.OK 帮忙解决一下
毕业论文数据分析的做法如下:
首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。
另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。
接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。
那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。
在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。
给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。
在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。
比较省事的就是用EXCEL,你加载“数据分析”即可,基本的数统资料就全涵盖了。你不是专门也不是长期做数据研究的没必要花钱买软件
靠谱的论文查重网站:
一、中国知网
由清华大学和清华同方发起,在党和国家领导以及教育部、中宣部、科技部、新闻出版总署、国家版权局和国家发改委的大力支持下,在全国学术界、教育界、出版界和图书情报界等社会各界的密切配合和清华大学的直接领导下,CNKI工程集团经过多年努力。
采用自主开发并具有国际领先水平的数字图书馆技术,建成了世界上全文信息量规模最大的”CNKI数字图书馆”,并正式启动建设《中国知识资源总库》及CNKI网格资源共享平台,通过产业化运作,为全社会知识资源高效共享提供最丰富的知识信息资源和最有效的知识传播与数字化学习平台。
是目前最安全、最快捷、最权威的论文检测软件,全面覆盖研究生毕业论文查重、大学生抄袭检测、职称评审及相关学术成果,大部分单位机构都是与知网进行合作。除了收费昂贵之外,几乎没有任何缺点。
二、维普
是国内领先的论文查重软件,可以快速准确地检测出毕业论文、博士、硕士论文、期刊论文中的不当引用、过度引用、论文抄袭、伪造、篡改等学术不端行为,自动生成检测报告,并支持PDF、网页等浏览格式,最大特点就是快!
三、万方
采用科学先进的检测技术,实现海量学术文献数据全文比对,秉持客观、公正、精准、全面的服务原则,为用户提供精准详实多维度的查重检测报告。提供包括万方通用版、硕博论文版、大学生论文版、职称论文版等,查重检测结果客观、准确、详实!
四、蝌蚪论文查重
蝌蚪论文查重系统扫码直接登录就可以享受每天免费查重服务,不需要做任何任务,不受字数限制(10万字内),同时提供在线智能降重、人工降重等服务。
采用阿里云认证的高防服务器,检测系统全程自动论文检测,无任何人工参与,系统不保存用户源文件,解除用户论文泄露之忧。
系统数据库覆盖9000万的学术期刊和学位论文,10亿数量的互联网数据源,有效确保精准论文查重! 采用强大的智能语义识别技术,能够快速命中并识别出相似内容。并进行周期性算法升级,实现智能算法预处理学科分类,准确度高出行业70%。
1eviews软件是qms(quantitativemicrosoftware)公司开发的基于windows平台下的应用软件,其前身是dos操作系统下的tsp软件。该软件是由经济学家开发,主要应用在经济学领域,可用于回归分析与预测(regressionandforecasting)、时间序列(timeseries)以及横截面数据(cross-sectionaldata)分析。与其他统计软件(如excel、sas、spss)相比,eviews功能优势是回归分析与预测。eviews引入了流行的对象概念,操作灵活简便,可采用多种操作方式进行各种计量分析和统计分析,数据管理简单方便。其主要功能有:(1)采用统一的方式管理数据,通过对象、视图和过程实现对数据的各种操作;(2)输入、扩展和修改时间序列数据或截面数据,依据已有序列按任意复杂的公式生成新的序列;(3)计算描述统计量:相关系数、协方差、自相关系数、互相关系数和直方图;(4)进行t检验、方差分析、协整检验、granger因果检验;(5)执行普通最小二乘法、带有自回归校正的最小二乘法、两阶段最小二乘法和三阶段最小二乘法、非线性最小二乘法、广义矩估计法、arch模型估计法等;(6)对二择一决策模型进行probit、logit和gompit估计;(7)对联立方程进行线性和非线性的估计;(8)估计和分析向量自回归系统;(9)多项式分布滞后模型的估计;(10)回归方程的预测;(11)模型的求解和模拟;(12)数据库管理;(13)与外部软件进行数据交换
硕士毕业论文查重用的软件比较好的如下:
1、知网:知网的查重范围广,查重结果权威。凭借优质的内容资源、领先的技术和专业的服务,中国知网在业界享有极高的声誉,在2007年,中国知网旗下的《中国学术期刊网络出版总库》获首届“中国出版政府奖”,《中国博士学位论文全文数据库》、《中国年鉴网络出版总库》获提名奖。这是中国出版领域的最高奖项。
2、turnitin查重:该检测系统主要针对外文文献进行查重,如果同学们撰写的是外文论文,还是使用turnitin较为合适。通过用户上传文稿与Turnitin海量的云端数据库和网页进行相似性的比对,并注明抄袭来源供评审者参考。
3、PaperPass检测系统是北京智齿数汇科技有限公司旗下产品,网站诞生于2007年,运营多年来,已经发展成为国内可信赖的中文原创性检查和预防剽窃的在线网站。 系统采用自主研发的动态指纹越级扫描检测技术,该项技术检测速度快、精度高,市场反映良好。
做数据分析,比较好用的软件有哪些? 数据分析软件有很多种,每一种都适合不同类型的人员。 简单说: Excel:普遍适用,既有基础,又有中高级。中级一般用Excel透视表,高级的用Excel VBA。 hihidata:比较小众的数据分析工具。三分钟就可以学会直接上手。无需下载安装,直接在线就可以使用。SPSS:专业统计软件,没有统计功底很难用的。同时包含了数据挖掘等高大功能。 SAS:专业统计软件,专业人士用的,不懂编程还是不要碰了。 MARLAB:建立统计与数学模型,但是比较难学,很难上手。 Eview:比较小众,建立一些经济类的模型还是很有用的。计量经济学中经常用到。 各种BI与报表工具:FineBI,FineReport,tableau,QlikView等。 比较好的数据分析软件有哪些? SPSS是软件里比较简单的 ,学校里使用的比较多一些,可以采用菜单的模式 带少量的命令编辑MATLAB常常在建立统计和数学模型的时候比较好用 但是很难学 反正我学了一个学期楞是就知道个皮毛Finereport 兼顾了基本的数据录入与展现功能,一般的数据源都支持,学习成本比较低,比较适合企业级用户使用,SAS我没用过 网站数据分析工具哪个好用些阿? 推荐吆喝科技的ab测试,软件分析的数据比较全面和精准 学数据分析需要熟悉哪些软件基础 软件只是一个工具 看你要从事的数据分析的方向很深度而定 一般的用excel也可以进行常规简单的数据分析 再深入一点的用spss、stata、sas 如果要搞数据挖掘的话,用spss modeler / sas 不过一般的常规数据分析用excel和spss基本上能够应付 常用的数据分析工具有哪些 数据分析的概念太宽泛了,做需要的是侧重于数据展示、数据挖掘、还是数据存储的?是个人用还是企业、部门用呢?应用的场景是制作简单的个人图表,还是要做销售、财务还是供应链的分析? 那就说说应用最广的BI吧,企业级应用,其实功能上已经涵盖了我上面所述的部分,主要用于数据整合,构建分析,展示数据供决策分析的,譬如FineBI,是能够”智能”分析数据的工具了。 android数据分析工具用什么软件 1. 开源大数据生态圈 Hadoop HDFS、Hadoop MapReduce, HBase、Hive 渐次诞生,早期Hadoop生态圈逐步形成。 开源生态圈活跃,并免费,但Hadoop对技术要求高,实时性稍差。 2. 商用大数据分析工具 一体机数据库/数据仓库(费用很高) IBM PureData(Netezza), Oracle Exadata, SAP Hana等等。 数据仓库(费用较高) Teradata AsterData, EMC GreenPlum, HP Vertica 等等。 数据集市(费用一般) QlikView、 Tableau 、国内永洪科技Yonghong Data Mart 等等。 前端展现 用于展现分析的前端开源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。 用于展现分析商用分析工具有Cognos,BO, Microsoft, Oracle,Microstrategy,QlikView、 Tableau 、国内永洪科技Yonghong Z-Suite等等。 数据分析软件有哪些,他们分别的特点是什么 除了EXCEL 数据分析用的多的有以下几个软件,你看看你们公司符合哪个 SPSS(StatisticalProduct and Service Solutions),“统计产品与服务解决方案”软件,是数据定量分析的工具,适用于社会科学(如经济分析,市场调研分析)和自然科学等林林总总的统计分析,国内使用的最多,领域也多。 SPSS就如一个傻瓜相机,界面友好,使用简单,但是功能强大,可以编程,能解决绝大部分统计学问题,适合初学者。它有一个可以点击的交互界面,能够使用下拉菜单来选择所需要执行的命令。它也有一个通过拷贝和粘贴的方法来学习其“句法”语言,但是这些句法通常非常复杂而且不是很直观。 SPSS致力于简便易行(其口号是“真正统计,确实简单”),并且取得了成功。但是如果你是高级用户,随着时间推移你会对它丧失兴趣。SPSS是制图方面的强手,由于缺少稳健和调查的方法,处理前沿的统计过程是其弱项。 SAS是全球最大的软件公司之一,是全球商业智能和分析软件与服务领袖。SAS由于其功能强大而且可以编程,很受高级用户的欢迎,也正是基于此,它是最难掌握的软件之一,多用于企业工作之中。 SAS就如一台单反相机,你需要编写SAS程序来处理数据,进行分析。如果在一个程序中出现一个错误,找到并改正这个错误将是困难的。在所有的统计软件中,SAS有最强大的绘图工具,由SAS/Graph模块提供。然而,SAS/Graph模块的学习也是非常专业而复杂,图形的制作主要使用程序语言。SAS适合高级用户使用。它的学习过程是艰苦的,正所谓“五年入门,十年精通”,最初的阶段会使人灰心丧气。然而它还是以强大的数据管理和同时处理大批数据文件的功能,得到高级用户的青睐。 R 是用于统计分析、绘图的语言和操作环境,属于GUN系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具,多用于论文,科研领域。 R的思想是:它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。因此R有很多最新的模型和检验方法,但是非常难自学,对英语的要求很高。R与SAS的区别在于,R是开放免费的,处理更灵活,同时对编程要求较高。 大数据是什么意思?哪些软件适合大数据分析? 大数据定义什么的百度很多。个人理解:现有的互联网数据量越来越大,面对这么大的数据量,如何利用好这些数据是极具挑战性的。一方面数据量提升,数据处理的方法必须改变,才能提高数据处理速度,比如大规模,高并发的网站访问,12306,淘宝天猫什么的;另一方面从这些海量数据中挖掘出有用的信息,比如根据淘宝根据用户点击访问,反馈出用户的喜好,给用户推荐相关商品。 推荐Hadoop,适合大数据处理的。 网上学习资料很多,自己搜去! 当然你也可以自己使用数据库MYSQL等去做大数据处理,这样很多Hadoop做好的东西都需要你自己去做。要是熟悉某个数据库,并且应用明确就用数据库自己去做吧! 加油! 数据分析软件哪个好 最常用的是spss,属于非专业统计学的! sas是专业的统计分析软件,需要编程用,都是专业人士用的 数据分析中的数据挖掘,可以使用spss公司的clementine 大数据分析一般用什么工具分析 在大数据处理分析过程中常用的六大工具: Hadoop Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。 HPCC HPCC,High Performance puting and munications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国 实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。 Storm Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。 Apache Drill 为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill 实现了 Google's Dremel. 据Hadoop厂商MapR Technologies公司产品经理Tomer Shiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。 RapidMiner RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。 Pentaho BI Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。
论文查重软件排行榜以下三个好。
1、知网论文查重软件数据库比较强大,并且可以分类对论文进行检测,有本科论文查重入口,硕博论文查重入口,职称论文查重入口,初稿论文查重入口等。
是目前高校使用最多的软件。对于本科毕业论文检测拥有独特的大学生联合对比数据库。检测结果基本上跟学校一致。
2、万方、维普是这几年兴起的论文查重软件,数据库没有知网齐全。版本也没有知网多,如果学校要求使用这两个查重,大家就可以去选择,如果没有要求选择这两个系统,大家就不要存在侥幸心理。
3、paperfree论文查重软件,是比较长久的论文查重软件,仅次于知网论文查重,在市场上得到了很多学校和毕业生的认可,也是很多学校要求使用的论文查重系统,查重速度快,查重结果准确,费用非常的低。
作图啊?spss\visio\mindmanager excel也行啊没啥特别的,能表达自己的思路和文章的意义就行
如果是调查类的,一般用的spss
如果内容是原创的,ppt即可。不要关注华丽的花边。而注重内容。如果是抄袭来的,花钱找人美化吧,事半功倍
1、频数分析:
对一组数据的不同数值的频数,或者数据落入指定区域内的频数进行统计,了解其数据分布状况的方式。通过频数分析,能在一定程度上反映出样本是否具有总体代表性,抽样是否存在系统偏差,并以此证明以后相关问题分析的代表性和可信性。
2、描述性统计:
对调查总体所有变量的有关数据进行统计性描述,包括数据的集中趋势与离散趋势。
3、探索性分析:
正态性检验用于检验数据是否满足正态分布,一些算法需要数据满足正态分布(如单样本T检验,独立样本T检验等)。
1、案例标题
案例的标题应含蓄、客观、具有新意。案例的标题应注意避免加入作者的主观倾向,也应避免带有不必要的感情色彩。
2、案例正文
案例正文是案例主体部分的核心,应介绍案例的人物、组织以及事件的经过。可以按照时间顺序或事情发展的逻辑顺序组织案例的主要内容。尽量加入一些数字和图表,以加深读者对案例的理解。
(1)案例正文的叙述,要做到全面、周密、客观,避免加人作者的主观分析评价。同时,还要注重情节的真实感和生动性。
(2)案例正文中涉及的组织、人物和统计数据等,可以作适当的技术性处理。例如,隐去组织和人物的真实名称而采用化名,对真实的统计数据作同比放大(或缩小)处理。
(3)案例正文中的内容也可根据编写需要进行适当标注。
3、案例分析
案例分析是对案例正文所作的全面、系统、深入的分析。
(1)分析报告的内容必须针对案例正文。案例正文中的重要信息与内容应在分析报告中得到全面体现;案例分析报告中用到的素材都必须是案例正文中所提供的。
(2)对案例中某些有价值的问题可作适当的引申与探讨,但所做的引申与探讨必须与正文相关,不能脱离案例正文中的内容。
三、案例分析报告基本格式要求
1、封面和封底
封面必须在学校文印室打印。封面含中英文标题,中文标题置于英文标题之上。中文标题文字:黑体,小2;英文标题:Times New Roman,小2;其他:宋体,小3、封面所有填写信息一律居中。
2、标题
应在25字以内,能简明、具体、确切地表达论文的内容。
3、扉页
扉页是对研究生论文题目、导师、单位等作较详细的说明,其格式为分类号、密级、UDC、编号:宋体,5号;其他信息:宋体,4号。不编页码。
4、中文摘要(Abstract)
在500字以内。摘要是对学位论文内容不加注释和评论的简述。它应使人不阅读学位论文全文即可获得全文的主要信息和结论,是一篇完整的短文,可以独立使用。论文摘要应说明研究工作的目的、方法、内容和结论。要突出本文的新见解和研究工作的创新点。
中文“摘要”、“目录”、“图目录”、“表目录”等,用小2号,黑体,行距2,居中。每个字中间空两格,如目录,“目”与“录”中间空两格。
5、关键词(Keyword)
论文关键词一般3至8个,应采用能覆盖论文主要内容的通用标准词条(参照相应的技术术语标准),按词条的外延层次从大到小排列,并以显着的字符另起一行,排在摘要左下方。词之间用逗号分隔。
6、英文摘要
与中文摘要相应的英文摘要和关键词。
“致谢”、英文“摘要”、“目录”、“符号缩略表”、各章标题及“参考文献”、“附录”等,居中,用大写字母,字号18,行距2,加粗,段前后各空1行(行距2)。
毕业论文中的案例分析法是一种常用的研究方法,可以通过对具体案例的深入分析和比较,揭示其内在的规律和特点,从而为论文的研究问题提供支持和佐证。下面是毕业论文案例分析法的写作步骤:1. 确定研究对象:首先需要确定案例研究的对象,例如某个企业、组织、事件等,以及所要探讨的问题或假设。需要注意的是,所选用的案例应该与研究问题相关联,并且具有代表性和典型性。2. 收集案例材料:收集与所选案例相关的各种材料和信息,包括历史资料、统计数据、采访记录、新闻报道、文献资料等,尽可能全面地了解所选案例的背景、发展过程和影响因素。3. 分析案例数据:根据所收集到的案例材料和信息,对所选案例进行深入分析和比较。可以采用不同的分析方法,例如SWOT分析、PEST分析、五力模型等,以揭示案例的优劣势、机会和威胁等方面的特点和规律。4. 结合理论框架:将所得到的案例分析结果与相关的理论框架进行结合,进一步深化对案例的理解和研究。可以引用相关的理论或概念,对案例中出现的问题或现象进行解释和说明。5. 得出结论:在完成案例分析后,需要根据所得到的研究结果和结论,对毕业论文的研究问题进行回答或支持。需要注意的是,结论应该基于充分的案例分析和理论支持,具有科学性和可信度。6. 引用案例资料:最后,在毕业论文中需要准确地引用所使用的案例资料和信息,遵循相应的学术规范和引用要求,以确保论文的学术性和严肃性。综上所述,毕业论文中的案例分析法需要注意研究对象的选择、数据收集和分析方法的合理运用,以及结论的科学性和可信度等方面的问题。
基本信息描述
研究方法通常可以分为三大类,分别是差异关系,相关关系和其它关系。
参考资料:
统计描述一般指的是均数、标准差等
1、频数分析:
对一组数据的不同数值的频数,或者数据落入指定区域内的频数进行统计,了解其数据分布状况的方式。通过频数分析,能在一定程度上反映出样本是否具有总体代表性,抽样是否存在系统偏差,并以此证明以后相关问题分析的代表性和可信性。
2、描述性统计:
对调查总体所有变量的有关数据进行统计性描述,包括数据的集中趋势与离散趋势。
3、探索性分析:
正态性检验用于检验数据是否满足正态分布,一些算法需要数据满足正态分布(如单样本T检验,独立样本T检验等)。