对我们普通老百姓来说, 工业机器人自然没有那些花哨的服务机器人那么有趣, 然而从商业利益来看, 现在工业机器人却仍然占据了整个机器人市场的大头: 在2008年, 它的市场规模大致在190亿美元 (包括工业机器人本身, 以及相关软件, 相关附件以及配置系统等), 而同时服务机器人市场估计在110亿美元左右 (相关数据参看该网站出的报告简要). 毕竟这个时代还是钱说了算, 于是我们可以看到现在国际机器人联合会的主席就来自工业机器人的一家龙头企业ABB了.
一直以来, 机器人的应用领域主要分为: 工业机器人, 专业服务机器人, 和个人/家用服务机器人. 服务机器人部分我们会在以后的文章里介绍; 这里只说工业机器人. 对我们普通老百姓来说, 工业机器人自然没有那些花哨的服务机器人那么有趣, 然而从商业利益来看, 现在工业机器人却仍然占据了整个机器人市场的大头: 在2008年, 它的市场规模大致在190亿美元 (包括工业机器人本身, 以及相关软件, 相关附件以及配置系统等), 而同时服务机器人市场估计在110亿美元左右 (相关数据参看该网站出的报告简要). 毕竟这个时代还是钱说了算, 于是我们可以看到现在国际机器人联合会的主席就来自工业机器人的一家龙头企业ABB了.工业机器人主要用在制造行业, 能够做焊接, 磨削, 喷涂, 搬运, 分拣, 装配, 包装等等. 和人相比, 优点主要有两个: 精确和稳定. 精确在于它一般能做到零点几个毫米级的运动控制, 稳定在于它可以24*7地这么做下去. 和其他自控工具相比, 优点主要是一个: 系统柔性大, 即所谓flexibility; 一套用于给BMW7系喷涂的机器人, 换上BMW5系,只要重新编个程就可以, 生产柔性很大.我个人更愿意把工业机器人看作是传统机械+电子自动化产品的延伸, 而不是披着神秘色彩的特高新科技领域. 大家也许都见过数控机床,能够以编程的方式, 让机器以极高的精度按指定路径运动, 从而完成各类工业加工应用. 那么绝大部分的工业机器人和数控机床差不多, 只是由于机械运动的方式不用, 而工业机器人往往有更大的自由运动的空间,而较大的应用灵活性. 好吧, 如果你还从没有见过一般工业机器人长什么样, 那么请点击该链接. 你可以看到,它一般是呈手臂型的, 而且底座是固定住, 无法移动的, 因此我们也把它叫做机械臂. 当然光一个机械臂还动不起来, 它需要背后的控制系统, 一般是像一个柜子一样的东西, 里面包含了逻辑控制/运动规划的主计算机和电机驱动等等; 这个柜子一般会晾在机械臂一旁. 因此, 一套完整的可使用的机器人系统至少包括机械臂和控制柜, 另外通常还算上一些仿真和应用编程软件等. (于是相应地, 一个典型的工业机器人研发机构, 也自然设置成机械+电路+软件三部分小组).下面我们捎带说点机械性的知识, 不感兴趣者可略过 :)机械上来说, 一般机器人的关节可以有两种选择: 旋转式(rotational)和平移式(prismatic). 而一个机器人少则3个关节, 多则十多个关节, 关节的数量决定了机械臂末端能达到的三维位姿空间; 而根据这么多机械关节的不同组合, 也可以分出很多种工业机器人类型来: 支架式(笛卡尔坐标式)运动的所谓gantry robot, 这类机器人只能在支架上沿笛卡尔坐标系线性移动,一般用来工厂里搬重物, 做装备等. 这类机器人可以做的很大, 比如有做到近四十米,高八米的 (可以想象完全是一个可以内部移动的两层楼了...); 柱状/球状机器人, 这里的柱/球状是指机器人通过每个关节的运动, 使其末端点能达到的三维空间范围的形状. (这些个人倒不太常见, 可能是用在小型自动化领域内.)SCARA机器人(也可参见Wikipedia上此文), 有两个旋转关节和末端一个平移关节. 这种类型机器人在空间Z轴上是被锁住的, 因此常用来插螺钉啊,搬搬小东西啊之类的, 很灵活小巧, 速度也快. 看着干净, 还不占地. 最万能的多关节型机器人(articulated robot), 这种机器人一般有六个旋转关节(人的手臂也全是旋转关节, 不过关节数可比这类型机器人多多了...), 覆盖工作空间大(能扭出各种姿势来), 载重相对较高(更有力). 因此也是几个工业机器人大厂商的主打产品.并联机器人(parallel robot), 这类机器人手臂不像前面介绍的那样一段串联着一段, 最终连接到末端, 而是直接各段手臂直接连接到末端上. 好处是什么? 避免了手臂运动误差的串联叠加效应, 每一段手臂的控制都或多或少会有误差的, 如果是串联, 那么前一段手臂的误差会直接叠加在接下去一段的误差上; 这样一段串着一段, 误差也就一段积着一段了. (想象一下我们手臂的串联效应, 现在如果我要伸手去前方1米处的苹果, 于是规划好了以肩膀与上臂60度, 上臂与前臂30, 前臂和手掌20度的姿态可以拿到, 于是闭起眼睛驱动我们的手臂达到这个目标姿态, 但由于每个关节的控制总有1度左右的误差范围, 那么累加起来, 到最后手掌上, 离真正的目标姿态就有了3度的角度误差范围.(事实上, 由于几何关系, 误差不一定是简单的相加, 但这里就不细谈了); 而并联的好处便是消除了这种串联误差效应, 因而能达到很高的运动精度; 坏处呢? 那就是运动空间受限了, 有那么多支手臂一起连着末端, 还怎么伸展的出去呢? 关于这类机器人的历史可参看这里, 其常用在飞行模拟器上; 也有用在分拣上, 比如号称速度最快的工业机器人-ABB的FlexPicker, 最快能在一分钟之内做150次的物品拾起和放下, 常常用于在传输带上拣面包抓香肠等.接下来再说点工业机器人控制的知识:工业机器人的运动和我们人的运动的首要区别, 是它并没有视觉这样的末端运动的闭环控制. 人可以在发现手没有够到水果时, 继续前伸手, 直到观察认为可以拿到为止; 但工业机器人不可以, 它没有眼睛(没有图像检测系统)来查看它是不是伸到了目标点. 所以从这个角度来说, 它是一个开环控制. (至于开环控制和闭环控制的定义, 大家可以参见wikipedia的定义. 大致意思是闭环控制会将系统检测到的信息反馈到控制器里去, 而控制器会利用这个反馈信息区调整自己的控制指令, 使得被控制的变量可以更快/准确/稳定地达到目标值; 而开环控制则没有或忽略了反馈信息, 即控制器充满自信地一番计算后, 直接发出控制指令, 而至于被控制的量是不是达到目标值了, 就不理睬了. 最经典的反馈控制是PID, 在化工流程, 运动控制等有非常广泛的应用). 所以, 工业机器人的一个基本的运动控制过程一般是这样的: -> 用户输入目标点(如三维空间里的XYZ,以及姿态坐标) -> 机器人通过对自己手臂和关节的分析, 计算出每个关节应该达到的目标值(旋转关节就是指要转到哪个角度, 平移关节就是指要移动哪个距离上) -> 计算机将这些角度值发送给电机驱动程序-> 电机驱动程序利用一定的控制方法(比如这儿就可以用PID了)来使电机驱动到目标值; -> 结束大家于是看到, 机器人只管把关节电机驱动到目标值, 至于之后每个关节连起来后是不是就真的到达了目标点, 它就管不着了. 你也许会问, 要是机器人的手臂参数就有误差(. 热胀冷缩而长度改变, 内部掉了灰尘而掐着关节怎么办), 那么计算得到的关节目标值就会包含这些误差, 于是加起来就更不对了, 难道也不考虑么? 是的, 如果是这样的话, 机器人也只能"瞎"着眼睛自顾自的往不准确的目标点跑去了. 你也许会再问, 那也简单, 给机器人加双"眼睛"不就行了么, 上面装个摄像头, 实时监测机器人末端是不是真正达到了目标点, 这样要是真没达到, 就可以把这误差信息反馈给机器人,机器人就可以调整控制, 不就可以这误差消除掉了? 不行, 至少现在可不行. 第一, 现有的图像算法很难通用地判别好一般工业环境下的一般机器人的末端, 更不用说稳定地判断机器人在三维空间里的立体姿态信息了(稳定而准确地通过摄像头获得空间信息本身是视觉/机器人领域一个研究大难题, 这在以后的文章会再次提到). 第二, 现有的摄像头以及图像算法的本身又会带来误差问题. 有些工业应用对机器人运动控制的精度要求达到毫米级, 而如果摄像头本身像素跟不上, 机器人还没到目标点就报告成功, 那便适得其反了. 可见在工程环境下应用一个技术或产品, 其顾虑是非常多的, 其中有效, 稳定, 和鲁棒(robust)往往排在最前面. 放到工业机器人的设计里, 就是得让机器人不管天冷天热还是电磁辐射, 都得能正常得以预定精度运行, 不打折扣. 一套工业机器人系统的寿命要求十年不算长, 于是这十年就得保证能一直正常运行. 因此回到控制上, 我们就得非常小心得考虑每一个关节的特性模型. 现在市场上, 多关节运动机器人的到达精度一般能在零点几个毫米上, 什么意思呢? 就是如果你切着目标点出拉一根头发丝, 那么机器人"闭着眼睛"的每次运动都能恰好碰到这发丝而不会冲断. 你可以继而想象, 每一个关节本身的控制精度会达到什么程度!正是由于精度控制的重要性, 对于机器人厂商来说, 自家的机器人使用什么样的机械设计, 哪种控制方式, 采用哪套控制参数, 以及怎样的驱动电路, 可都是绝不外传的看门本领了.在基本的运动控制之上, 还有一层就是路径规划. 如果说运动控制是让机器人更好的达到一个点, 那么路径规划就是让机器人更好的走出一条(直/曲)线来.比如我们会限定机器人以直线方式平移到第一个目标点, 然后以圆弧方式移到第二个点; 那么机器人就会按照一定的路径规划算法, 计算出整条路径要走的中间点, 然后利用运动控制, 循着中间点一直走到终点为止. 尽管理论研究上, 这方面的规划方法已经相当成熟了(基本上你已看不到高校会有老师还做工业机器人的基本路径规划...). 如果你曾了解过机器人学, 也会觉得这是最基本的小儿科知识了. 但一放到工程应用上, 就总会有更深的学问出来. 关键词只有一个: 精度. 前面提到天冷天热电磁辐射,这儿还有机器人本身的运动过程中的变化的惯性, 在这么多可变因素的影响下, 仍然要保持精度, 非得把机械物理控制原理给解剖地一清二楚不可. ABB在工业机器人领域算是一个领头了, 其机器人控制器用来打广告的主要技术就是所谓的True-Move,. 啥意思呢? 就是不管快跑慢走, 该走直线就走出直线, 转弯时该走圆就走出个正圆, 是truely right Move. 听着简单吧? 可别人就是做不出来或做不好, 而ABB就能靠它拿着成百上千万的订单.好, 现在有了路径规划来计算整条路径的运动点, 还有运动控制去到达每一个点, 那么一个工业机器人系统该有的功能算是完成了. 如果配上一套软件, 可以让用户进行连续地对多条运动路径进行编程, 并能把程序下载到机器人控制器上执行; 另外还有软件可以让用户进行仿真运动验证, 而不用每次都跑到真实机器人上去调试; 那么开一家机器人公司的技术储备就已经完善啦. 那么说到公司, 我们再看看当前工业机器人市场的情况.说到机器人制造商, 那么脑子里冒出来的一般就是瑞典的ABB, 美国的Comau, 日本的Denso, Epson, Fanuc, 德国的Kuka, 日本的Motoman等. 这些公司(或母公司)一般都在机械,电子, 或控制行业有至少半个世纪的经验积累, 因此有很强的技术优势. 其中ABB属于技术硬, 产品范围广, 但思维较稳重保守型, 不愿冒进, 属传统强势; 德国Kuka则秉承德国人做精做强的特点, 很快跟进,而且和德国宇航局(DLR)有不少合作, 后援很强. 经常会有些业内算是大胆的动作, 比如赞助足球机器人比赛RoboCup(因为那年我正好去了Atlanta参加Robocup小型组的比赛, 而Kuka是首席赞助商,所以印象深刻); 推出轻小型工业机器人(Light weight robot, LBR), 这是一个你可以放在桌台上,或拎在手上的机械臂, 其实是DLR的研究成果的市场化; 研发移动平台的机械臂; 把机器人放到迪士尼乐园里做刺激的游戏飞椅; 第一个推出能举起一吨重物的机器人; 经常把机器人放到好莱坞电影里客串等等; 日本的Denso,Epson做的多是小型化机器人, 所以在消费电子行业用的比较多, 比抓放手机,芯片之类的; 而Fanuc和Motoman则是和ABB激烈竞争的对手(类型的例子, 大家可以想象汽车行业里日本丰田,本田对老福特通用的挑战方式么?). 国内的情况较为惨淡, 沈阳新松还有哈工大曾经自己开发过工业用机器人, 甚至曾在一汽的生产线上使用过(但据说已不再用,应该是机器人自己带来的产品"问题"比效益多), 但已经不知道现在还在不在做了, 听说是基本转做其他类型的机器人去. 国家曾有一段时间支持过工业机器人的攻关开发, 也联合了多个工科牛校的工作者们, 但仍然没有做出能和以上这些公司竞争的市场化产品出来, 可以猜想主要地还是精度, 稳定度等工程老问题 (当然也有人将原因推在国内制造精度跟不上, 但其实在这样全球化的环境下, 基本元器件国内国外的都能购买, 并没有让国内企业一切打包制造的必要). 慢慢地, 国家也没有在这方面继续投入, 所以现在看来, 国内在自创工业机器人上基本是停滞状态(如果同学们看到还有教授博士拿这个捞钱做项目的, 就得小心看看是不是忽悠了); 如果有研究项目在做,那主要也偏向于工业机器人附件, 如视觉/力感应等检测系统等. 从全球来看, 当前工业机器人总使用量在100万台左右, 并以平均每年10万台左右的速度增加. 使用量最大应该是日本(占全球1/4~1/3), 接着是德国北美韩国中国等; 09年由于经济危机, 使用量的增长受到了很大影响, 可能只有往年的一半左右. 从应用行业来看, 工业机器人一般分为汽车行业(automotive industry)和其他行业(general industry), 大致是各占一半. 汽车行业上一般有冲压, 动力总成,白车身,喷涂以及总装(都是汽车制造工业的术语)等, 每个工艺都可以有工业机器人的参与; 而其他行业则多了, 从搬运"中华"香烟到打磨"波音"飞机叶片, 只有想不到的各种千奇百怪的应用. 由于工业机器人技术的相对成熟, 以及日本机器人制造商的低价策略, 整个机器人市场对一套机器人系统的出价也在逐渐下降, 所以现在利润空间并不算高; 比如Kuka集团的08年税前利润率(EBIT/Revenue)在4%, 而ABB的机器人公司也只是贡献了5~6%的税前利润率(相对ABB的电力和自动化公司几倍的销售额和利润率, 这可不算是有吸引力的), 这和IT行业Intel或Google动辄20~30%的利润率无法相提并论(当然即使IT业, 也要看公司的行业处境, 比如09年至今AMD的利润率就是负值了...). 当然, 我想这也都是和相关行业整体利润水平密切相关的, 比如自动化行业和制造行业(如典型地, 西门子和富士康的税前利润率均在5%左右或以下), 而工业机器人行业夹在二者中间, 自然高不起来太多. 当然, 利润空间的降低往往意味着成本降低或技术进步, 对消费者来说并不是坏事. 因此, 现在机器人研发的一个重点方向就是怎样降低成本, 以开发出白菜价般的工业机器人系统来, 希望通过这种方式来极大地扩张其应用行业的范围和深度. 而另一方面, 销售工程师们也在竭尽心力, 到处搜寻能够被机器人化的具体工艺来, 推动其自动化进程. 也许有一天, 人类会对"体力劳动"这个名词开始陌生, 因为和这个名字有关的所有工作都已被工业机器人来代替; 而这些机器人创造出来的财富, 便足以支持地球上整个人类去畅游在创造性的劳动乐趣中了.
物料搬运机器人可用于各种物流,如取放,码垛/卸垛以及包装行业。它们用于提高制造过程中的材料处理效率,灵活性和稳定性。在生产工厂中使用物料搬运机器人不仅可以减少人机工程学威胁,还有助于改善企业的精益管理系统。材料处理机器人可以管理案件采摘功能,并且还可以处理用于知足中心的购物车或用于零件到生产线的制造过程。物料搬运机器人的起重能力可超过150磅(68公斤)。双臂机械手可以提升和处理几乎所有的仓库物料。这些机器人帮助减少工作场所的疲劳和伤害。生产设备数量的增加和生产工厂的增长是物料搬运机器人市场的主要推动力。能够简化和减少生产功能的时间消耗,同时提高可靠性,准确性和低工作量的参与度是额外的市场推动因素。由于这些机器人的适用性和大幅降低成本,物料搬运机器人市场的发展预计会上升。分拣系统,滑动皮带,拣选系统和材料推动机器人是近年来具有重要意义的一些材料处理机器人。物料搬运机器人所需的初始投资很高,但从长远来看,这些机器人具有竞争优势。QYResearch研究发现,2012年之前,全球物料搬运机器人市场发展缓慢且波动明显。2012年以后,全球物料搬运机器人发展迅速并持续增长。2016年,全球物料搬运机器人产量2016年为100,604台,预计2022年为283,740台。2016年全球物料搬运机器人收入为亿美元,预计2022年为亿美元,2016年至2022年的复合年增长率为%。
现如今,随着社会经济发展,机器人开始被广泛应用于各行各业中,替工人进行一些复杂、繁重的体力劳动,能减轻人们的工作负担。下面是由我整理的工业机器人技术论文 范文 ,希望能对大家有所帮助!工业机器人技术论文范文篇一:《浅谈工业机器人在工业生产中的应用》 工业机器人是面向工业领域的多关节机械手或多自由度的机器人。工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。就工业机器人在工业生产中的应用进行探讨。 关键词:工业机器人 应用 工业 1 引言 工业机器人最早应用于汽车制造工业,常用于焊接,喷漆,上、下料和搬运。工业机器人延伸和扩大了人的手、足和大脑功能,它可代替人从事危险、有害、有毒、低温和高热等恶劣环境中的工作;代替人完成繁重、单调的重复劳动,提高劳动生产率,保证产品质量。工业机器人与数控加工中心、自动搬运小车以及自动检测系统可组成柔性制造系统和计算机集成制造系统,实现生产自动化。 2 工业机器人的主要运用 (1)恶劣工作环境及危险工作军事领域及核工业领域有些作业是有害于人体健康并危及生命,或不安全因素很大而不宜由人去做的作业,用工业机器人去做最合适。例如核工厂设备的检验和维修机器人,核工业上沸腾水式反应堆燃料自动交换机。 (2)特殊作业场合和极限作业火山探险、深海探密和空间探索等领域对于人类来说是力所不能及的,只有机器人才能进行作业。如航天飞机上用来回收卫星的操作臂;用于海底采矿和打捞的遥控海洋作业机器人。 (3)自动化生产领域早期的工业机器人在生产上主要用于机床上、下料,点焊和喷漆。用得最多的制造工业包括电机制造、汽车制造、塑料成形、通用机械制造和金属加工等工业。随着柔性自动化的出现,机器人在自动化生产领域扮演了更重要的角色。下面主要针对工业机器人在自动化生产领域的应用进行简单介绍。 焊接机器人 点焊机器人工业机器人首先应用于汽车的点焊作业,点焊机器人广泛应用于焊接车体薄板件。装焊一台汽车车体一般大约需要完成3000~4000个焊点,其中60%是由点焊机器人来完成的。在有些大批量汽车生产线上,服役的点焊机器人数量甚至高达150多台。 点焊机器人主要性能要求:安装面积小,工件空间大;快速完成小节距的多点定位;定位精度高(土0 .25 mm ),以确保焊接质量;持重大(490~980N ) ,以便携带内装变压器的焊钳;示教简单,节省工时。 弧焊机器人 弧焊机器人应用于焊接金属连续结合的焊缝工艺,绝大多数可以完成自动送丝、熔化电极和气体保护下进行焊接工作。弧焊机器人应用范围很广,除汽车行业外,在通用机械、金属结构等许多行业中都有应用。弧焊机器人应是包括各种焊接附属装置在内的焊接系统,而不只是一台以规划的速度和姿态携带焊枪移动的单机。如图1所示为弧焊机器人的基本组成。适合机器人应用的弧焊 方法 主要有惰性握体保护焊、混合所体保护焊、埋弧焊和等离子弧焊接。 1-机器人控制柜2-焊接电源3-气瓶4-气体流量计5-气路6-焊丝轮7-柔性导管8-弧焊机器人9-送丝机器人10-焊枪11-工件电缆12-焊接电缆13-控制电缆 图1 弧焊机器人系统的基本组成 弧焊机器人的主要性能要求:在弧焊作业中,要求焊枪跟踪工件的焊道运动,并不断填充金属形成焊道。因此,运动过程中速度的稳定性和轨迹是两项重要指标,一般情况下,焊接速度约取5~50 mm/s ,轨迹精度约为.2 ~ ) mm;由于焊枪的姿态对焊缝质量也有一定影响,因此希望在跟踪焊道的同时,焊枪姿态的可调范围尽量大。此外,还有一些其他性能要求,这些要求包括:设定焊接条件(电流、电压、速度等)、抖动功能、坡口填充功能、焊接异常检测功能(断弧、工件熔化)及焊接传感器(起始焊点检测,焊道跟踪)的接口功能。 喷漆机器人 喷漆机器人广泛应用于汽车车体、家电产品和各种塑料制品的喷漆作业。喷漆机器人在使用环境和动作要求上有如下特点: (1)工作环境空气中含有易爆的喷漆剂蒸气; (2)沿轨迹高速运动,途经各点均为作业点; (3)多数被喷漆部件都搭载在传送带上,边移动边喷漆。如图2所示为关节式喷漆机器人。 搬运机器人 随着计算机集成制造技术、物流技术、自动仓储技术的发展,搬运机器人在现代制造业中的应用也越来越广泛。机器人可用于零件的加工过程中,物料、工辅量具的装卸和储运,可用来将零件从一个输送装置送到另一个输送装置,或从一台机床上将加工完的零件取下再安装到另一台机床上去。 装配机器人 装配在现代工业生产中占有十分重要的地位。有关资料统计表明,装配劳动量占产品生产劳动量的50%~60%,在有些场合,这一比例甚至更高。例如,在电子器件厂的芯片装配、电路板的生产中,装配劳动量占产品生产劳动量的70 %~80%。因此,用机器人来实现自动化装配作业是十分重要的。 机器人柔性装配系统 机器人正式进入装配作业领域是在“机器人普及元年”的1980年前后,引人装配作业的机器人在早期主要用来代替装配线上手工作业的工序,随后很快出现了以机器人为主体的装配线。装配机器人的应用极大地推动了装配生产自动化的进展。装配机器人建立的柔性自动装配系统能自动装配中小型、中等复杂程度的产品,如电机、水泵齿轮箱等,特别适应于中小批量生产的装配,可实现自动装卸、传送、检测、装配、监控、判断、决策等机能。 机器人柔性装配系统通常以机器人为中心,并有诸多周边设备,如零件供给装置、工件输送装置、夹具、涂抹器等与之配合,此外还常备有可换手等。但是如果零件的种类过多,整个系统将过于庞大,效率降低,这是不可取的。在机器人柔性装配系统中,机器人的数量可根据产量选定,而零件供给装置等周边设备则视零件和作业的种类而定。因此,和装配线比较,产量越少,机器人柔性装配系统的投资越大。 3 结束语 工业机器人是以机械、电子、电子计算机和自动控制等学科领域的技术为基础,融合而成的一种系统技术;也可说是一门知识、技术密集的,多学科交叉的综合化的高新技术。随着这些相关学科技术的进步和发展,工业机器人技术也一定会到迅速发展和提高。 工业机器人技术论文范文篇二:《探讨工业机器人的发展趋势》 摘 要 随着社会经济发展,机器人开始被广泛应用于各行各业中,替工人进行一些复杂、繁重的体力劳动。目前,机器人是一种制造业与自动化设备中的典型代表,这将会是人造机器的“终极”版。它的应用已经涉及信息化、自动化、智能化、传感器与知识化等多个学科和领域,这是目前,是我国乃至世界高新技术成果的最佳集成,因此,它的发展是与许多学科的发展有着密切的联系。以现在的发展趋势来看,工业机器人的应用范围越来越广泛,同时在技术操作中,他也变得越来越标准化、规范化,提高工业机器人的安全性。另一方面,工业机器人发展越来越微型化、智能化,在人类生活中应用越来越广泛。 关键词 工业机器人 智能化 应用领域 安全性 随着社会复杂的需求,工业机器人在应用领域中越来越广泛。一方面,工业机器人被广泛应用于工业生产中,代替工人危险、复杂、单调的长时间的作业,例如在机械加工、压力铸造、塑料制品成形及金属制品业等各种工序上,同时还应用于原子能工业等高危险的部门,这已经在发达国家中应用比较广泛。另一方面,工业机器人在其他的领域应用也比较多,随着科学技术的飞速发展,提高了工业机器人的使用性能和安全性能,其应用的范围越来越广泛,应用的范围已经突破了工业,尤其在医疗业中应用比较好。 一、工业机器人的发展历程 第一代机器人,一般指工业上大量使用的可编程机器人及遥控操作机。可编程机器人可根据操作人员所编程序完成一些简单重复性作业。遥控操作机制每一步动作都要靠操作人员发出。1982年,美国通用汽车公司在装配线上为机器人装备了视觉系统,从而宣告了第二代机器人―感知机器人的问世。这代机器人,带有外部传感器,可进行离线编程。能在传感系统支持下,具有不同程度感知环境并自行修正程序的功能。第三代机器人为自治机器人,正在各国研制和发展。它不但具有感知功能,还具有一定决策和规划能力。能根据人的命令或按照所处环境自行做出决策规划动作即按任务编程。 我国机器人研究工作起步较晚,从“七五”开始国家投入资金,对工业机器及其零部件进行攻关,完成了示教再现式工业机器人成套技术的开发和研制。1986 年国家高技术研究发展计划开始实施,智能机器人主题跟踪世界机器人技术的前沿,经过几年的研究,取得了一大批科研成果,成功地研制出了一批特种机器人。 我国工业机器人起步于70年代初期,经过30多年的发展,大致经历了3个阶段:70年代的萌芽期,80年代的开发期和90年代的适用化期。 上世纪70年代是世界科技发展的一个里程碑:人类登上了月球,实现了金星、火星的软着陆。我国也发射了人造卫星。世界上工业机器人应用掀起一个高潮,尤其在日本发展更为迅猛,它补充了日益短缺的劳动力。在这种背景下,我国于1972年开始研制自己的工业机器人。 进入80年代后,在高技术浪潮的冲击下,随着改革开放的不断深入,我国机器人技术的开发与研究得到了政府的重视与支持。“七五”期间,国家投入资金,对工业机器人及其零部件进行攻关,完成了示教再现式工业机器人成套技术的开发,研制出了喷涂、点焊、弧焊和搬运机器人。1986年国家高技术研究发展计划(863计划)开始实施,智能机器人主题跟踪世界机器人技术的前沿,经过几年的研究,取得了一大批科研成果,成功地研制出了一批特种机器人。 从90年代初期起,中国的国民经济进入实现两个根本转变时期,掀起了新一轮的经济体制改革和技术进步热潮,我国的工业机器人又在实践中迈进一大步,先后研制出了点焊、弧焊、装配、喷漆、切割、搬运、包装码垛等各种用途的工业机器人,并实施了一批机器人应用工程,形成了一批机器人产业化基地,为我国机器人产业的腾飞奠定了基础。 我国工业机器人经过“七五”攻关计划、“九五”攻关计划和863计划的支持已经取得了较大进展,工业机器人市场也已经成熟,应用上已经遍及各行各业。 我国未来工业机器人技术发展的重点有:第一,危险、恶劣环境作业机器人:主要有防暴、高压带电清扫、星球检测、油汽管道等机器人;第二,医用机器人:主要有脑外科手术辅助机器人,遥控操作辅助正骨等;第三,仿生机器人:主要有移动机器人,网络遥控操作机器人等。其发展趋势是智能化、低成本、高可靠性和易于集成。 二、工业机器人的发展趋势 机器人是先进制造技术和自动化装备的典型代表,是人造机器的“终极”形式。它涉及到机械、电子、自动控制、计算机、人工智能、传感器、通讯与网络等多个学科和领域,是多种高新技术发展成果的综合集成,因此它的发展与众多学科发展密切相关。当今工业机器人的发展趋势主要有:一是工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降。二是机械结构向模块化可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;有关节模块、连杆模块用重组方式构造机器人。三是工业机器人控制系统向基于 PC机的开放型控制器方向发展,便于标准化,网络化;器件集成度提高,控制柜日渐小巧,采用模块化结构,大大提高了系统的可靠性、易操作性和可维修性。四是机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,视觉、力觉、声觉、触觉等多传感器的融合技术在产品化系统中已有成熟应用。五是机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来这种新型装置已成为国际研究的 热点 之一,纷纷探索开拓其实际应用的领域。 总体趋势是,从狭义的机器人概念向广义的机器人技术概念转移,从工业机器人产业向解决方案业务的机器人技术产业发展。机器人技术的内涵已变为 灵活应用机器人技术的、具有实际动作功能的智能化系统。机器人结构越来越灵巧,控制系统愈来愈小,其智能也越来越高,并正朝着一体化方向发展。 三、我国工业机器人发展面临的挑战与前景 我国工业底子薄,工业机器人发展一直处于一个初步发展阶段,虽然我国从上个世纪70年代开始研发工业机器人,但是技术力量不足与西方国家的技术封锁,对此,在发展过程中,存在着比较多的问题。细分起来,有如下几点: 首先,我国基础零部件制造能力差。虽然我国在相关零部件方面有了一定的基础,但是无论从质量、产品系列全面,还是批量化供给方面都与国外存在较大的差距。特别是在高性能交流伺服电机和精密减速器方面的差距尤其明显,因此造成关键零部件的进口,影响了我国机器人的价格竞争力。 第二,我国的机器人还没有形成自己的品牌。虽然已经拥有一批企业从事机器人的开发,但是都没有形成较大的规模,缺乏市场的品牌认知度,在机器人市场方面一直面临国外机器人品牌的打压。国外机器人作为成熟的产业采用整机降价,吸引国内企业购买,而在后续的维护备件费用很高的策略,逐步占领中国市场。 第三,认识不到位,在鼓励工业机器人产品方面的政策少。工业机器人的制造及应用水平,代表了一个国家的制造业水平,我们必须从国家高度认识发展中国工业机器人产业的重要性,这是我国从制造大国向制造强国转变的重要手段和途径。□ 参考文献: [1]任俊.面向熔射快速制模的机器人辅助曲面自动抛光系统的研究.华中科技大学,2006年. [2]钟新华,蔡自兴,邹小兵.移动机器人运动控制系统设计及控制算法研究.华中科技大学学报(自然科学版),2004年S1期. [3]张中英.基于遗传算法的机器人神经网络控制系统.太原理工大学,2005年. [4]李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来.机器人,2002年05期. [5]杜玉红,李修仁.生产线组装单元气动搬运机械手的设计.液压与气动,2006年05期. [6]徐晓峰.基于串行通信技术的机器人实时控制研究.南京林业大学,2005年. 工业机器人技术论文范文篇三:《试论工业机器人机电一体化》 1机电一体化技术的应用现状 工业机器人。 工业机器人的出现在一定程度上可替代人的劳动,对于高辐射、高噪声污染、高浓度有害气体的工作场合来说,工业机器人是一个理想的选择。工业机器人的发展经历了三个阶段,第一代工业机器人智能化程度较低,只能通过预设的程序进行简单的重复动作,无法应对多变的工作环境和工作岗位。随着科技的发展,在第一代机器人的基础上通过各种传感器的应用使其可通过对环境信息的获取、分析、处理并反馈给动作单元,从而进行一些适应性的工作,这种机器人虽然智能化程度较低,但已经在一些特定的领域得以成功应用。在机电一体化技术相对成熟的今天,第三代机器人的智能化水平已经得到了较大的提升,其可以通过强大的传感原件收集信息数据,并根据实际情况作出类似于人脑的判断,因此可以在多种环境下进行独立作业,但成本较高,在一定程度上限制了实际应用。 分布式控制系统。 分布式控制系统是相对于集中式控制系统而言的,是通过一台中央计算机对负责现场测控的多台计算机进行控制和指挥,由于其强大的功能和安全性,使其成为当前大型机电一体化系统的主流技术。根据实际情况分布式控制系统的层级可分为两级、三级或更多级,通过中央计算机完成对现场生产过程的实时监控、管理和操作控制等,同时,随着测控技术的不断发展与创新,分布式控制系统还可以对生产过程实现实时调度、在线最优化、生产计划统计管理等功能,成为一种集测、控、管于一体的综合系统,具有功能丰富、可靠性高、操作方便、低故障率、便于维护和可扩展等优点,因此使系统的可靠性大幅提高。 2机电一体化技术的发展趋势 人工智能化。 人工智能就是使工业机器人或数控机床模拟人脑的智力,使其在生产过程中具备一定的推理判断、 逻辑思维 和自主决策的能力,可大幅提升工业生产过程的自动化程度,甚至实现真正的无人值守,对于降低人力成本,提高加工精度和工作效率具有十分重要的意义。目前,人工智能已经不只是停留在概念上,因此可预见机电一体化技术将向着人工智能化的方向发展。虽然以当前的科学技术水平不可能使机器人或数控机床完全具备人类的思维模式和智力特点,但在工业生产中,使这些机电一体化设备具备部分人类的职能是完全可以通过先进的技术达到的。 网络化。 网络技术 的发展给机电一体化设备远程监视和远程控制提供了便利条件,因此,将网络技术与机电一体化技术结合起来将是机电一体化技术发展的重点。在生产过程中,操作人员需要在车间内来回走动,对设备的状态进行掌握,并对机床的操作面板进行操作,通过在机电一体化设备与控制终端之间建立通信协议,并通过光纤等介质实现信息数据的传递,即可实现远程监视和操作,降低工人的劳动量,并且各种控制系统功能的实现,理论上来说都是建立在网络技术基础上的。 环保化。 在人类社会发展的最近几十年里,虽然经济得到了迅猛的发展,人们生活水平得到了显著的提高,然而以牺牲资源和环境为代价的发展模式使得人类赖以生存的环境遭到严重的污染,因此,在可持续发展战略提出的今天,发展任何技术都应当以对环境友好作为前提,否则就是没有前途的,故环保化是机电一体化技术发展的必然趋势。在机电一体化应用过程中,通过对资源的高效利用,并在制造过程中做到达标排放甚至零排放,产品在使用过程中对生态环境不造成影响,即便报废后也可对其进行有效回收利用,这就是机电一体化技术环保化的具体表现形式,符合可持续发展的要求。 模块化。 由于机电一体化装置的制造商较多,为降低系统升级改造的成本,并为维修提供便利,模块化将是一个非常有前途的研究方向。通过对功能单元进行模块化改造,可在需要增加或改变功能时直接将对应的功能模块进行组装或更换,即便出现故障,只需将损害的模块进行更换即可,工作效率极高,通用性的增强为企业节约了大量的成本。 自带能源化。 机电一体化对电力的要求较高,如果没有充足的电能供应就会影响生产效率,甚至由于停电造成数据的丢失等,因此通过设备自带动力能源系统可始终保持充足的电力供应,使系统运行更流畅。 3结语 综上所述,机电一体化技术的应用可使产品的生产效率和精度大幅提高,在当前工业生产中具有较大的技术优势,相信随着科技的发展,机电一体化技术水平也会不断提高,为工业生产做出更大贡献。 猜你喜欢: 1. 初三机器人科学论文2000字 2. 工业智能技术论文 3. 传感器技术论文范文 4. 机器人科技论文3000字 5. 初三智能机器人科技论文2000字 6. 人工智能机器人的相关论文
现如今,随着社会经济发展,机器人开始被广泛应用于各行各业中,替工人进行一些复杂、繁重的体力劳动,能减轻人们的工作负担。下面是由我整理的工业机器人技术论文 范文 ,希望能对大家有所帮助!工业机器人技术论文范文篇一:《浅谈工业机器人在工业生产中的应用》 工业机器人是面向工业领域的多关节机械手或多自由度的机器人。工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。就工业机器人在工业生产中的应用进行探讨。 关键词:工业机器人 应用 工业 1 引言 工业机器人最早应用于汽车制造工业,常用于焊接,喷漆,上、下料和搬运。工业机器人延伸和扩大了人的手、足和大脑功能,它可代替人从事危险、有害、有毒、低温和高热等恶劣环境中的工作;代替人完成繁重、单调的重复劳动,提高劳动生产率,保证产品质量。工业机器人与数控加工中心、自动搬运小车以及自动检测系统可组成柔性制造系统和计算机集成制造系统,实现生产自动化。 2 工业机器人的主要运用 (1)恶劣工作环境及危险工作军事领域及核工业领域有些作业是有害于人体健康并危及生命,或不安全因素很大而不宜由人去做的作业,用工业机器人去做最合适。例如核工厂设备的检验和维修机器人,核工业上沸腾水式反应堆燃料自动交换机。 (2)特殊作业场合和极限作业火山探险、深海探密和空间探索等领域对于人类来说是力所不能及的,只有机器人才能进行作业。如航天飞机上用来回收卫星的操作臂;用于海底采矿和打捞的遥控海洋作业机器人。 (3)自动化生产领域早期的工业机器人在生产上主要用于机床上、下料,点焊和喷漆。用得最多的制造工业包括电机制造、汽车制造、塑料成形、通用机械制造和金属加工等工业。随着柔性自动化的出现,机器人在自动化生产领域扮演了更重要的角色。下面主要针对工业机器人在自动化生产领域的应用进行简单介绍。 焊接机器人 点焊机器人工业机器人首先应用于汽车的点焊作业,点焊机器人广泛应用于焊接车体薄板件。装焊一台汽车车体一般大约需要完成3000~4000个焊点,其中60%是由点焊机器人来完成的。在有些大批量汽车生产线上,服役的点焊机器人数量甚至高达150多台。 点焊机器人主要性能要求:安装面积小,工件空间大;快速完成小节距的多点定位;定位精度高(土0 .25 mm ),以确保焊接质量;持重大(490~980N ) ,以便携带内装变压器的焊钳;示教简单,节省工时。 弧焊机器人 弧焊机器人应用于焊接金属连续结合的焊缝工艺,绝大多数可以完成自动送丝、熔化电极和气体保护下进行焊接工作。弧焊机器人应用范围很广,除汽车行业外,在通用机械、金属结构等许多行业中都有应用。弧焊机器人应是包括各种焊接附属装置在内的焊接系统,而不只是一台以规划的速度和姿态携带焊枪移动的单机。如图1所示为弧焊机器人的基本组成。适合机器人应用的弧焊 方法 主要有惰性握体保护焊、混合所体保护焊、埋弧焊和等离子弧焊接。 1-机器人控制柜2-焊接电源3-气瓶4-气体流量计5-气路6-焊丝轮7-柔性导管8-弧焊机器人9-送丝机器人10-焊枪11-工件电缆12-焊接电缆13-控制电缆 图1 弧焊机器人系统的基本组成 弧焊机器人的主要性能要求:在弧焊作业中,要求焊枪跟踪工件的焊道运动,并不断填充金属形成焊道。因此,运动过程中速度的稳定性和轨迹是两项重要指标,一般情况下,焊接速度约取5~50 mm/s ,轨迹精度约为.2 ~ ) mm;由于焊枪的姿态对焊缝质量也有一定影响,因此希望在跟踪焊道的同时,焊枪姿态的可调范围尽量大。此外,还有一些其他性能要求,这些要求包括:设定焊接条件(电流、电压、速度等)、抖动功能、坡口填充功能、焊接异常检测功能(断弧、工件熔化)及焊接传感器(起始焊点检测,焊道跟踪)的接口功能。 喷漆机器人 喷漆机器人广泛应用于汽车车体、家电产品和各种塑料制品的喷漆作业。喷漆机器人在使用环境和动作要求上有如下特点: (1)工作环境空气中含有易爆的喷漆剂蒸气; (2)沿轨迹高速运动,途经各点均为作业点; (3)多数被喷漆部件都搭载在传送带上,边移动边喷漆。如图2所示为关节式喷漆机器人。 搬运机器人 随着计算机集成制造技术、物流技术、自动仓储技术的发展,搬运机器人在现代制造业中的应用也越来越广泛。机器人可用于零件的加工过程中,物料、工辅量具的装卸和储运,可用来将零件从一个输送装置送到另一个输送装置,或从一台机床上将加工完的零件取下再安装到另一台机床上去。 装配机器人 装配在现代工业生产中占有十分重要的地位。有关资料统计表明,装配劳动量占产品生产劳动量的50%~60%,在有些场合,这一比例甚至更高。例如,在电子器件厂的芯片装配、电路板的生产中,装配劳动量占产品生产劳动量的70 %~80%。因此,用机器人来实现自动化装配作业是十分重要的。 机器人柔性装配系统 机器人正式进入装配作业领域是在“机器人普及元年”的1980年前后,引人装配作业的机器人在早期主要用来代替装配线上手工作业的工序,随后很快出现了以机器人为主体的装配线。装配机器人的应用极大地推动了装配生产自动化的进展。装配机器人建立的柔性自动装配系统能自动装配中小型、中等复杂程度的产品,如电机、水泵齿轮箱等,特别适应于中小批量生产的装配,可实现自动装卸、传送、检测、装配、监控、判断、决策等机能。 机器人柔性装配系统通常以机器人为中心,并有诸多周边设备,如零件供给装置、工件输送装置、夹具、涂抹器等与之配合,此外还常备有可换手等。但是如果零件的种类过多,整个系统将过于庞大,效率降低,这是不可取的。在机器人柔性装配系统中,机器人的数量可根据产量选定,而零件供给装置等周边设备则视零件和作业的种类而定。因此,和装配线比较,产量越少,机器人柔性装配系统的投资越大。 3 结束语 工业机器人是以机械、电子、电子计算机和自动控制等学科领域的技术为基础,融合而成的一种系统技术;也可说是一门知识、技术密集的,多学科交叉的综合化的高新技术。随着这些相关学科技术的进步和发展,工业机器人技术也一定会到迅速发展和提高。 工业机器人技术论文范文篇二:《探讨工业机器人的发展趋势》 摘 要 随着社会经济发展,机器人开始被广泛应用于各行各业中,替工人进行一些复杂、繁重的体力劳动。目前,机器人是一种制造业与自动化设备中的典型代表,这将会是人造机器的“终极”版。它的应用已经涉及信息化、自动化、智能化、传感器与知识化等多个学科和领域,这是目前,是我国乃至世界高新技术成果的最佳集成,因此,它的发展是与许多学科的发展有着密切的联系。以现在的发展趋势来看,工业机器人的应用范围越来越广泛,同时在技术操作中,他也变得越来越标准化、规范化,提高工业机器人的安全性。另一方面,工业机器人发展越来越微型化、智能化,在人类生活中应用越来越广泛。 关键词 工业机器人 智能化 应用领域 安全性 随着社会复杂的需求,工业机器人在应用领域中越来越广泛。一方面,工业机器人被广泛应用于工业生产中,代替工人危险、复杂、单调的长时间的作业,例如在机械加工、压力铸造、塑料制品成形及金属制品业等各种工序上,同时还应用于原子能工业等高危险的部门,这已经在发达国家中应用比较广泛。另一方面,工业机器人在其他的领域应用也比较多,随着科学技术的飞速发展,提高了工业机器人的使用性能和安全性能,其应用的范围越来越广泛,应用的范围已经突破了工业,尤其在医疗业中应用比较好。 一、工业机器人的发展历程 第一代机器人,一般指工业上大量使用的可编程机器人及遥控操作机。可编程机器人可根据操作人员所编程序完成一些简单重复性作业。遥控操作机制每一步动作都要靠操作人员发出。1982年,美国通用汽车公司在装配线上为机器人装备了视觉系统,从而宣告了第二代机器人―感知机器人的问世。这代机器人,带有外部传感器,可进行离线编程。能在传感系统支持下,具有不同程度感知环境并自行修正程序的功能。第三代机器人为自治机器人,正在各国研制和发展。它不但具有感知功能,还具有一定决策和规划能力。能根据人的命令或按照所处环境自行做出决策规划动作即按任务编程。 我国机器人研究工作起步较晚,从“七五”开始国家投入资金,对工业机器及其零部件进行攻关,完成了示教再现式工业机器人成套技术的开发和研制。1986 年国家高技术研究发展计划开始实施,智能机器人主题跟踪世界机器人技术的前沿,经过几年的研究,取得了一大批科研成果,成功地研制出了一批特种机器人。 我国工业机器人起步于70年代初期,经过30多年的发展,大致经历了3个阶段:70年代的萌芽期,80年代的开发期和90年代的适用化期。 上世纪70年代是世界科技发展的一个里程碑:人类登上了月球,实现了金星、火星的软着陆。我国也发射了人造卫星。世界上工业机器人应用掀起一个高潮,尤其在日本发展更为迅猛,它补充了日益短缺的劳动力。在这种背景下,我国于1972年开始研制自己的工业机器人。 进入80年代后,在高技术浪潮的冲击下,随着改革开放的不断深入,我国机器人技术的开发与研究得到了政府的重视与支持。“七五”期间,国家投入资金,对工业机器人及其零部件进行攻关,完成了示教再现式工业机器人成套技术的开发,研制出了喷涂、点焊、弧焊和搬运机器人。1986年国家高技术研究发展计划(863计划)开始实施,智能机器人主题跟踪世界机器人技术的前沿,经过几年的研究,取得了一大批科研成果,成功地研制出了一批特种机器人。 从90年代初期起,中国的国民经济进入实现两个根本转变时期,掀起了新一轮的经济体制改革和技术进步热潮,我国的工业机器人又在实践中迈进一大步,先后研制出了点焊、弧焊、装配、喷漆、切割、搬运、包装码垛等各种用途的工业机器人,并实施了一批机器人应用工程,形成了一批机器人产业化基地,为我国机器人产业的腾飞奠定了基础。 我国工业机器人经过“七五”攻关计划、“九五”攻关计划和863计划的支持已经取得了较大进展,工业机器人市场也已经成熟,应用上已经遍及各行各业。 我国未来工业机器人技术发展的重点有:第一,危险、恶劣环境作业机器人:主要有防暴、高压带电清扫、星球检测、油汽管道等机器人;第二,医用机器人:主要有脑外科手术辅助机器人,遥控操作辅助正骨等;第三,仿生机器人:主要有移动机器人,网络遥控操作机器人等。其发展趋势是智能化、低成本、高可靠性和易于集成。 二、工业机器人的发展趋势 机器人是先进制造技术和自动化装备的典型代表,是人造机器的“终极”形式。它涉及到机械、电子、自动控制、计算机、人工智能、传感器、通讯与网络等多个学科和领域,是多种高新技术发展成果的综合集成,因此它的发展与众多学科发展密切相关。当今工业机器人的发展趋势主要有:一是工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降。二是机械结构向模块化可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;有关节模块、连杆模块用重组方式构造机器人。三是工业机器人控制系统向基于 PC机的开放型控制器方向发展,便于标准化,网络化;器件集成度提高,控制柜日渐小巧,采用模块化结构,大大提高了系统的可靠性、易操作性和可维修性。四是机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,视觉、力觉、声觉、触觉等多传感器的融合技术在产品化系统中已有成熟应用。五是机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来这种新型装置已成为国际研究的 热点 之一,纷纷探索开拓其实际应用的领域。 总体趋势是,从狭义的机器人概念向广义的机器人技术概念转移,从工业机器人产业向解决方案业务的机器人技术产业发展。机器人技术的内涵已变为 灵活应用机器人技术的、具有实际动作功能的智能化系统。机器人结构越来越灵巧,控制系统愈来愈小,其智能也越来越高,并正朝着一体化方向发展。 三、我国工业机器人发展面临的挑战与前景 我国工业底子薄,工业机器人发展一直处于一个初步发展阶段,虽然我国从上个世纪70年代开始研发工业机器人,但是技术力量不足与西方国家的技术封锁,对此,在发展过程中,存在着比较多的问题。细分起来,有如下几点: 首先,我国基础零部件制造能力差。虽然我国在相关零部件方面有了一定的基础,但是无论从质量、产品系列全面,还是批量化供给方面都与国外存在较大的差距。特别是在高性能交流伺服电机和精密减速器方面的差距尤其明显,因此造成关键零部件的进口,影响了我国机器人的价格竞争力。 第二,我国的机器人还没有形成自己的品牌。虽然已经拥有一批企业从事机器人的开发,但是都没有形成较大的规模,缺乏市场的品牌认知度,在机器人市场方面一直面临国外机器人品牌的打压。国外机器人作为成熟的产业采用整机降价,吸引国内企业购买,而在后续的维护备件费用很高的策略,逐步占领中国市场。 第三,认识不到位,在鼓励工业机器人产品方面的政策少。工业机器人的制造及应用水平,代表了一个国家的制造业水平,我们必须从国家高度认识发展中国工业机器人产业的重要性,这是我国从制造大国向制造强国转变的重要手段和途径。□ 参考文献: [1]任俊.面向熔射快速制模的机器人辅助曲面自动抛光系统的研究.华中科技大学,2006年. [2]钟新华,蔡自兴,邹小兵.移动机器人运动控制系统设计及控制算法研究.华中科技大学学报(自然科学版),2004年S1期. [3]张中英.基于遗传算法的机器人神经网络控制系统.太原理工大学,2005年. [4]李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来.机器人,2002年05期. [5]杜玉红,李修仁.生产线组装单元气动搬运机械手的设计.液压与气动,2006年05期. [6]徐晓峰.基于串行通信技术的机器人实时控制研究.南京林业大学,2005年. 工业机器人技术论文范文篇三:《试论工业机器人机电一体化》 1机电一体化技术的应用现状 工业机器人。 工业机器人的出现在一定程度上可替代人的劳动,对于高辐射、高噪声污染、高浓度有害气体的工作场合来说,工业机器人是一个理想的选择。工业机器人的发展经历了三个阶段,第一代工业机器人智能化程度较低,只能通过预设的程序进行简单的重复动作,无法应对多变的工作环境和工作岗位。随着科技的发展,在第一代机器人的基础上通过各种传感器的应用使其可通过对环境信息的获取、分析、处理并反馈给动作单元,从而进行一些适应性的工作,这种机器人虽然智能化程度较低,但已经在一些特定的领域得以成功应用。在机电一体化技术相对成熟的今天,第三代机器人的智能化水平已经得到了较大的提升,其可以通过强大的传感原件收集信息数据,并根据实际情况作出类似于人脑的判断,因此可以在多种环境下进行独立作业,但成本较高,在一定程度上限制了实际应用。 分布式控制系统。 分布式控制系统是相对于集中式控制系统而言的,是通过一台中央计算机对负责现场测控的多台计算机进行控制和指挥,由于其强大的功能和安全性,使其成为当前大型机电一体化系统的主流技术。根据实际情况分布式控制系统的层级可分为两级、三级或更多级,通过中央计算机完成对现场生产过程的实时监控、管理和操作控制等,同时,随着测控技术的不断发展与创新,分布式控制系统还可以对生产过程实现实时调度、在线最优化、生产计划统计管理等功能,成为一种集测、控、管于一体的综合系统,具有功能丰富、可靠性高、操作方便、低故障率、便于维护和可扩展等优点,因此使系统的可靠性大幅提高。 2机电一体化技术的发展趋势 人工智能化。 人工智能就是使工业机器人或数控机床模拟人脑的智力,使其在生产过程中具备一定的推理判断、 逻辑思维 和自主决策的能力,可大幅提升工业生产过程的自动化程度,甚至实现真正的无人值守,对于降低人力成本,提高加工精度和工作效率具有十分重要的意义。目前,人工智能已经不只是停留在概念上,因此可预见机电一体化技术将向着人工智能化的方向发展。虽然以当前的科学技术水平不可能使机器人或数控机床完全具备人类的思维模式和智力特点,但在工业生产中,使这些机电一体化设备具备部分人类的职能是完全可以通过先进的技术达到的。 网络化。 网络技术 的发展给机电一体化设备远程监视和远程控制提供了便利条件,因此,将网络技术与机电一体化技术结合起来将是机电一体化技术发展的重点。在生产过程中,操作人员需要在车间内来回走动,对设备的状态进行掌握,并对机床的操作面板进行操作,通过在机电一体化设备与控制终端之间建立通信协议,并通过光纤等介质实现信息数据的传递,即可实现远程监视和操作,降低工人的劳动量,并且各种控制系统功能的实现,理论上来说都是建立在网络技术基础上的。 环保化。 在人类社会发展的最近几十年里,虽然经济得到了迅猛的发展,人们生活水平得到了显著的提高,然而以牺牲资源和环境为代价的发展模式使得人类赖以生存的环境遭到严重的污染,因此,在可持续发展战略提出的今天,发展任何技术都应当以对环境友好作为前提,否则就是没有前途的,故环保化是机电一体化技术发展的必然趋势。在机电一体化应用过程中,通过对资源的高效利用,并在制造过程中做到达标排放甚至零排放,产品在使用过程中对生态环境不造成影响,即便报废后也可对其进行有效回收利用,这就是机电一体化技术环保化的具体表现形式,符合可持续发展的要求。 模块化。 由于机电一体化装置的制造商较多,为降低系统升级改造的成本,并为维修提供便利,模块化将是一个非常有前途的研究方向。通过对功能单元进行模块化改造,可在需要增加或改变功能时直接将对应的功能模块进行组装或更换,即便出现故障,只需将损害的模块进行更换即可,工作效率极高,通用性的增强为企业节约了大量的成本。 自带能源化。 机电一体化对电力的要求较高,如果没有充足的电能供应就会影响生产效率,甚至由于停电造成数据的丢失等,因此通过设备自带动力能源系统可始终保持充足的电力供应,使系统运行更流畅。 3结语 综上所述,机电一体化技术的应用可使产品的生产效率和精度大幅提高,在当前工业生产中具有较大的技术优势,相信随着科技的发展,机电一体化技术水平也会不断提高,为工业生产做出更大贡献。 猜你喜欢: 1. 初三机器人科学论文2000字 2. 工业智能技术论文 3. 传感器技术论文范文 4. 机器人科技论文3000字 5. 初三智能机器人科技论文2000字 6. 人工智能机器人的相关论文
机器人是由计算机控制的通过编程具有可以变更的多功能的自动机械,下面是我整理的机器人技术论文,希望你能从中得到感悟!
刍议智能机器人及其关键技术
【摘 要】文章介绍了机器人的定义,阐述了智能机器人研究领域的关键技术,最后展望了智能机器人今后的发展趋势。
【关键词】智能机器人;信息融合;智能控制
一、机器人的定义
自机器人问世以来,人们就很难对机器人下一个准确的定义,欧美国家认为机器人应该是“由计算机控制的通过编程具有可以变更的多功能的自动机械”;日本学者认为“机器人就是任何高级的自动机械”,我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器。”目前国际上对机器人的概念已经渐趋一致,联合国标准化组织采纳了美国机器人协会(RIA:Robot Institute of America)于1979 年给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变和可编程动作的专门系统。”概括说来,机器人是靠自身动和控制能力来实现各种功能的一种机器。
二、智能机器人关键技术
随着社会发展的需要和机器人应用领域的扩大,人们对智能机器人的要求也越来越高。智能机器人所处的环境往往是未知的、难以预测的,在研究这类机器人的过程中,主要涉及到以下关键技术:
(1)多传感器信息融合。多传感器信息融合技术是近年来十分热门的研究课题,它与控制理论、信号处理、人工智能、概率和统计相结合,为机器人在各种复杂、动态、不确定和未知的环境中执行任务提供了一种技术解决途径。机器人所用的传感器有很多种,根据不同用途分为内部测量传感器和外部测量传感器两大类。内部测量传感器用来检测机器人组成部件的内部状态,包括:特定位置、角度传感器;任意位置、角度传感器;速度、角度传感器;加速度传感器;倾斜角传感器;方位角传感器等。外部传感器包括:视觉(测量、认识传感器)、触觉(接触、压觉、滑动觉传感器)、力觉(力、力矩传感器)、接近觉(接近觉、距离传感器)以及角度传感器(倾斜、方向、姿式传感器)。多传感器信息融合就是指综合来自多个传感器的感知数据,以产生更可靠、更准确或更全面的信息。经过融合的多传感器系统能够更加完善、精确地反映检测对象的特性,消除信息的不确定性,提高信息的可靠性。融合后的多传感器信息具有以下特性:冗余性、互补性、实时性和低成本性。目前多传感器信息融合方法主要有贝叶斯估计、卡尔曼滤波、神经网络、小波变换等。
(2)导航与定位。在机器人系统中,自主导航是一项核心技术,是机器人研究领域的重点和难点问题。导航的基本任务有3点:一是基于环境理解的全局定位:通过环境中景物的理解,识别人为路标或具体的实物,以完成对机器人的定位,为路径规划提供素材;二是目标识别和障碍物检测:实时对障碍物或特定目标进行检测和识别,提高控制系统的稳定性;三是安全保护:能对机器人工作环境中出现的障碍和移动物体作出分析并避免对机器人造成的损伤。机器人有多种导航方式,根据环境信息的完整程度、导航指示信号类型等因素的不同,可以分为基于地图的导航、基于创建地图的导航和无地图的导航3类。根据导航采用的硬件的不同,可将导航系统分为视觉导航和非视觉传感器组合导航。视觉导航是利用摄像头进行环境探测和辨识,以获取场景中绝大部分信息。目前视觉导航信息处理的内容主要包括:视觉信息的压缩和滤波、路面检测和障碍物检测、环境特定标志的识别、三维信息感知与处理。非视觉传感器导航是指采用多种传感器共同工作,如探针式、电容式、电感式、力学传感器、雷达传感器、光电传感器等,用来探测环境,对机器人的位置、姿态、速度和系统内部状态等进行监控,感知机器人所处工作环境的静态和动态信息,使得机器人相应的工作顺序和操作内容能自然地适应工作环境的变化,有效地获取内外部信息。
(3)路径规划。路径规划技术是机器人研究领域的一个重要分支。最优路径规划就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在机器人工作空间中找到一条从起始状态到目标状态、可以避开障碍物的最优路径。路径规划方法大致可以分为传统方法和智能方法两种。传统路径规划方法主要有以下几种:自由空间法、图搜索法、栅格解耦法、人工势场法。大部分机器人路径规划中的全局规划都是基于上述几种方法进行的,但这些方法在路径搜索效率及路径优化方面有待于进一步改善。人工势场法是传统算法中较成熟且高效的规划方法,它通过环境势场模型进行路径规划,但是没有考察路径是否最优。智能路径规划方法是将遗传算法、模糊逻辑以及神经网络等人工智能方法应用到路径规划中,来提高机器人路径规划的避障精度,加快规划速度,满足实际应用的需要。其中应用较多的算法主要有模糊方法、神经网络、遗传算法、Q学习及混合算法等,这些方法在障碍物环境已知或未知情况下均已取得一定的研究成果。
(4)机器人视觉。视觉系统是自主机器人的重要组成部分,一般由摄像机、图像采集卡和计算机组成。机器人视觉系统的工作包括图像的获取、图像的处理和分析、输出和显示,核心任务是特征提取、图像分割和图像辨识。而如何精确高效的处理视觉信息是视觉系统的关键问题。目前视觉信息处理逐步细化,包括视觉信息的压缩和滤波、环境和障碍物检测、特定环境标志的识别、三维信息感知与处理等。其中环境和障碍物检测是视觉信息处理中最重要、也是最困难的过程。机器人视觉是其智能化最重要的标志之一,对机器人智能及控制都具有非常重要的意义。目前国内外都在大力研究,并且已经有一些系统投入使用。
(5)智能控制。随着机器人技术的发展,对于无法精确解析建模的物理对象以及信息不足的病态过程,传统控制理论暴露出缺点,近年来许多学者提出了各种不同的机器人智能控制系统。机器人的智能控制方法有模糊控制、神经网络控制、智能控制技术的融合(模糊控制和变结构控制的融合;神经网络和变结构控制的融合;模糊控制和神经网络控制的融合;智能融合技术还包括基于遗传算法的模糊控制方法)等。近几年,机器人智能控制在理论和应用方面都有较大的进展。在模糊控制方面,等人论证了模糊系统的逼近特性,首次将模糊理论用于一台实际机器人。模糊系统在机器人的建模控制、对柔性臂的控制、模糊补偿控制以及移动机器人路径规划等各个领域都得到了广泛的应用。在机器人神经网络控制方面,CMCA(Cere-bella Model Controller Articulation)应用较早的一种控制方法,其最大特点是实时性强,尤其适用于多自由度操作臂的控制。
(6)人机接口技术。智能机器人的研究目标并不是完全取代人,复杂的智能机器人系统仅仅依靠计算机来控制目前是有一定困难的,即使可以做到,也由于缺乏对环境的适应能力而并不实用。智能机器人系统还不能完全排斥人的作用,而是需要借助人机协调来实现系统控制。因此,设计良好的人机接口就成为智能机器人研究的重点问题之一。人机接口技术是研究如何使人方便自然地与计算机交流。为了实现这一目标,除了最基本的要求机器人控制器有1个友好的、灵活方便的人机界面之外,还要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,研究人机接口技术既有巨大的应用价值,又有基础理论意义。目前,人机接口技术已经取得了显著成果,文字识别、语音合成与识别、图像识别与处理、机器翻译等技术已经开始实用化。另外,人机接口装置和交互技术、监控技术、远程操作技术、通讯技术等也是人机接口技术的重要组成部分,其中远程操作技术是一个重要的研究方向。
三、总结与展望
机器人是自动化领域的主题之一,人们几十年来对机器人的开发和研究,使机器人技术取得了巨大的进步。随着人工智能、智能控制和计算机技术的发展,机器人的应用领域必将不断扩大,性能不断提高,在未来的生产、生活、科研当中会发挥更重要的作用。
参 考 文 献
[1]孙华,陈俊风,吴林.多传感器信息融合技术及其在机器人中的应用[J].传感器技术.2003,22(9):1~4
[2]王灏,毛宗源.机器人的智能控制方法[M].北京:国防工业出版社,2002
[3]金周英.关于我国智能机器人发展的几点思考[J].机器人技术与应用.2001(4):5~7
点击下页还有更多>>>机器人技术论文
写ABB工业机器人心得报告可以从以下几个方面展开:
目前,随着自动化技术的不断发展和应用的广泛普及,工业机器人已在搬运、焊接、包装、喷绘等领域替代了传统的人力。这是我为大家整理的搬运机器人技术论文,仅供参考! 搬运机器人伺服系统的设计研究篇一 摘 要:搬运机器人的伺服系统,目前普遍应用的是以级次掌控、总线讯息、交流程控、数值信息加工、内部结构保护等为主要内容的智能化的数字信息控制手段,不仅确保了伺服系统的安全、高效运行,而且实现了精准、高速、稳定的良好性能。本文对搬运机器人伺服系统的技术质量控制和级次管理进行了分析,并且全面地阐述了定位系统、速率环比、技术参数和设施保护等应当把握的重点内容,对提高伺服系统的控制技术,具有一定的参考价值。 关键词:搬运机器人;伺服系统;设计研究 引言 搬运机器人达到精准、科学的轨迹运行是实现伺服技术功能目标定位的重要保障。目前在搬运机器人伺服系统的应用前景上分析,伴随着机器人在各个领域、各个行业越来越广泛的推广应用,其所从事的工作事项越来越具有很强的技术难度,这就给伺服技术的安全、高效、稳定、科学、动感等性能的发挥带来了很高的要求。同时,随着数字化信息技术普及程度的日益广泛,特别是DSP等技术 方法 的不断推陈出新,给机器人伺服技术的变革带来了巨大的发展空间,也使得这种伺服系统日益探索应用了许多的新技术和新方法,比如建立交流程控、数值加工等,不仅使得机器人伺服系统满足了高速、精确的目标要求,而且越来越能够独立承担非常复杂的各种任务。 本文结合南方某省的搬运机器人为例,围绕机器人的稳定、精准、防干扰性能,科学地分析阐述了伺服技术的技术特性和研发思路,并对数字信息处理等技术方法的应用推广和设计理念、设施保护等内容进行了探究。 1 搬运机器人伺服系统的级次控制思路和技术标准 该省设计研发这种搬运机器人主要是为了适应浇筑施工环节的技术要求,并且充分考虑到这种机器人的通用效果。所以在设计的时候,将其打造为了固定变量取值为6的现代化机器人,并设计了包括上臂摇动、下臂摇动、腰间回环、手腕摇动、手腕回旋、下臂回环等6项内容在内的活动功能关节,按照浇筑施工现场操作的有关部署,依据一定时间控制能够由热炉内舀出铝制液体,服务于8个机器设备铸模使用。而且在设计这种搬运机器人的时候,要使其能够在米半径的区域内顺畅运转,最后环节的多次确定位置的误差上下不能高于3毫米,按照搬运机器人每个关节的误差折算,上下不能超过度。同时,要严格控制伺服系统的安全、稳定性能,通过技术指标控制,避免机器人在实现搬运伺服功能的时候出现铝制液体流出或者影响浇筑效果。 同时,在对搬运机器人进行技术参数控制的时候,运用了管理、控制、伺服等级次方法,使承担主要控制功能的网络信息系统得到了减负,降低了伺服技术的运行期间。利用管理的技术方法,通常是加强搬运机器人离线状态监控,对其运行的空间事先合理预设,使其能够在进行浇筑环节操作的时候,发挥图形设计、现场示范、纠错调整以及现场施工信息数据的检索、查询、质量问题的排查和定期展现等作用。利用控制的技术方法,一般是依据定位传感设施提供的定位信息,在预定时间内设置出一定的路径,同时将测算出来的下级信息传送给伺服技术进行处理。而伺服技术主要解决的是对搬运机器人的运动功能进行科学掌控,并依据施工标准和设计的精确系数确保机器人能够达到预定的运动轨迹完成工作任务。 2 搬运机器人伺服系统的设计要求 对于搬运机器人来说,伺服系统主要承担任务事项的执行工作,因此,伺服系统的安全、可靠工作,对搬运机器人的总体运行有着至关重要的影响。 一是交流程控。近年来,这种程控驱动技术方法得到了快速的发展,由于本身结构不大、重量很小、能耗量低、适应性强、坚固性高、安全可靠、经久耐用,同时在调速方面有着很好的效果,在未来的发展中很有可能会替换掉直流驱动技术。搬运机器人在各个关节的运行驱动中,全部使用了交流程控的驱动技术,在组件构成上应用的是永磁式同步无刷电机,并且通过自动控制技术确保了频率的变换和速率的调节。 二是三环系统。由于搬运机器人对不利环境的适应性很强,承受重力的性能很高,在发挥伺服技术功能的时候,不仅应当妥善解决稳定性和动态化的设计要求,而且应当注意对外界干扰的防范。本文所提到的搬运机器人就通过这种三环系统较好地实现了伺服功能(详见图2)。但是由于三环伺服控制技术虽然具有良好的稳定和防干扰能力,不过从需要的频率特性上来看,外环的要比内环的低很多,着就制约了外环控制系统的反应性能。所以通常使用一种新型组件,改进内环频率特性,确保系统运行速率,提升有效的防止干扰和可靠性能。 三是伺服系统。构成伺服模式的主要设施包括位控板、放大器、SM电机、编码仪和减速器等。其中SM电机应用的是进口的永磁式系统,可以承受的电力负荷非常高,在机器人中应用非常好。编码仪主要是对SM旋转速率和定位进行监测,而且根据6个运动关节监控机器人运行的精准情况,并运用减速器通过间接程控的方法实现较大的输送力矩确保搬运机器人能够高效做工。由于减速器在每个关节点上都进行了安装,不仅提高了反应速度,而且不会产生很大的转动惯力,运行效率非常好。放大器使用的是变频设施,具有绝缘效果,关节运动产生的功率一般不大,但是启闭的速率却非常高,作用非常显著。位控板的性能一般是接发控制指令,对定位信息做出反应,测算关节运动误差,实现每个关节的伺服系统控制目标,由于构成材料的关键组件是芯片系统,相当于计算机网络设备,具有良好的信号反应和处置性能,而且由于采用了总线控制技术,确保了信息数据的安全、精准、高效地传输,实现了搬运机器人伺服系统的科学运转。 四是参数系统。一般情况下,搬运机器人需要承受的外界应力水平和惯性具有一定的差异性,运行速率也具有一定的不同,但是由于6个关节的动作需要一定的协作性,每个关节的运动都会对搬运机器人位置检测的精确性和动作进行的稳定度产生制约,所以控制技术参数,保障伺服技术的效果是一项非常重要的工作。比如,需要考量电流的跟踪运行轨迹,科学控制电流环的技术参数,确保提升反应速率,无需进行后期的调控,确保搬运机器人伺服 系统安全 、稳定的运转,同时,由于功率组件启闭迅速,还要尽量改进电流设施的频率特性,确保外环具有稳定的运行性能。 四是保护系统。为了充分保证搬运机器人的安全、稳定动作,就需要对软件硬件设施予以保护。一方面,要妥善地保护硬件设施,一旦搬运机器人伺服系统出现了故障,比如,伺服放大器设施承受的热量过大,电源电压超过了极限负荷,电机运行的速率超过了=极限或者电机承受的电力负荷值过大,编码器在信息的传输上出现了误差,电源相级缺失,就要及时切断主电路的电源,对电力系统进行保护。另一方面,要妥善保护软件设施,主要是对位控板进行保护,比如结合关节的动作,跟踪监测误差情况,并及时做出纠错调整,或者暂停关节动作,避免出现机械碰撞的事故,影响伺服系统的正常运行。 3 结束语 综上所述,搬运机器人伺服技术基于交流程控、三环系统、技术参数的科学把握和对硬件软件设施的及时防护,确保了良好的反应机制和防扰动性能,确保了机器人在承担工作任务的时候能够及时、快速、稳定、高效地按照精准轨迹运行,相信应用推广前景将非常广阔。■ 参考文献 [1] 郭毓、马勤弟、许春山、胡斌、毛建.搬运机器人伺服系统的研究(J).南京理工大学学报.2001(3). [2]昊广顺、凌 雷、方素香、王 玉果.PLC在搬运机器人控制系统中的应用(J).2006(2). [3]吴凤江、孙奎.基于PROFIBUS总线的搬运机器人伺服控制系统(J).伺服控制.2009(2). 基于工业机器人的极板搬运工作站的设计与实现篇二 【摘 要】在中国制造2050和工业“机器换人”的大背景下,中国工业生产正由制造向智造转型升级。本文在铅蓄电池极板生产线中引入工业机器人,开发了一种极板搬运工作站,并进行了PLC控制系统的设计,大大提电池极板生产效率,实现自动化。 【关键词】工业机器人;电池极板;搬运工作站 Design and implementation of plates handling workstation based on industrial robot WANG Zhe-lu (Department of Electrical and Electronic Engineering, Wenzhou Vocational & Technical College, Wenzhou Zhejiang 325035, China) 【Abstract】Under the“Made in China 2025” and “Industry ”, China industry is changing from manufacturing to intelligent this paper, the industrial robot is introduced into the plate production line, meanwhile a kind of plate handing workstation is developed. The design of PLC control system is carried out in the workstation. The robot workstation greatly improves the production efficiency of the battery plate and realizes automation. 【Key words】Implementation robot; Based plate; Moving station 0 引言 铅蓄电池是一种技术成熟且安全性能好的能源,工业和生活领域的发展,如低速电动车、通讯设备储能等都离不开铅蓄电池,尤其是电动车是减少大气污染的重要 措施 。然而在电池极板生产中,行业内规模化运作的企业主要还是依靠劳动力手工操作,特别是电池极板上下料搬运作业,其劳动工作强度大,员工搬运工作效率低下、同时铅粉污染危害健康人员的身体,影响工人的工作寿命[1],其发展急需产业转型升级。 在国外,工业机器人已经成为一种标准化的设备,形成了一些具有竞争力的著名公司,如瑞典的ABB,日本的FANUC、安川,德国的KUKA[2-3],占领国际和国内市场上的大部分份额。在国内,工业机器人受制核心零部件和工艺原因,还在刚起步。目前有沈阳新松、广州数控设备有限公司、哈尔滨博实自动化有限公司等,在系统集成和核心零部件进行了相关的研究和突破,都有了相应的进展。同时国内也涌现了一大批以工业机器人集成技术为中心的公司,进行工业机器人的集成应用,引进国外技术结合实际生产,为制造业、快消行业等服务工作。 工业机器人是一种能模仿人工操作,可编程和自动控制的高端智能装备,具有高自动化、柔性化,是中国实现工业“机器换人”战略的核心,是“中国制造2025”战略的重要组成部分。在铅蓄行业,引入工业机器人,可以代替手工操作的同时可以大大提电池极板生产效率,确保生产安全和提高企业的效益[4]。因此,机器人极板搬运工作站的研究对铅蓄行业实现自动化及转型升级具有重要的现实意义。 1 机器人极板搬运工作站的设计 目前工业机器人在生产中的应用,主要以机器人人工作站和机器人工作生产线的形式进行整合集成应用。搬运机器人工作站,它的主要工作任务针对重物、消耗人力大且动作简单重复的搬运和贮藏工作[5],如机床上下料、堆料码垛,机床柔性线等。针对电池极板的几何特性分析和工艺要求,进行极板机器人搬运工作站的设计和实现。 工作站工作原理 机器人极板搬运工作站由搬运机器人、电池极板输送机、极板架和控制系统等组成。机器人工作站以工业机器人为工作核心,极板输送机和极板架都在机器人工作空间内,工作时,电池极板由极板输送机运送至输送机末端定位点,然后等待机器人抓取电池极板,机器人收到相应的传感器信号后,按照预先规划的路径到达极板位置,末端夹取执行器夹手对其进行夹取,然后按照规划轨迹搬运至极板架位置,将极板准确放置于极板架上,代替人工作业。 工作站机器人选型 衡量工业机器人的指标很多,有自由度、工作空间、定位精度及重复定位精度、承载能力及最大工作速度等。极板搬运工作站的机器人选型主要考虑以下几个重要指标: (1)自由度指标,它是衡量机器人运动灵活程度的参数,是衡量机器人的重要指标,自由度越多,机器人越灵活,一般地工业机器人的自由度为3-6个。 (2)工作空间指标,它指的是机器人的工作范围,机器人腕部或者末端执行器能达到的最大范围,工作空间越大,机器人运动范围越大。在运动控制中,注意机器人的极限位置,注意抓取位置和极限位置的考虑。 (3)承载能力指标,机器人在工作范围内任何位置能承受最大的载荷,取决于负载的质量、速度和加速度等,同时要考虑末端执行器的质量,故机器人承载能力是末端执行器和机械手抓取负载的总和还要大。 (4)定位精度指标,机器人实际位置与理想位置之间的偏差,同时重复定位精度是考验一个机器人同一环境和条件下,重复若干次其分散的偏差值,机器人多次重复到相同位置的偏差越小,机器人的重复定位值越高。 通过这几个指标,极板搬运机器人工作站可以选择工作空间大、承载能力强、定位精度高的6自由度工业机器人作为机器人工作的机器本体,设计相应的安装座,以它为中心来设计整个工作站的安装控件。同时,6自由度的机器人具有较高的灵活性,方便完成极板的抓取和实现复杂路径的轨迹规划。 末端执行器的设计 工业机器人末端执行器的设计一般是针对作用对象进行非标设计,它是机器人操作与目标对象直接接触进行工作,是机器人的关键部件,它可以扩大工作空间范围,提升工作作业能力具有非常重要的作用。有电磁式、气动式、机械式等,其中机械式夹取可以分为双指式和多指式,其中双指式又分为回转式和平移式。根据电池极板的几何外形,故末端执行器夹具可采用气动驱动的平移型二指手抓对其进行抓取,采用气动驱动具有响应动作快,灵活,动力清洁等优点,其平移范围必须大于极板的横向尺寸。 电池极板输送机 电池极板输送机由支架,输送链、输送槽、极板定位板等组成,其中输送链安装在机架的若干个链槽内。工作时,三相异步电动机带动主轴运动,然后链式传送机构对放置在其上面的电池极板进行传送。采用链式传动,启动时电池极板运行平稳,无打滑现象,其适用于远距离运输和恶劣环境等优点。 2 控制系统 机器人极板搬运工作站电气控制系统主要的功能实现包括:①工业机器人示教、调试编程与自动运行等功能;②极板末端执行器气缸动作、传感器的信号传递,实现抓取;③工业机器、PLC和人机界面交互和参数的设置;④整个极板搬运工作站的实现。 极板工作站控制系统组成 极板搬运工作站的控制系统包括:①PLC控制系统;②机器人控制系统;③示教器。其主要系统采用PLC为控制核心,机器人控制器的I/O信号模块与PLC通信模块可以直接或者间接通信,电池极板输送链上的极板信号和极板末端执行器信号也是通过PLC然后传递给机器人,进行信号的传递。工作时,搬运机器人按照人工示教好的程序正常运行,同时受PLC的控制。 (1)机器人示教器,机器人编程有离线编程和示教编程,示教再现是机器人编程应用较广的编程方式。工作人员观察产品生产的工艺流程,然后根据生产实践,对工业机器人的动作位姿、工作路径、运动参数和工艺参数进行调试,按照需要的任务要求完成机器人编程示教。整个编程过程中,机器人示教器是一个重要的编程设备,通过其对机器人进行控制。 (2)机器人控制器其核心是多轴运动控制平台,实现对多轴机器人的关节伺服控制,同时又相应的机器人专用端口和机器人通用端口和PLC进行信息传递,同时设置相应的总线控制和以太网控制端口,方便与外部设备通讯。 (3)PLC控制柜,其以PLC为控制核心,将机器人控制柜、传感系统、人机界面进行集成控制,整个搬运系统的实现主要依赖PLC的逻辑控制的调试与实现,具有非常重要的作用。 控制软件设计 机器人工作站的控制软件设计以PLC为中心实现。根据搬运工作站的工作原理,首先采用示教器对机器人进行轨迹路径规划,考虑机器人在搬运极板时所需的运动学和动力学性能,以最舒服的姿态来进行工作。将机器人进行轨迹示教完成以后,再根据机器人抓取执行器极板准备、极板到位、进行抓取、机器人进行搬运到极板架放置,放置结束后重新循环开始的整个过程,然后进行程序的设计和实现。整个系统程序的设计包括系统初始化、手动运行、自动运行、信号显示系统和系统复位。 (1)系统初始化:当整个控制系统开机时,按一下初始化按钮,机器人搬运工作站所有的执行动作按照一定的先后顺序恢复到预先的原始位置,使机器人工作站处于准备运行状态,随时准备开始工作。 (2)手动运行:机器人单机示教轨迹路径,完成路径的最佳规划,手动运行是用来对整个机器人各个功能块进行调试时的状态。通过手动运行模块,可以调试抓取执行器的开合动作,以此来进行极板的抓取力度调节。同时也可以实现抓取后整机联合运行调试操作,让机器人、末端执行器和极板输送架达到最佳状态。 (3)自动运行:自动运行状态是整机连续工作状态,一旦参数都设置好后,正常情况下进入自动运行状态,搬运工业机器人能自动完成电池极板的抓取,搬运、放置循环工作,实现生产的自动化,可以通过按钮或者触摸屏上的启动开始,接受停止指令后停止。其程序的设计可以采用步进顺序控制,按照一定的生产流程来实现工业机器人极板的搬运工作。 (4)信号显示系统和复位系统:通过信号显示可以观察系统的运行情况,可以观察其各功能状态,通过信号显示来判断程序运行的进度、状态以及极板的搬运数量。同时一旦出现故障,可以通过报警灯来提示故障问题,通过触摸屏显示系统快速找到故障点,并且可以通过相应的复位系统进行复位。 人机界面设计 人机界面的设计,主要通过触摸屏和组态来实现搬运机器人控制系统和人的人机交互,通过信息的交流来实现人对搬运机器人的控制。随着信息技术的发展,传统的纯按键操作平台逐渐被触摸屏所取代,可以克服接线繁琐、按钮多等诸多问题。同时,随着组态技术的发展,可以组建适合工业生产相应的控制系统界面,包启动、停止、循环、单机及数等功能,同时可以制作相应效果更好的系统界面。 本文选取昆仑通态的触摸屏为人机交互界面,同时通过昆仑的MCGS组态软件集成实现机器人工作站的控制要求,根据机器人工作站功能及控制任务的要求,配置相应的对象定义,编辑属性和状态特征等,同时制作组态画面来显示状态信号和一系列的人机操作等。人机界面完成控制硬件与软件的联系,建立了操作人员与监控层的控制与沟通平台,在机器人搬运工作中方便灵活。 3 总结 本文开发了一种铅蓄电池的极板搬运机器人工作站,该极板搬运机器人工作站可以实现极板输送、定位抓取、搬运、放置等功能,同时控制系统采用PLC和昆仑人机界面进行控制来实现整机的运行,其操作性高、性能稳定,从而代替人工实现极板的自动搬运,大大提高工作效率。 【参考文献】 [1]王贵民,马晓建,赵信正.蓄电池生产线极板上料装置[J].轻工机械,2014,3(32):47-50. [2]王田苗,陶永.我国工业机器人技术现状与产业发展技化发展战略[J].机械工程学报,2014,9(50):1-13. [3]顾震宇.全球工业机器人产业现状与趋势[J].机电一体化,2006,2:6-9. [4]陈立新,郭文彦.工业机器人在冲压自动化生产线中的应用[J].机械工程与自动化,2010,3:133-135. [5]王海霞,__宏,吴清锋.工业机器人在制造业中的应用和发展[J].机电工程技术,2015,10(44):112-114.
电气自动化机器人论文
现在电气自动化已经运用到了机器人领域了,以下是我整理好的电气自动化机器人论文,欢迎大家阅读参考!
摘要: 随着经济全球化和现代化的发展趋势,工业设备也出现了越来越多的智能化和自动化。自动化的工业就是要将焊接机器人普及应用。以提高焊接质量和工作效率,改善工人强度和工作环境,并积极降低了传统操作技术,改变生产流程,缩短了产品生产周期,节省成本。
关键词: 电气自动化;机器人;配套焊接;工作站
在应对工业现代化和厂间自动化发展的过程中,只有实现焊接变位机与焊接机器人的结合应用,才能保证焊接机器人的全自动化运行。与此同时在汽车和电子等领域的焊接工作,也能降低传统人工操作所带来的种种弊端。从而进一步提高产品的质量和生产的效率以及厂间的流水线运作水平。
1技术方案
焊接机器人属于工业机器人中的现代化产品。它可以实现多用途运作。其中可重复编程的自动控制装备促使了焊接机器人广泛应用于工业自动化领域。而柔性化即说由由计算机系统或物料储运系统等信息技术,控制数控机床设备的自动化运作。所谓机器人柔性焊接工作站就是由计算机信息控制系统所控制,焊接机器人与焊接变位机相结合,实现自动化的流水线作业。这个小型运作流程可以焊接工件标准在在米以下的各类产品。不仅将设备运作中的自动上料和半自动定位装卡、自动焊接和自动卸货等应用功能集中为一体,而且还采用了统一的流水线技术方案,将工件定位工装和智能搬运器、变位机、构件周转架和码垛架以及送料机构等构成生产设备,其中运用电气及气动系统作为生产程序。从设备与程序的双向革新实现生产效率的提高,工作强度的降低。
系统采用专用屏蔽电缆将西门子S7-300、S7-200、ET200、机器人适配卡、触摸屏等控制设备连接组成PROFIBUS-DP通讯链路的网络设计方案,在后期编制软件时对网络通讯状态进行实时监视和处理,避免出现通讯故障造成停机。
2变位机的设计
变位机是专用的.焊接辅助设备。工作原理是应用于回转工作的焊接变位,实现加工位置和焊接速度的再次精确。它拥有回转和翻转两个系统,通过工作台的升降、回转翻转来完成角度装配以及无级调速等自动化运作,可与焊机和操作机一起配套使用,进而组成自动化焊接中心。工作台的焊接工作,要求精确度和时效率很高,所以这对于手工作业是个难题。变位机的回转应用为焊接设备带来了调速精度极高的变频器无级调速以及可对工作台完成远程操作的遥控盒设备。这些变位机的设计不仅将操作机和焊接机的操作系统联系起来,还实现了整个焊接工作的联动操作,达到理想的焊接速度。
这里说的变位机属于机器人柔性焊接工作站的核心部件。其中包括钢结构、旋转轴、翻转轴、导轨、快速卡环等工件设备所组成,各自的功能迥异。变位机的精度决定着机器人柔性焊接工作站的焊接效果。譬如机器人柔性焊接工作站的焊接精度为以内,所以这就要求变位机必须以直径米的转盘为核心设备,将其旋转180度定位精度和翻转定位精度都应该在以内。
3智能搬运器的设计
智能搬运器即指借用电机设备实现货物的升降与横移等动作的卸货机器。其中包括
升降架,横移架、导向套、横移轮、伸缩叉臂等主要组成部分。它在机器人柔性焊接工作站的主要作用是提高码垛效率,利用导轨把焊接变位机上装卡完毕的工件,搬运到指定的码货架。智能搬运器的使用组成了自动化流水线的运作,还大大降低了劳动强度,整体提高了工作生产效率。
4工件定位工装的设计
工件定位工装即指在应对不同工件的装卡过程中为实现工件的快速定卡,利用气缸的弹簧与拉钩或变位机的快速卡环,同时实现工件的定位与卡紧两个动作。借用定位架安装在通用的工装支座上,利用变位机实现变位机与工件定位工装的快速连接。
5机器人动作的设计
作为柔性焊接工作站的主角,机器人的安装位置尤为重要,由计算机模拟后进行定位,而机器人的动作、姿态、轨迹、速度等根据实际工况和其它联动设备的配合,在现场经过反复示教逐步达到高速协调统一, 最终满足系统工作节拍和操作精度的设计要求。
6控制系统设计
控制系统不仅在运作过程中将人机界面和伺服闭环驱动以及PLC定位模块等主流自动化控制元件语义融合,还在操作过程中确保了精度和维护工作。
6. 1PLC总控与机器人控制器信号
(1)机器人位置信息
在回到原点或者进入非干涉区中位置时,焊接机器人会预警发出信号来通知PLC总控。焊接机器人会在第一时间完成信号互锁和控制点用。譬如在焊接过程中为了规避焊接机器人由于意外转台而造成的撞机事故,PLC会将转台转动和夹具动作进行严格的屏蔽。
(2)夹具控制指令
夹具控制指令即指由于焊接机器人在焊接工作中可能对某些焊点位置焊接不到,所以在设计夹具时要对某个夹紧单元进行补焊操作或控制夹具旋转,促使焊接机器人全面焊接的控制指令。焊接机器人对对焊接中途的夹具控制发出指令,利用总线传达给夹具控制单元,保持补焊操作时及时打开夹紧单元的补焊工作,确保系统操作,规避失误。
(3)系统信号
系统信号即指可通过PLC总控,在系统触摸屏上完成显示。如此有利于操作人员的监督和查询行为。其中包括系统初始化信息和故障信息以及程序执行进度等等。
6.2PLC总控与焊装夹具控制单元信号
焊接夹具上都安有夹具控制单元。这个夹具单元由由ET200总线端子和I/O端子以及总线电源共同组成。工作原理为夹具上包括工件到位信号、气缸夹紧打开信号、夹具操作按钮等输入与输出信号都必须连接到I/0端子上,再通过ET200M总线端子将I/O信号转为总线信号,以总线方式传达给PLC总控系统完成对夹具的控制指令。
6.3PLC总控与触摸屏信号
生产产品的选择与显示
工作站都配有触摸屏。触摸屏显示控制指令。产品需要更换时可在生产前于触摸屏上选择产品种类,在确定与系统识别夹具相一致时,确定系统执行按钮。否则会有预警信息以保证生产的准确率。其中生产产品的种类以及机器人工作状态选择等生产信息都可在触摸屏的主页中根据显示完成操作。
手动控制及其故障处理
触摸屏操作显示可实现对工作站所有输入与输出点的单独控制。这种简单易操的手动系统,实现了一体化的调试、维护和故障处理。通过系统的自动查询功能,可对有逻辑关系的控制点予以动作保障。当系统出现预警与故障,可根据弹出的窗口进行故障信息排查,系统会提出处理意见。当故障消除后还需要人工操作完成复位行为以确保故障处理完毕。
7安全回路设计
工作站安全配置尤为重要,实际设计中应将机器人安全回路、区域光栅安全回路、控制系统安全回路、现场操作及其它设备的安全回路统筹集成,按照硬件和软件双重锁定方式进行布线和编程,可靠实现当安全监视点出现问题立即停止相关运动设备、及时发出声光报警并在触摸屏上显示安全报警原因。
结语
本文从机器人柔性焊接工作站的技术方案入手,对焊接机器人系统的关键部件变位机、智能搬运器、机器人本体以及工件定位工作的具体设计进行了简单地探讨。不仅表明了本设计方案对于解决变位器精度、通讯问题、搬运器取物以及机器人动作等有着深远影响,还对工件的迅速定位和卡紧的技术难题也予以了合理解释。
参考文献:
[1]吴志亚.机器人焊接智能化技术浅析[J]廊坊师范学院学报(自然科学版),2008(10)
[2 ]李晓辉,汪苏.焊接机器人智能化的发展[J].电焊机,2005(06)
[3]霍文峰.基于PLC的焊接机器人柔性控制系统[J].农业网络信息,2012(07)
可以随意使用,用户可以根据情况定义数据,更加方便的使用。
ABB一直聚焦本体结合应用,坚持两条腿走路。比如一个6轴,是一个很传统固定的本体,但如果要增加它的附加值,就需要驱动外部的设备,比如冲压,一分钟能抓5件,用了集成的外轴,一分钟能抓12件,这就能体现出优势。
和其他行业一样,ABB在汽车行业一直引领技术方向。汽车行业的很多亮点应用都是ABB首创,比如冲压环节的伺服七轴,在车身行业提出的柔性制造理念,用AGV把生产单元串起来的生产方法等等。ABB期望从技术方面引领整个行业的发展。
得益于ABB整个行业都做,既做本体又做集成,所以面对今年疫情,ABB受到的影响并不大。
基本数据:
bool 逻辑值:逻辑状态下赋予的真或者假。逻辑值有两种情况:成立和不成立则逻辑值为真使用true或1表示不成立则逻辑值为假使用false或0表示。
byte 字节值:用于计量存储容量的一种计量单位,取值范围为(0-255)。
num 数值:变量、可存储整数或小数整数取值范围。
dnum 双数值:可存储整数和小数,整数取值范。
string 字符串:字符串是由数字、字母、下划线组成的一串字符。他在编程语言中表示文本的数据类型。
stringdig 只含数字的字符串:可处理不大于4294967295的正整数。
1. abb机器人输入的模拟量通常是以电压信号的形式输入的。2. 这是因为电压信号可以通过模拟转换器(ADC)等转换电路转换成数字量方便进行数据处理和控制。3. 另外,部分ABB机器人也支持模拟量输入直接与机器人控制器相连,实现更加方便的数据采集和控制功能。
ABB机器人输入的模拟量指的是机器人通过传感器获取的模拟信号,例如温度、压力、流量等物理量。这些模拟信号在经过采集之后,需要进行转换成数字信号,以便于机器人控制系统进行处理和分析。这个过程称为模拟量转换。模拟量转换通常包括两个步骤:采样和量化。采样指的是以一定的时间间隔对模拟信号进行取样,将其转化为一组离散的数值;量化则是将这些数值转换成数字信号。在ABB机器人中,常用的模拟量转换器有ADC(模拟-数字转换器)和DAC(数字-模拟转换器)。进一步地,模拟量转换还包括信号放大、滤波等处理。信号放大是为了增加信号的幅度,使其能够被控制系统识别;滤波则是为了去除噪声和干扰,提高信号的精度和可靠性。总之,ABB机器人输入的模拟量需要经过模拟量转换,将其转换成数字信号,以便于机器人控制系统进行处理和分析。这个过程包括采样、量化、信号放大、滤波等处理。
一直以来, 机器人的应用领域主要分为: 工业机器人, 专业服务机器人, 和个人/家用服务机器人. 服务机器人部分我们会在以后的文章里介绍; 这里只说工业机器人. 对我们普通老百姓来说, 工业机器人自然没有那些花哨的服务机器人那么有趣, 然而从商业利益来看, 现在工业机器人却仍然占据了整个机器人市场的大头: 在2008年, 它的市场规模大致在190亿美元 (包括工业机器人本身, 以及相关软件, 相关附件以及配置系统等), 而同时服务机器人市场估计在110亿美元左右 (相关数据参看该网站出的报告简要). 毕竟这个时代还是钱说了算, 于是我们可以看到现在国际机器人联合会的主席就来自工业机器人的一家龙头企业ABB了.工业机器人主要用在制造行业, 能够做焊接, 磨削, 喷涂, 搬运, 分拣, 装配, 包装等等. 和人相比, 优点主要有两个: 精确和稳定. 精确在于它一般能做到零点几个毫米级的运动控制, 稳定在于它可以24*7地这么做下去. 和其他自控工具相比, 优点主要是一个: 系统柔性大, 即所谓flexibility; 一套用于给BMW7系喷涂的机器人, 换上BMW5系,只要重新编个程就可以, 生产柔性很大.我个人更愿意把工业机器人看作是传统机械+电子自动化产品的延伸, 而不是披着神秘色彩的特高新科技领域. 大家也许都见过数控机床,能够以编程的方式, 让机器以极高的精度按指定路径运动, 从而完成各类工业加工应用. 那么绝大部分的工业机器人和数控机床差不多, 只是由于机械运动的方式不用, 而工业机器人往往有更大的自由运动的空间,而较大的应用灵活性. 好吧, 如果你还从没有见过一般工业机器人长什么样, 那么请点击该链接. 你可以看到,它一般是呈手臂型的, 而且底座是固定住, 无法移动的, 因此我们也把它叫做机械臂. 当然光一个机械臂还动不起来, 它需要背后的控制系统, 一般是像一个柜子一样的东西, 里面包含了逻辑控制/运动规划的主计算机和电机驱动等等; 这个柜子一般会晾在机械臂一旁. 因此, 一套完整的可使用的机器人系统至少包括机械臂和控制柜, 另外通常还算上一些仿真和应用编程软件等. (于是相应地, 一个典型的工业机器人研发机构, 也自然设置成机械+电路+软件三部分小组).下面我们捎带说点机械性的知识, 不感兴趣者可略过 :)机械上来说, 一般机器人的关节可以有两种选择: 旋转式(rotational)和平移式(prismatic). 而一个机器人少则3个关节, 多则十多个关节, 关节的数量决定了机械臂末端能达到的三维位姿空间; 而根据这么多机械关节的不同组合, 也可以分出很多种工业机器人类型来: 支架式(笛卡尔坐标式)运动的所谓gantry robot, 这类机器人只能在支架上沿笛卡尔坐标系线性移动,一般用来工厂里搬重物, 做装备等. 这类机器人可以做的很大, 比如有做到近四十米,高八米的 (可以想象完全是一个可以内部移动的两层楼了...); 柱状/球状机器人, 这里的柱/球状是指机器人通过每个关节的运动, 使其末端点能达到的三维空间范围的形状. (这些个人倒不太常见, 可能是用在小型自动化领域内.)SCARA机器人(也可参见Wikipedia上此文), 有两个旋转关节和末端一个平移关节. 这种类型机器人在空间Z轴上是被锁住的, 因此常用来插螺钉啊,搬搬小东西啊之类的, 很灵活小巧, 速度也快. 看着干净, 还不占地. 最万能的多关节型机器人(articulated robot), 这种机器人一般有六个旋转关节(人的手臂也全是旋转关节, 不过关节数可比这类型机器人多多了...), 覆盖工作空间大(能扭出各种姿势来), 载重相对较高(更有力). 因此也是几个工业机器人大厂商的主打产品.并联机器人(parallel robot), 这类机器人手臂不像前面介绍的那样一段串联着一段, 最终连接到末端, 而是直接各段手臂直接连接到末端上. 好处是什么? 避免了手臂运动误差的串联叠加效应, 每一段手臂的控制都或多或少会有误差的, 如果是串联, 那么前一段手臂的误差会直接叠加在接下去一段的误差上; 这样一段串着一段, 误差也就一段积着一段了. (想象一下我们手臂的串联效应, 现在如果我要伸手去前方1米处的苹果, 于是规划好了以肩膀与上臂60度, 上臂与前臂30, 前臂和手掌20度的姿态可以拿到, 于是闭起眼睛驱动我们的手臂达到这个目标姿态, 但由于每个关节的控制总有1度左右的误差范围, 那么累加起来, 到最后手掌上, 离真正的目标姿态就有了3度的角度误差范围.(事实上, 由于几何关系, 误差不一定是简单的相加, 但这里就不细谈了); 而并联的好处便是消除了这种串联误差效应, 因而能达到很高的运动精度; 坏处呢? 那就是运动空间受限了, 有那么多支手臂一起连着末端, 还怎么伸展的出去呢? 关于这类机器人的历史可参看这里, 其常用在飞行模拟器上; 也有用在分拣上, 比如号称速度最快的工业机器人-ABB的FlexPicker, 最快能在一分钟之内做150次的物品拾起和放下, 常常用于在传输带上拣面包抓香肠等.接下来再说点工业机器人控制的知识:工业机器人的运动和我们人的运动的首要区别, 是它并没有视觉这样的末端运动的闭环控制. 人可以在发现手没有够到水果时, 继续前伸手, 直到观察认为可以拿到为止; 但工业机器人不可以, 它没有眼睛(没有图像检测系统)来查看它是不是伸到了目标点. 所以从这个角度来说, 它是一个开环控制. (至于开环控制和闭环控制的定义, 大家可以参见wikipedia的定义. 大致意思是闭环控制会将系统检测到的信息反馈到控制器里去, 而控制器会利用这个反馈信息区调整自己的控制指令, 使得被控制的变量可以更快/准确/稳定地达到目标值; 而开环控制则没有或忽略了反馈信息, 即控制器充满自信地一番计算后, 直接发出控制指令, 而至于被控制的量是不是达到目标值了, 就不理睬了. 最经典的反馈控制是PID, 在化工流程, 运动控制等有非常广泛的应用). 所以, 工业机器人的一个基本的运动控制过程一般是这样的: -> 用户输入目标点(如三维空间里的XYZ,以及姿态坐标) -> 机器人通过对自己手臂和关节的分析, 计算出每个关节应该达到的目标值(旋转关节就是指要转到哪个角度, 平移关节就是指要移动哪个距离上) -> 计算机将这些角度值发送给电机驱动程序-> 电机驱动程序利用一定的控制方法(比如这儿就可以用PID了)来使电机驱动到目标值; -> 结束大家于是看到, 机器人只管把关节电机驱动到目标值, 至于之后每个关节连起来后是不是就真的到达了目标点, 它就管不着了. 你也许会问, 要是机器人的手臂参数就有误差(. 热胀冷缩而长度改变, 内部掉了灰尘而掐着关节怎么办), 那么计算得到的关节目标值就会包含这些误差, 于是加起来就更不对了, 难道也不考虑么? 是的, 如果是这样的话, 机器人也只能"瞎"着眼睛自顾自的往不准确的目标点跑去了. 你也许会再问, 那也简单, 给机器人加双"眼睛"不就行了么, 上面装个摄像头, 实时监测机器人末端是不是真正达到了目标点, 这样要是真没达到, 就可以把这误差信息反馈给机器人,机器人就可以调整控制, 不就可以这误差消除掉了? 不行, 至少现在可不行. 第一, 现有的图像算法很难通用地判别好一般工业环境下的一般机器人的末端, 更不用说稳定地判断机器人在三维空间里的立体姿态信息了(稳定而准确地通过摄像头获得空间信息本身是视觉/机器人领域一个研究大难题, 这在以后的文章会再次提到). 第二, 现有的摄像头以及图像算法的本身又会带来误差问题. 有些工业应用对机器人运动控制的精度要求达到毫米级, 而如果摄像头本身像素跟不上, 机器人还没到目标点就报告成功, 那便适得其反了. 可见在工程环境下应用一个技术或产品, 其顾虑是非常多的, 其中有效, 稳定, 和鲁棒(robust)往往排在最前面. 放到工业机器人的设计里, 就是得让机器人不管天冷天热还是电磁辐射, 都得能正常得以预定精度运行, 不打折扣. 一套工业机器人系统的寿命要求十年不算长, 于是这十年就得保证能一直正常运行. 因此回到控制上, 我们就得非常小心得考虑每一个关节的特性模型. 现在市场上, 多关节运动机器人的到达精度一般能在零点几个毫米上, 什么意思呢? 就是如果你切着目标点出拉一根头发丝, 那么机器人"闭着眼睛"的每次运动都能恰好碰到这发丝而不会冲断. 你可以继而想象, 每一个关节本身的控制精度会达到什么程度!正是由于精度控制的重要性, 对于机器人厂商来说, 自家的机器人使用什么样的机械设计, 哪种控制方式, 采用哪套控制参数, 以及怎样的驱动电路, 可都是绝不外传的看门本领了.在基本的运动控制之上, 还有一层就是路径规划. 如果说运动控制是让机器人更好的达到一个点, 那么路径规划就是让机器人更好的走出一条(直/曲)线来.比如我们会限定机器人以直线方式平移到第一个目标点, 然后以圆弧方式移到第二个点; 那么机器人就会按照一定的路径规划算法, 计算出整条路径要走的中间点, 然后利用运动控制, 循着中间点一直走到终点为止. 尽管理论研究上, 这方面的规划方法已经相当成熟了(基本上你已看不到高校会有老师还做工业机器人的基本路径规划...). 如果你曾了解过机器人学, 也会觉得这是最基本的小儿科知识了. 但一放到工程应用上, 就总会有更深的学问出来. 关键词只有一个: 精度. 前面提到天冷天热电磁辐射,这儿还有机器人本身的运动过程中的变化的惯性, 在这么多可变因素的影响下, 仍然要保持精度, 非得把机械物理控制原理给解剖地一清二楚不可. ABB在工业机器人领域算是一个领头了, 其机器人控制器用来打广告的主要技术就是所谓的True-Move,. 啥意思呢? 就是不管快跑慢走, 该走直线就走出直线, 转弯时该走圆就走出个正圆, 是truely right Move. 听着简单吧? 可别人就是做不出来或做不好, 而ABB就能靠它拿着成百上千万的订单.好, 现在有了路径规划来计算整条路径的运动点, 还有运动控制去到达每一个点, 那么一个工业机器人系统该有的功能算是完成了. 如果配上一套软件, 可以让用户进行连续地对多条运动路径进行编程, 并能把程序下载到机器人控制器上执行; 另外还有软件可以让用户进行仿真运动验证, 而不用每次都跑到真实机器人上去调试; 那么开一家机器人公司的技术储备就已经完善啦. 那么说到公司, 我们再看看当前工业机器人市场的情况.说到机器人制造商, 那么脑子里冒出来的一般就是瑞典的ABB, 美国的Comau, 日本的Denso, Epson, Fanuc, 德国的Kuka, 日本的Motoman等. 这些公司(或母公司)一般都在机械,电子, 或控制行业有至少半个世纪的经验积累, 因此有很强的技术优势. 其中ABB属于技术硬, 产品范围广, 但思维较稳重保守型, 不愿冒进, 属传统强势; 德国Kuka则秉承德国人做精做强的特点, 很快跟进,而且和德国宇航局(DLR)有不少合作, 后援很强. 经常会有些业内算是大胆的动作, 比如赞助足球机器人比赛RoboCup(因为那年我正好去了Atlanta参加Robocup小型组的比赛, 而Kuka是首席赞助商,所以印象深刻); 推出轻小型工业机器人(Light weight robot, LBR), 这是一个你可以放在桌台上,或拎在手上的机械臂, 其实是DLR的研究成果的市场化; 研发移动平台的机械臂; 把机器人放到迪士尼乐园里做刺激的游戏飞椅; 第一个推出能举起一吨重物的机器人; 经常把机器人放到好莱坞电影里客串等等; 日本的Denso,Epson做的多是小型化机器人, 所以在消费电子行业用的比较多, 比抓放手机,芯片之类的; 而Fanuc和Motoman则是和ABB激烈竞争的对手(类型的例子, 大家可以想象汽车行业里日本丰田,本田对老福特通用的挑战方式么?). 国内的情况较为惨淡, 沈阳新松还有哈工大曾经自己开发过工业用机器人, 甚至曾在一汽的生产线上使用过(但据说已不再用,应该是机器人自己带来的产品"问题"比效益多), 但已经不知道现在还在不在做了, 听说是基本转做其他类型的机器人去. 国家曾有一段时间支持过工业机器人的攻关开发, 也联合了多个工科牛校的工作者们, 但仍然没有做出能和以上这些公司竞争的市场化产品出来, 可以猜想主要地还是精度, 稳定度等工程老问题 (当然也有人将原因推在国内制造精度跟不上, 但其实在这样全球化的环境下, 基本元器件国内国外的都能购买, 并没有让国内企业一切打包制造的必要). 慢慢地, 国家也没有在这方面继续投入, 所以现在看来, 国内在自创工业机器人上基本是停滞状态(如果同学们看到还有教授博士拿这个捞钱做项目的, 就得小心看看是不是忽悠了); 如果有研究项目在做,那主要也偏向于工业机器人附件, 如视觉/力感应等检测系统等. 从全球来看, 当前工业机器人总使用量在100万台左右, 并以平均每年10万台左右的速度增加. 使用量最大应该是日本(占全球1/4~1/3), 接着是德国北美韩国中国等; 09年由于经济危机, 使用量的增长受到了很大影响, 可能只有往年的一半左右. 从应用行业来看, 工业机器人一般分为汽车行业(automotive industry)和其他行业(general industry), 大致是各占一半. 汽车行业上一般有冲压, 动力总成,白车身,喷涂以及总装(都是汽车制造工业的术语)等, 每个工艺都可以有工业机器人的参与; 而其他行业则多了, 从搬运"中华"香烟到打磨"波音"飞机叶片, 只有想不到的各种千奇百怪的应用. 由于工业机器人技术的相对成熟, 以及日本机器人制造商的低价策略, 整个机器人市场对一套机器人系统的出价也在逐渐下降, 所以现在利润空间并不算高; 比如Kuka集团的08年税前利润率(EBIT/Revenue)在4%, 而ABB的机器人公司也只是贡献了5~6%的税前利润率(相对ABB的电力和自动化公司几倍的销售额和利润率, 这可不算是有吸引力的), 这和IT行业Intel或Google动辄20~30%的利润率无法相提并论(当然即使IT业, 也要看公司的行业处境, 比如09年至今AMD的利润率就是负值了...). 当然, 我想这也都是和相关行业整体利润水平密切相关的, 比如自动化行业和制造行业(如典型地, 西门子和富士康的税前利润率均在5%左右或以下), 而工业机器人行业夹在二者中间, 自然高不起来太多. 当然, 利润空间的降低往往意味着成本降低或技术进步, 对消费者来说并不是坏事. 因此, 现在机器人研发的一个重点方向就是怎样降低成本, 以开发出白菜价般的工业机器人系统来, 希望通过这种方式来极大地扩张其应用行业的范围和深度. 而另一方面, 销售工程师们也在竭尽心力, 到处搜寻能够被机器人化的具体工艺来, 推动其自动化进程. 也许有一天, 人类会对"体力劳动"这个名词开始陌生, 因为和这个名字有关的所有工作都已被工业机器人来代替; 而这些机器人创造出来的财富, 便足以支持地球上整个人类去畅游在创造性的劳动乐趣中了.
[RobotStudio软件视频教程]ABB机器人虚拟仿真与离线编程软件基础操作,机器人示教编程与仿真运行。
1、绝对位置运动是指机器人的各个轴都有一个绝对零点,机器人在任何位置各个轴都是在绝对零点的位置转了多少角度(或者各轴的绝对编码器多少脉冲),任何形式的运动轨迹都是通过这样的方式来标记每个程序点,具体点到点的运动轨迹可以选择直线、圆弧以及每个轴都以最快速度到达目标点三种方式,其中直线、圆弧轨迹规则,轴方式轨迹不规则且不好控制。
2、同样外部轴的角度也是在定好一个零点之后,相对零点转了多少角度。
3、外部轴是指除了机器人自身带的轴之外根据需要,另外配置上去的轴,如变位机,点焊钳等。
4、转弯曲数据是指机器人在行走的过程中到达每个程序点的接近程度或者说精度,数据越小,越接近示教程序点,精度越高;数据越大,越偏离示教点,精度越低。
如下图,P1、P2、P3是实际示教点,而曲线就是机器人轨迹点。
随着工艺标准要求越来越高,以及普通去毛刺人工招工难度越来越大,针对压铸与粗加工零件,机器人替代人打磨去毛刺更为方便。和氏工业根据工件去毛刺要求确定机器人夹持主轴或工件;采用浮动机构,刀具可根据工件的形状自动仿形;加工刀具可选择铣刀、旋转锉、磨头、砂带、毛刷等;采用气动或电动主轴,自适应产品披锋大小;加工不同材料可以预设浮动压力;可连接工业机器人标准法兰。
主要在工业机器人/机械臂领域,写一些本领域个人认为非常好的偏向总体概述和控制方向的资料,欢迎各位随时补充。综述类:综述类书籍的章节和内容设计偏向于教材,范围广,深度较浅,内容差别不大,看透1~2本即可。《机器人学导论》JohnJCraig著,贠超等译。综合类入门教材,从最基本的坐标变换讲起,内容涉及正/逆运动学、静力变换、操作臂动力学、轨迹规划、机械设计、控制等。《Robotics,visionandcontrolfundamentalalgorithmsinMATLAB》著名的Matlab机器人工具箱RoboticsToolbox作者PeterCorke编写的机器人入门教材,书中的实例很多,都使用机器人工具箱编写,配合Matlab可以随看随试。PS:该工具箱不仅包含工业机器人的内容,还包括移动机器人,视觉等很多相关模块,并且配有非常详细互动式Demo。上面提到的《机器人学导论》Matlab编程习题部分就要求使用该工具箱来完成。有感兴趣的同学可以到主页上去下载使用:机器人控制:《RoboticsModelling,PlanningandControl》深入讲解机器人的建模,轨迹规划,运动控制,推荐。《RigidBodyDynamicsAlgorithms》RoyFeaturestone著,主要讲刚体的动力学建模,github上也有不少相关的代码可以参考。《ImpedanceControl:AnApproachtoManipulationPart1~Part3》NevilleHogan的阻抗控制三部曲,学习柔顺控制的必读论文。《机器人操作的数学导论》港科大李泽湘教授参与编写的一本经典书籍,从数学的角度系统地介绍了机器人操作的运动学、动力学、控制及运动规划内容,主要包含旋量理论、指数积建模,机器人动力学等内容,推荐数学好同学读一读。《RobotControlOverview:AnIndustrialPerspective》以ABB机器人控制器的历史和功能为例,介绍了工业机器人控制器的发展和未来展望,推荐阅读。百科全书类:《HandbookofRobotics》Springer版,机器人学的百科全书,有中译版,但市场上已经买不到了,大图书馆应该会有,用于资料查阅很不错。还有一本日本机器人学会编写的《机器人技术手册》,也属于百科全书类型的,有兴趣的可以找一找。公开课:推荐斯坦福大学的机器人学,可以在网易公开课观看斯坦福大学公开课:机器人学,偏重于讲机器的控制,主讲人是oussamaKhatib教授,机器人领域的大拿,Springer版的机器人手册他是编者之一。安全规范:最近人机协作机器人很火,cobots最重要的一个特性就是安全,了解主要的安全规范也很必要。《ISO10218-12011RobotsandRoboticdevices-Safetyrequirementsforindustrialrobots-Part1Robots》《ISO10218-12011RobotsandRoboticdevices-Safetyrequirementsforindustrialrobots-Part2RobotSystemsandintegration》最新版的通用工业机器人安全规范,对机器人的控制器,机械本体,集成应用,工具,工件等各方面安全要求做了详细说明。还有《ISO/TS15066RobotsandRoboticDevices-CollaborateRobots》开源项目:OROCOS,强大的开源工业机器人控制平台,有非常详细的文档,同时该项目的参与者基于OROCOS撰写了大量的高质量论文。网址:TheOrocosProjectROS-Industrial,ROS里专门针对工业机器人的包,提供里一个完整的框架,可以和市面上多款商业机器人通信并进行控制,logo很有意思~网址:ROS-IndustrialROS入门的话,推荐《AGentleIntroductiontoROS》’Kane著,写的非常清晰易懂,读过的ROS教程中写的最好的。答案摘自机器人家,可以看看,希望对你有用