制取合成气(CO+H₂),再由合成气一步直接合成乙二醇。此技术的关键是催化剂的选择,在相当长的时期内难以实现工业化。

2、烯烃法:以煤为原料,通过气化、变换、净化后得到合成气,经甲醇合成,甲醇制烯烃(MTO)得到乙烯,再经乙烯环氧化、环氧乙烷水合及产品精致最终得到乙二醇。

该过程将煤制烯烃与传统石油路线乙二醇相结合,技术较为成熟,但成本相对较高。

3、草酸酯法:以煤为原料,通过气化、变换、净化及分离提纯后分别得到CO和H₂,其中CO通过催化偶联合成及精制生产草酸酯,再经与H₂进行加氢反应并通过精制后获得聚酯级乙二醇的过程。

扩展资料:

乙二醇是一种无色微粘的液体,沸点是℃,冰点是℃,能与水任意比例混合。混合后由于改变了冷却水的蒸气压,冰点显著降低。

其降低的程度在一定范围内随乙二醇的含量增加而下降。

当乙二醇的含量为60%时,冰点可降低至℃,超过这个极限时,冰点反而要上升。

乙二醇防冻液在使用中易生成酸性物质,对金属有腐蚀作用。

乙二醇有毒,但由于其沸点高,不会产生蒸气被人吸入体内而引起中毒。

乙二醇的吸水性强,储存的容器应密封,以防吸水后溢出。

煤制乙二醇的潜在工艺路径可以分为直接合成法和间接合成法。直接合成法是将合成气中的CO及H2一步合成为乙二醇。间接合成法则主要分为通过甲醇甲醛及草酸酯作为中间产物合成,然后加氢获得乙二醇。

相对而言,甲醇甲醛路线合成的研究还不深入,离工业化距离远;而草酸酯加氢合成法的实用性较强,适宜进行工业生产。由煤制合成气经草酸酯加氢制取乙二醇的三个主要反应为:

氧化、酯化反应:2CH₃OH+2NO+ 1/ 2O₂→2CH₃ONO+H₂O

CO偶联反应:2CO+2CH₃ONO→(COOCH₃)₂+ 2NO

草酸酯加氢反应:(COOCH₃)₂+ 4H₂→ HOCH₂CH₂OH+ 2CH₃OH

总的化学方程式:2CO+4H₂+ 1/2O₂→ HOCH₂CH₂OH+H₂O

参考资料来源:百度百科——乙二醇

有个范文网,应该可以吧,不行的话,去论文网看看!如果是大学毕业论文,好像免费的很少,大多需要money!

  • 索引序列
  • 乙醇连续精馏毕业论文
  • 乙醇的连续精馏毕业论文
  • 氯乙烯精馏毕业论文
  • 甲醇精馏毕业论文目录
  • 乙二醇精制工段毕业论文
  • 返回顶部