关于茶叶的功效论文
在日常学习和工作生活中,大家都跟论文打过交道吧,论文是讨论某种问题或研究某种问题的文章。为了让您在写论文时更加简单方便,下面是我为大家收集的茶叶的功效论文,供大家参考借鉴,希望可以帮助到有需要的朋友。
摘要
随着科学技术的发展,人们对茶叶有了深一步的认识,从分析成分到功效分析再到提取制备。近年来,茶叶的成分提取物已经应用到食品加工、化工、医学等领域。
关键词
茶叶 功效成分
前言
茶是我国的一种传统饮品,从古至今已有数千年历史。今天,茶叶依旧广泛受到中外人民的喜爱,成为了一种一直流行的饮料。除了因为独特的口味风韵和文化,茶受欢迎的另一个原因,便是它渐渐被发现和重视的保健功能。随着科学技术的发展,人们对茶叶有了深一步的认识,从分析成分到功效分析再到提取制备。近年来,茶叶的成分提取物已经应用到食品加工、化工、医学等领域。本文对茶叶的相关资料以及已知的功效成分当今的研究开发文献进行了归纳介绍和作出分析。
1、蛋白质
茶叶中含有大量的蛋白质,约占茶叶干重的15%-23%。在茶叶的加工过程中,茶蛋白质能与茶丹宁结合,加热后会凝固,水溶性蛋白只占总蛋白质的1%-2%,绝大部分为非水溶性蛋白,主要包括谷蛋白(约80%)、醇溶蛋白(约13%)、白蛋白(约3%)、球蛋白(1%)等。由于茶叶蛋白中80%以上的是相对分子质量很大的谷蛋白,谷蛋白分子间由二硫键和疏水基团交联而凝聚,很难被溶解,所以在正常的喝茶过程中,茶叶蛋白质对人体并无太大的营养意义,大部分蛋白质会残留在茶渣当中。
经大量科学研究指出,茶叶蛋白具有保健功能。1994年长海医院营养科蔡东联教授对动物和人体做了大量的实验,证明茶叶蛋白具有一定的保健功能[1]。Bu-Abbas A 等茶叶蛋白质抗突变的研究中发现茶叶蛋白质对接受放射治疗引起的致突变效应有保护作用。2005年活泼等人[2]研究发现非水溶性茶叶蛋白质具有明显的降血脂效果,对动脉粥样硬化和冠心病有一定的预防作用。
2、氨基酸
茶叶中已发现的氨基酸有26种,其中有6种为非蛋白质氨基酸。谷氨酸和天冬氨酸是茶叶中重要的氨基酸,在茶叶中含量最高,是构成茶叶鲜爽滋味的重要成分。
茶氨酸是茶叶中游离氨基酸的主要部分,大量存在于茶叶之中,具有焦糖香味和跟味精类似的鲜爽味。经动物实验表明,茶氨酸能使大鼠的收缩压、缩张压和平均血压有明显的下降。日本麒麟公司生产的茶饮料就添加了茶氨酸[3]。Kobayashi K等人通过对志愿者口服茶氨酸水溶液(50-200mg/mL),结果表明茶氨酸具有增强脑中α波的强度,使人放松和提高记忆力的作用[4]。经过多年研究,茶氨酸的提取和合成工艺已经相当成熟,主要有化学合成法、微生物发酵制备、植物组织培养的方法,并且已经投入工业生产应用当中。
γ-氨基丁酸也是茶叶中含有的一种有多种功能的氨基酸。通过厌氧培养,能获得含量高达150mg/100g的干茶。该种氨基酸是一种重要的抑制性神经递质,能起到一定的镇痛作用。摄取γ-氨基丁酸具有防止动脉硬化,调节心律失常的作用。它能系统参与哺乳动物心血管功能调节[5]现时市场上已有富含γ-氨基丁酸的降血压保健茶产品。
3、糖类
茶叶糖类含量为20-25%,主要是纤维素、果胶、淀粉、葡萄糖、果糖。其中可以溶于茶汤中的仅有4-5%,单糖和双糖是构成茶叶可溶性糖的主要成分。常喝茶不会使人发胖,但能满足每天人体需要热量的7%-10%。
茶多糖是由糖类、蛋白质、果胶和灰分等物质组成的,其中糖类部分为阿拉伯糖、木糖、岩藻糖、葡萄糖和半乳糖等,相对分子质量约为107000,在沸水中溶解性较好,但不溶于高浓度乙醇、丙酮、乙酸乙酯、正丁醇等有机溶剂。热稳定性较差,高温或过酸过碱条件下,都能使茶多糖部分水解。研究认为,茶叶中的这种水溶性复合多糖能有效降低血糖含量;能降低血浆总胆固醇,对抗实验性高胆固醇血症的形成,使高脂血症的血浆总胆固醇、甘油三酯、低密度脂蛋白及中性脂下降,高密度脂蛋白上升。另外,茶多糖还能与脂蛋白酶结合,促进动脉壁脂蛋白酶进入血液从而起到抗动脉粥样硬化的作用。
4、茶多酚
茶多酚占茶叶嫩梢干重的20%-35%,由约30种以上的酚类物质组成,通称为茶多酚。按其化学结构主要分成四类:儿茶素类、黄酮及黄酮醇类、花白素及花青素、酚酸及缩酚酸类。茶多酚是一种天然的抗氧化剂,其在食品工业、医学等领域早已有广泛的应用,是最早从茶叶中提取并加工利用的物质之一。其抗氧化作用主要是清除自由基,其次还可以作用于产生自由基的相关酶类,络合金属离子,间接清除自由基。
5、矿物质
茶叶中含有丰富的矿质元素。其中无机矿质元素约有27种,包括有磷、钾、硫、镁、锰、氟、铝、钙、钠、铁、铜、锌、硒等。无机态存在的矿质元素对人体吸收利用并不理想,有的甚至含有毒性,而茶叶中的矿质元素大多以有机态存在,有利于人体的吸收。
6、维生素
到目前为止,已经发现茶叶中含有维生素有10多种,主要含水溶性的B族维生素以及维生素C,还有脂溶性的维生素A、D、E、K等。通过日常对茶的饮用,能让身体对维生素有一个很好的补充。
结语
现已证实茶叶具有多种对人体有益处的成分,值得推广至广大人民日常饮用,除了可品尝到高雅的茶品,更是对身体健康有积极的影响。鉴于茶叶的功效成分,未来可以持续对其进行更深入的了解,使茶叶对人类发挥更大的作用。从经济角度看,我国是产茶大国,大批量生产剩下的碎茶、茶末、茶渣等也是富含功效成分的可利用资源,通过对其的成分提取和应用,将能获取更大的经济收益。
参考文献
[1]中科院上海生物工程研究中心.茶叶蛋白[J].技术与市场,1999,10:23.
[2]活泼,非水溶性茶叶蛋白降血脂作用的研究[J].茶叶科学,2005,25(2):95-99.
[3]高小红,袁华,喻宗沅.茶氨酸的研究进展[J].化学与生物工程,2004,21(1):7-9.
[4]崔德山编译.L-茶氨酸的机能和应用[J].日/食品与科学.1999(2):86-89.
[5]贾红云,彭建中,蒋正尧等.γ-氨基丁酸对心血管活动的调节[J].宁夏医学院学报,1998,20(1):87-89.
摘要 :饮茶的益处众所周知,在我国许多人将适当饮茶当作修身养性、养生保健的必要手段。但一般人都认为体育锻炼后不宜饮茶,其实适当饮茶对于体育锻炼后恢复身体机能有许多好处。本文通过阐述体育锻炼后,人身体机能的特点以及茶叶中的化学成分来分析适当饮茶对体育锻炼后恢复身体机能的作用。
关键词 :体育锻炼;身体机能;茶叶;作用
引言:体育锻炼后,人的身体机能会产生一系列的变化,例如神经系统的兴奋度提高、身体的新陈代谢速度加快、体温升高、内脏器官的运动加剧,其外在表现主要有心率和脉搏跳动加速、血压升高、肺部需氧量增加、出汗量增加、尿频等。而茶叶中的有效成分既包括蛋白质、维生素、碳水化合物等有机物,也包括磷、钾等无机矿物质。本文介绍体育锻炼中人体机能的变化情况,进而详细分析茶叶中不同的化学成分在恢复身体机能中所起的作用。
1运动后身体机能的特点
随着时代的进步,人们物质生活水平的提高,对健康的需求越来越强烈,越来越多的人通过进行体育锻炼来调节身体机能。人们在体育锻炼后,由于能量的流失,身体机能呈下降趋势,最直接的感觉就是疲惫,这种疲劳感主要体现在三个方面:肌肉的疲劳、神经的疲劳、内脏器官的疲劳。
肌肉的疲劳:研究表明,体育锻炼后,由于乙酰胆碱在神经肌肉接点后膜的堆积,导致肌肉收缩的速度放缓,缺乏正常的兴奋、舒张交替,甚至出现肌肉酸痛,动作不协调等情况。
神经的疲劳:人体神经系统的疲劳多源于躯体的疲劳,也就是说正是由于身体的疲劳才会导致神经系统的疲劳,体育锻炼后,人通常有反应迟钝、注意力难以集中等情况发生。
内脏器官的疲劳:体育锻炼对人体的内脏器官如心、肺、胃肠等都会产生影响,主要表现为心脏的收缩功能增强,出现心跳速度加快;肺部需氧量增加,导致呼吸短促而快速;肠胃收缩功能增强,会出现肠胃不适、甚至痉挛等情况。
2茶叶中主要的化学成分
茶的保健功能主要体现在其化学成分上,茶叶的化学成分是由大量的有机物和一些无机矿物质构成。
经研究表明,茶叶的有机化合物主要有蛋白质、脂质、碳水化合物、氨基酸、生物碱、茶多酚、有机酸、色素、香气成分、维生素等。其中叶蛋白占营养成分的 20%-30% ;氨基酸的种类众多,尤其以茶树特有的茶氨酸最可贵,而且多是人体必需的氨基酸,约占总成分的;碳水化合物占总成分的 25%-30%.除了这些常见的营养成分外,茶叶还有一个最重要的营养成分---10%-25%的茶多酚,它对于提高人体抗氧化功能、清除自由基、降血脂、降血压等方面都起着重要的作用。
除了有机成分,茶叶中的矿物质含量也很丰富,其中包括磷、钾、硫、镁、锰、氟、铝、钙、钠、铁、铜、锌、硒等。矿物元素是维持人体代谢的重要物质,缺少任何一种都会使人体代谢出现失调,例如缺钙就会导致骨头与牙齿发育不健全,出现四肢抽筋的情况;磷是构成细胞膜的主要成分;缺少镁会使我们的消化系统出现问题;钾是调整身体体液平衡的重要元素;氯化物主要用来参与各种腺体分泌,比如胃液、唾液等;铁是血液中血红蛋白的构成要素,缺铁会导致贫血。而人体所需的这些矿物质都可以从适当的饮茶中获得。
3适当饮茶对于运动后恢复人体机能的作用
由上文的分析我们知道,人们在体育锻炼后,会出现身体机能减弱的趋势,如果不及时消除疲劳,恢复身体机能,就会影响接下来的学习和生活的正常进行,甚至影响身体健康,而这显然与人们进行体育锻炼的初衷背道而驰。经研究证明,茶叶对于恢复身体机能有重要的作用,下面我们就用分类说明的方法来阐述适当饮茶对于运动后恢复人体机能的作用。
水分
体育锻炼后,不论是饮茶还是饮水,都是为了补充人体代谢所必须的水分。水是万物之本,补充水分是恢复身体机能的第一步。人在进行体育锻炼时会大量流汗,身体在失去大量水分之后,血液中盐的浓度就会随之升高,并增加心血管运作的负担,因此如果不适时补充水分,便会连带影响到心血管功能的运作,同时,随着汗液的流失,人体内的钠、钾之类的电解质也会随之流走,而电解质的`流失会使人体的抗压力失衡,因此,适当地饮用茶水,不但会补充人体运行必要的水分,减轻心血管运行负担,茶叶中的钠、钾等矿物质也会及时补充人体所需的电解质,以帮助人体体内的压力恢复到平衡的状态。
蛋白质与氨基酸
虽然茶叶中能溶于茶汤的蛋白质仅占其蛋白质总量的 1%-2%,但这部分蛋白质能够补充尤其是有氧运动后人体对蛋白质的需求;氨基酸是组成蛋白质的主要成分,茶叶中含有的氨基酸非常丰富,例如茶氨酸、谷氨酸、天门冬氨酸、苯丙氨酸、苏氨酸等,现在市场上风靡的各种运动饮料,其吸引顾客的噱头就在于它能够补充人们体育锻炼后所需的各种氨基酸。而体育锻炼后,适当地饮茶也可以起到补充氨基酸的作用,例如:茶氨酸有助于恢复胃肠功能;亮氨酸有助于缓解焦躁及紧张情绪,减轻神经系统的疲劳感;缬氨酸有利于肝功能的恢复与健康。
生物碱
茶叶中的生物碱主要包括咖啡碱、可可碱和茶碱,其中咖啡碱的含量最多。咖啡碱易溶于水,它是茶汤形成味道的重要物质之一。通常人们认为,体育锻炼后不宜饮茶的主要原因就在于茶叶内含有咖啡碱,而咖啡碱是一种能够导致身体机能兴奋的物质,锻炼后饮用,必然加重心脏的负担,这样的观点显然过于片面,它没有看到咖啡碱对于恢复人体机能的作用,体育锻炼后,适当地摄入咖啡碱,有利于提神,缓解肌肉和神经系统的疲劳,促进血液循环系统的正常运转,并有助于增强胃肠消化系统的功能。
糖类
糖分是人体的重要营养素,为我们每天的生活提供所消耗的能量。体育锻炼后,补充糖分有利于恢复体力,解除疲劳。茶叶中的糖类主要包括单糖、双糖、多糖三类,其中单糖和双糖为可溶性糖,易于被人体吸收。由于在我们进行长跑、马拉松跑、长距离游泳、滑雪等耐力性项目时,糖的消耗量非常大,这时适当饮茶可以及时地补充糖分,避免过度疲劳对人体造成损伤,也可以有效防止低血糖和眩晕。
维生素
茶叶中含有丰富的维生素类,其中水溶性维生素主要有维生素C、B 族维生素、维生素 P和肌醇等,这些维生素溶于茶汤中,饮用后易于被人体吸收,对于恢复身体机能有重要的作用。体育锻炼后维生素 C会随着体液流失,饮茶则可以及时补充人体的维生素 C;维生素B1 有助于体内葡萄糖被利用转换成热量,加速运动过程中肝糖的消耗利用;维生素 B6 与蛋白质代谢有关,与 B1 一起补充,有利于缓解运动后的肌肉疲劳;维生素 B12 则可以促进新陈代谢,提高脂肪、醣类、蛋白质的代谢利用率,有利于身体机能的尽快恢复。
矿物质
矿物质又称无机盐,它是是构成人体组织和维持人体正常生理功能所必需的元素。茶叶中含有大量可溶于水的矿物质,其中含量最多的是钾,其次是磷、钠、硫、钙、镁、锰等,除此之外它还含有多种微量元素如铜、锌、硼、硒等。体育锻炼时,通过流汗和呼吸会带走人体内的矿物元素,由于这些矿物质在人体内无法自行合成,因此必须通过外界渠道予以补充,而适当地饮茶则恰好可以满足运动后人体对矿物质的多样化需求。
4运动后适当饮茶的注意事项
由于体育锻炼后,我们的身体机能与平时的身体状况相比发生了一些变化,因此在锻炼后,饮茶时也应该特别注意,而要做到健康饮茶,就要遵循适量、适时、科学这三项原则。
所谓适量,就是饮茶时要控制好茶饮品的摄入量,切记“豪饮”、“痛饮”.运动不仅消耗能量,也消耗水分,尤其是在炎炎夏日运动大量出汗后,人们往往会觉得口干舌燥,这表明身体已经处于缺水的状态,如果不及时补充,会出现脱水的现象。但是在饮茶补水过程中也应该采取少量多次的方式,每小时的总饮茶量不宜超过 600 毫升,只有做到“适量”才会保持体内水的平衡,否则一次性大量摄入茶水,茶叶里的咖啡碱等成分会增加心脏和神经的兴奋度,进而增加心肺负担,不利于身体机能的恢复。
所谓适时,是指体育锻炼后,饮茶要把握好时间。很多人喜欢在体育锻炼后马上饮茶,来迅速缓解口渴的感觉,其实这样的饮茶习惯并不健康。一方面,人们在停止体育锻炼后,身体的各项机能还处在相对亢奋的状态,这时人体的脉搏和血压都会比平时要高,立即饮茶,显然会刺激到心脏和肠胃,使得身体产生不适。正确的饮茶时间是在体育锻炼过后的 10 分钟左右,这时候人体的心肺、肠胃已经慢慢地恢复到正常状态;另一方面,体育锻炼后马上饮水,会导致体液稀释,血容量突然增加,使心脏的负担加重,同时大量的水贮留在胃中,也会使人感到不适,降低恢复身体机能的能力。
所谓科学,是指在体育锻炼后,饮茶要注意茶的质量,实现科学饮茶。科学饮茶主要应注意以下几个方面:切忌饮隔夜茶,因为隔夜茶中的蛋白质、氨基酸、维生素等营养物质已经遭到破坏,饮用后,不但无法满足体育锻炼后对营养物质的需求,甚至会对人体产生危害;切忌饮头道茶,因为现代茶叶生产过程中难免会受到各种污染,头道茶俗称“洗茶水”,不宜饮用;切忌饮浓茶,浓茶中含有大量的茶多酚,易与食物中的铁发生作用,不利于铁的吸收,常饮会引起贫血。
5结论
综上分析可知,体育锻炼后适当的饮茶对于恢复身体机能有重要的作用,茶汤中的有机物和无机物有助于补充人体流失的营养物质,但是在饮茶过程中要注意“适当”,凡事过犹不及,只有做到适量饮茶,才会真正起到养生保健的作用,因此,为了达到体育锻炼的真正目的,提高身体素质,在体育锻炼后,适当饮茶是一个既简单又有效的方式。
参考文献:
[1]钟元飞。体育运动后适当饮茶的作用研究[J].福建茶叶,2016(1):30+76.
[2]朱永兴,HervéHuang,杨昌云。饮茶不当对健康的危害:现象、机理及对策[J].科技通报,2005(5):571-576.
[3]郭庆伟。饮茶的几个注意事项[J].农家顾问,2012(10):57.
[4]王浩。饮茶有讲究[J].茶叶机械杂志,1999(1):35.
[5]李忠东。品茗喝茶有讲究[J].质量探索,2007(8):48-49.
你是食品营养与检测专业的,可以从茶叶含有的营养成分,药理作用和茶叶审评检验入手。 我这里只给你说明茶叶中含有茶多酚、咖啡碱、生物碱、茶皂素、茶黄素等营养成分,具体的药理作用去网上查,直接复制粘贴。 茶叶审评检验主要包括理化检测和感官审评两部分。具体的去网上查。 如果还想写茶叶历史,可分几个阶段写茶叶发展。 如果还想感慨一下,就自由发挥吧! 你的专业不是茶,却对茶油很深的感情,难得!
是啊。。。有时候在写文章时不知道该从何写起、该怎么写?越是着急的时候就越无从下手。。。如果你有好的素材的话,那肯定事半工倍了。我劝你去试下《我爱写作》的一个写作软件,软件附带的100多类写作素材库,或许对你的论文有所帮助
发酵豆粕的实质是“用发酵技术处理大宗原料----豆粕”,受规模和原料成本所限,小规模,不稳定的生产方式是不合理的,必须以工业化水平进行生产。工业的技术前提,是“检测-分析-反馈体系”的建立和健全。目前发酵豆粕工艺对于检测体系是缺失的。本实验在实验中,首先建立了完整的发酵豆粕的“检测-分析-反馈体系”,然后进行工艺开发,并对所建立的“检测-分析-反馈体系”进行了合理性证明。首先明确液体深层发酵工艺过程参数选取的三个原则:1,精度。2,即时性。3,多重平行。为建立固体发酵工艺的“检测-分析-反馈体系”,进行生理参数的选取和检测,在借鉴液体深层发酵工艺以建立检测体系的过程中,最大的障碍就是物料的物理性质。由于固体发酵物料不是均匀的,这就要求取样不能任意选取,而应该在最能代表大部分或绝大部分物料的点,选取不止一个的点进行检测,然后去掉离群值,平均其余的检测点以尽可能得到散布较小的,有连贯性的数据。按照发酵行业检测的习惯,所有生理参数检测都是在较稀的水溶液中进行。工业化检测的经验显示,在水溶液中进行的定量检测,比固体条件下的检测要精确地多。依照这个惯例,固体发酵工艺过程参数也应该选用与液体深层发酵类似的过程生理参数。按照发酵参数选取的原则,参照液体发酵,已经初步确定固体发酵工艺的生理参数,但是,要建立完整的数据处理方法,也即工业化前提的“检测-分析-反馈体系”,必须要证明曲线的合理性,解决曲线的真实度和连续性,曲线才能认为是可以分析的。本文在理论上论证参数的合理性和方法的正确性的可能性。并且,用实验验证检测方法,进行实证。另外,本文明确提出了发酵风险成本的概念。事实上,发酵风险成本概念的提出,以及本文在全成本核算中,提出发酵工艺的相对合理性指标,就可以建立在成本上量化的评价被开发工艺的合理性和先进性的评价体系,直接在数字上比较工艺优劣,回避开工艺选择过程因为标准模糊而进入两难的境地。本实验在建立的“检测-分析-反馈体系”上,应用对发酵风险成本的计算和对发酵工艺相对合理性指标的比较上,在尊重“发酵豆粕的本质是豆粕原料的微生物处理”的观念下,得到了具有工业级意义的,可以放大的,稳定的成本合理的发酵豆粕工艺。 [1] 赵艳,章亭洲. 发酵豆粕替代75%秘鲁鱼粉对仔猪生长性能的影响[J]. 饲料与畜牧. 2010(06)[2] 严鹤松,夏俊松,梁运祥. 黑曲霉发酵豆粕的研究[J]. 饲料工业. 2009(13)[3] 晓陆. 2009年5月全国饲料生产形势分析[J]. 饲料广角. 2009(12)[4] 曹允. 2007年美国饲料与畜牧市场概况(1)[J]. 饲料广角. 2009(12)[5] 李建. 发酵豆粕研究进展[J]. 粮食与饲料工业. 2009(06)[6] 陈济琛,陈名洪,蔡海松,林新坚. 芽孢菌固态发酵降解豆粕工艺研究[J]. 大豆科学. 2008(05)[7] 蒋国华. 粗饲料降解剂发酵豆粕喂猪技术[J]. 农村新技术. 2008(16)[8] 钟耀华,王晓利,汪天虹. 丝状真菌高效表达异源蛋白研究进展[J]. 生物工程学报. 2008(04)[9] 苏移山,王圣钧,王鹏,祁庆生. N-糖酰胺酶F在大肠杆菌中的高效表达及其脱糖基化作用研究[J]. 生物工程学报. 2005(06)[10] 邵伟,熊泽,何晓文. 发酵大豆多肽及其功能研究[J]. 中国酿造. 2005(06)
天!!!我不知道如何帮你!但是从你问的这个问题我断定你肯定在我之上!!!您是要考MW吗?
嗯。、好的额。找。、。帮你 。。是的 嗯 。
1.葡萄酒的历史2.葡萄酒的酿造工艺3.葡萄酒的营养价值4.葡萄品种分析5.各大葡萄酒产区分析6.品酒师、侍酒师职业分析7.葡萄酒的行销、收藏8.本国葡萄酒的现状以及可能的发展趋势制作方法 1.破碎。将成熟的红葡萄用清水冲洗干净后,除去果梗及青粒、霉粒、破粒等,放入经过消毒容器(小缸)里,用手挤碎或捣碎,但操作前须将手、木棒、容器等先用高锰酸钾水洗一次,再用清水冲一次,然后再去操作,以防止杂菌污染,同时要注意不要使用铁、铜等金属的工具和容器(或用干净铝勺在杯中经消毒)将葡萄捣碎。 2.发酵。发酵是将葡萄皮汁中的糖分经酵母的作用产生酒精和二氧化碳,红葡萄酒的前发酵过程是皮汁混在一起的,酵母在葡萄破碎时已接入汁中,因为葡萄皮上的白霜存在有酵母,所以自制葡萄酒在发酵时可以不另外加入酵母。发酵的温度最好在15~25℃,不应超出35℃,但用小型容器发酵,散热较容易,一般可以达到不超过32℃。当皮汁装入容器后,一般经过一天即可开始发酵。液面开始是平静,这时已有微弱的二氧化碳气泡产生,表示酵母已开始繁殖,经过2~3天有大量二氧化碳放出,皮渣上浮结成一层帽盖,口尝果汁,甜味渐减,酒味渐增。发酵时每天应将上浮的葡萄皮用消毒筷子压到汁内两次,这样做一方面防止葡萄皮生霉,变酸,同时可将皮上的色素浸入汁中,且排出CO2,使酵母得到氧气,发酵更旺盛。高潮后,发酵势头开始减弱,此时可以进行加糖,加糖是用葡萄原酒来溶解,而不要用水化糖后再加入,等白糖完全溶解后,继续在容器中进行发酵,最后二氧化碳放出至微弱而接近平静,酒精味很浓、糖分减少至1%以下,汁液开始清晰,即为发酵结束,进行压榨,将皮汁分离。 3.压榨。压榨的方法是用洁净的布袋或纱布,进行挤压或扭压,红葡萄酒液即流出来,称为元酒。 4.加鸡蛋清澄清。30毫升葡萄原酒约加鸡蛋清一个。方法是将鸡蛋清打成泡沫状,用少量酒充分搅拌混合,然后加入酒中,再充分搅拌和静置,至酒液清透明,将沉淀物弃掉。 5.葡萄酒的加糖。大多数人的习惯是觉得葡萄酒应该是甜的,因此,需将葡萄酒进行加糖调配,加糖量约12~14%,溶解糖时要用原酒搅拌溶解。这样,具有浓厚的“玫瑰”香味,酸甜适口的红葡萄酒制成了,但如果在容器中密闭贮存2个月,则酒的风味更加醇厚。葡萄酒的酿制 1.第一道是所谓的去梗,也就是把葡萄果粒从梳子状的枝梗上取下来。因枝梗含有特别多的单宁酸,在酒液中会造成一股令人不快的味道。 2.不管有无经过去梗的手续,接下来的步骤是压榨果粒。如果酿制白酒,则榨汁的过程要迅速一点,因酿制白酒所用的葡萄浆若放置太久,即使葡萄已经去梗,余下的果皮和果核仍然释放出大量的单宁酸。反之如打算酿制红酒,则葡萄浆发酵的过程就绝对必要。因果酸中所含的红色色素就是在这段时间释放出的。就因为这样,所有红酒的色泽才是红的。 3.接下来是榨汁和发酵。经过榨汁后,就可得到酿酒的原料——葡萄汁。有了酒汁就可酿制好酒。葡萄酒是透过发酵作用而得的产物。由此可见发酵在葡萄酒酿制过程中扮演极重要的角色。发酵是一种化学过程,透过酵母而起作用。经过此化学作用,葡萄中所含的糖分会逐渐转成酒精和二氧化碳。因此,在发酵过程中,糖分越来越少,而酒精度则越来越高。通过缓慢的发酵过程,可酿出口味芳香细致的葡萄酒。 4.虽然已做到此,但酿酒师的工作仍未完成。要想保持葡萄酒的果味和鲜度,就必须在发酵过程后立刻添加SO2处理。二氧化硫可以阻止由空气中的氧使葡萄酒所引起的氧化作用。新酒在发酵后大约3周左右,必须进行第一次沉淀与换桶。第二次沉淀要4至6周。沉淀的次数和时间上的顺序,完全就是所要达到的口味。 5.葡萄酒在桶中存了3至9个月以后,就要装瓶了。葡萄酒瓶以软木塞来封口,因葡萄酒是有生命的东西。 自制葡萄酒做法非常简单,具体如下: ●第一步:买葡萄 选购葡萄时,可以挑选一些熟透的葡萄,哪怕是一颗颗散落的葡萄也不要紧。这些葡萄一是容易发酵,二是价位相对较低。常见的葡萄、提子、马奶子等,都是可以用来制作葡萄酒的。 ●第二步:洗葡萄 由于葡萄表皮很可能残留农药,清洗葡萄的环节就相当重要,最好能够逐颗清洗,再用自来水反复冲洗,同时剔除烂葡萄。一些爱干净的人,喜欢把葡萄去皮后酿酒,这也未尝不可,但是少了一些葡萄皮特有的营养。 ●第三步:晾干葡萄 把葡萄盛在能漏水的容器当中,等葡萄表面没有水珠就可以加白糖了。 ●第四步:选择容器 酒坛子可以是陶瓷罐子,也可以是玻璃瓶,但不主张用塑料容器,因为塑料很可能会与酒精发生化学反应,并产生一些有毒物质,危害人体健康。 ●第五步:捏好葡萄放进容器 双手洗净后,将白糖倒入葡萄内,用手捏葡萄,操作办法是抓起一把葡萄使劲一握,捏破葡萄,使白糖充分浸入葡萄。然后放入酒坛(那种用于泡药酒的酒瓶也行)中。葡萄和糖的比例是10∶3,即10斤葡萄放3斤糖(不喜欢吃甜的朋友,可以放2斤糖,但是不能不放糖,因为糖是葡萄发酵的重要因素)。 ●第六步:加封保存 将酒坛子密封,如果是陶瓷罐的话,可以到买黄酒的小店要点酒泥,加水后糊住封口。如果是泡药酒的酒瓶注意把瓶盖盖紧,再在瓶盖处加盖紧塑料簿膜。加封后,酒坛(瓶)子需放在阴凉处保存,平时不要随意去翻动或打开盖子。 ●第七步:启封 天热时,葡萄发酵时间需要20天至一个月左右,现在这个季节做葡萄酒,发酵时间需要40天左右。启封后,用两层纱布过滤浮在上面的葡萄皮,就可以直接喝葡萄酒了。注意,如果喜欢酒劲足一点,只需延迟启封时间就行了。启封后,每一次舀出葡萄酒后,别忘盖好酒坛的盖子,以免酒味挥发。 还有一些不同的做法与大家分享: ●葡萄要买好的,葡萄的颜色越紫越好,而且颗粒要大。洗干净葡萄后,可用纱布或干净的毛巾擦干葡萄,在晾干的玻璃瓶底放一层白糖,然后再是一层白糖一层葡萄,装满后密封,封口处再用白糖浇一圈,然后把瓶子放在太阳下,一个月后就能享用美味葡萄酒了。 ●酒坛子要放在阴暗潮湿的地方,放置3个月以上,这样酒味比较醇厚。另外,用红葡萄做葡萄酒,这样酒的颜色会很好看。 ●只要看到瓶子里的葡萄浮起来,就说明葡萄酒做好了。 ●葡萄发酵3天后,将葡萄拿出来捣烂,再放进瓶子里发酵,瓶盖不需盖紧,5天后即可食用葡萄酒。 ●把每一颗葡萄切成两半放入酒坛,加糖后密封,经历半个月发酵的葡萄酒吃起来很不错的 ●在葡萄酒制作过程当中,可将白糖换成红糖或冰糖。也可以将葡萄换成苹果或橘子,参照上述“工艺”制作“苹果酒”或“橘子酒”。 葡萄酒的种类非常多,而且有许多种不同的分法。 最常见的是以颜色来分,主要分为: 红葡萄酒red wine ( 法vin rouge ) 白葡萄酒white wine ( 法vin blanc ) 桃红葡萄酒rosé wine ( 法vin rosé ) 也有以是否有气泡分成: 不起泡葡萄酒 still wine ( 法 vin tranquille ) 起泡葡萄酒sparkling wine ( 法 vin effervescent ) 也有以葡萄酒的甜度分成: 干型葡萄酒dry wine( 法vin sec ) 半干型葡萄酒semi-dry wine( 法vin demi-sec ) 甜型葡萄酒sweet wine ( 法 vin doux ) 在葡萄酒中以人工的方式添加酒精则成为: 强化葡萄酒 fortified wine ( 法 vin fortifié ) 采用单葡萄品种酿成称为: 单一葡萄品种葡萄酒 varietal wine ( vin de cépage ) 毕业论文的结尾,是围绕本论所作的结束语。其基本的要点就是总括全文,加深题意。这一部分要对绪论中提出的、本论中分析或论证的问题加以综合概括,从而引出或强调得出的结论;或对论题研究未来发展趋势进行展望;或对有关论题进行简要说明。结论切记草草收兵,虎头蛇尾,或画蛇添足,拖泥带水。 在毕业论文末尾要列出的参考文献是指在论文中使用过的,包括专著、论文及其他资料。如果是非正式出版物则不必列出。所列的参考文献应按论文参考或引证的先后顺序排列,不能以文献的重要程度或作者知名度为排列的顺序标准。列出参考文献的目的在于:一是表示言之有据;二是对他人研究成果的真正尊重;四是方便他人查找、使用。 2、内容结构安排的其他问题 (l)段落和层次 段落和层次是毕业论文结构的核心。 ①段落。段落是文章结构的单位标志,一段一个意思。段落还有一些特殊的作用,如过渡。转折或强调等各分论点等。层次以1做“意义段”,段落叫做“自然段”。 段落表示行文的停顿。论文的段落一般应包含论点、论据和论证过程,完整地表达一个中心意思。一般来说,每段都有自己的“段意”,正如全文有一个中心思想(主题)一样。全段围绕一个中心论点展开,这个论点一定要用精炼的语言概括出来,我们称它为段中主句。为了突出重点,段中主句通常放在段首;也有的放在段尾,起归纳总结的作用。 段落划分的长短,没有一定的标准。段落的长短同文章篇幅长短有关。长文章的段落可以相对长些;短文章,节奏快,段落可以相对短些,总之,段落的长短要适度。一般说来,论文的段落,相对其他文体要长一些。如果段落过短,会影响对某一论点论证的展开。但若段落过长,议论分散,势必造成论文结构失衡,同时,也会给读者的理解造成困难。有些大学生的论文,在结构方面很明显的缺点是段落过长,一个自然段占了几页稿纸,读起来一大段,不仅费力,有时还不知所云。从技巧上说,这是不善于划分段落,该另起一段的时候,没有另起一段;从思路上说,是说理层次不够清楚,几个意思纠缠在一起,理不清头绪。 ②毕业论文的层次是指论文内容安排上的先后次序,也是毕业论文展开的步骤。它是作者写作思路的直接反映。它表现出事物发展的阶段性,或客观矛盾的各个侧面,或 某一论断所包含的几个方面,或人们表达思想的先后步骤。 在毕业论文中,最常见的安排层次的方式有三种:一是层进式,即论文的各层意思之间是层层推进的关系。各个分论点作为中心论点的论据,呈现出一种纵向联系的层次关系。二是总分式,即采用“总题分述”的方式,先总括起来说,然后分开说;或者先分开说,最后再总结。三是并列式,即论文各层意思之间是并列关系,各分论点的段落相互平行,从各个不同的角度论证中心论点,各个分论点呈现出一种横向的内在联系。 正文中的各个层次如果用数字表示,一般要用不同类型或种类的数字。第一层次为:一、二、三、四、……;第二层次为:(一)(二)(三)(四)……;第三层次为:l、2、3、4……;第四层次为:(l)(2)(3)(4)……;第五层次一般用一是、二是、三是、四是……或首先、其次、再次、最后等序列词,以标明几层意思、几个方面之间的联系,或者用词语的重复来表示思路的层次。 层次和段落有着密切的关系。层次,着眼于文章内容的划分;段落,侧重于文字表达的需要。它们之间,有时是一致的关系,即文章段落的划分正好反映内容的层次;有时,层次大于段落,即几个自然段表达同一个层次的内容;有时,段落大于层次,在一个大的自然段里,又可以划分为若干个小层次。 (2)过渡和照应 文章是一层一层递进,一段一段展开的。为了使它脉络贯通,线索分明,上下前后浑然一体,经常需要在某些部位安排“过渡”和“照应”。过渡,是上下文之间的衔接和转移。没有必要的过渡,文章各个部分、各个层次之间可能脱节以至于松散。一般地,在论文由总到分、由分到总的开合关键处,或者论文内容一层意思到另一层意思的转移处,需要过渡,从而起到承上启下的作用。过渡的形式有过渡段、过渡句或联接词语等。照应,是前后文之间的相互关照、呼应。前有交代,后有照应,或前有“伏笔”,后有照应。
亲,可以每天都喝的。植物乳杆菌是乳酸菌的一种,乳酸菌大量存在于酸奶、泡菜、腌菜、豆瓣酱等发酵食品中。难道我们每天喝酸奶还会伤害身体吗?肯定不是!但是,如果植物乳杆菌是试剂,也就是经过人工提取的,那就是另外的事了,你最好遵照医生的说法服用,或者按照说明书上的用法用量使用。因为是药三分毒,要知道这是有道理的。人工提取过程中用的化学物质会有残留,不可能有100%的纯净物质的。如果你是喝纯天然的,也就是酸奶之类的,不会有伤害。另外告诉你一个知识:杆菌是最好的,球菌没杆菌好,球菌容易被胃酸杀死,杆菌不易被胃酸杀死。这是我大学时代的一篇研究论文。希望能帮助你,希望能推为满意答案。
喝了会更饿吧
海洋生物来源药物先导化合物的研究进展【摘要】 海洋生物中活性物质丰富,本篇文章对国内外近3年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了归纳,并对其研究趋势进行了展望。这些新发现的萜类化合物广泛分布于海藻、珊瑚、海绵以及一些海洋真菌等海洋生物中,主要以单萜、倍半萜、二萜、三萜结构型式存在;而糖苷类化合物在海藻、海绵、海参、海星等海洋生物中发现大部分以糖苷脂、甾体糖苷、萜类糖苷型式存在。 【关键词】 海洋生物 萜类化合物 糖苷类 生物活性 【Abstract】 Marine organism show some important biological activities. This paper reviews terpenoids and glycosides from marine organism at home and abroad since 2005, and provides scientific evidence for reasonable exploitation and application. Terpenoids are mainly occurred on marine algae, coral, sponge and some fungi by monoterpene, sesquiterpene, diterpene and triterpene. And glycosides with structures of lipid, steroid and terpenoid are distributed to marine algae, sponge, sea cucumber and starfish. 【Key words】 Marine organism; terpenoid; glycoside; bioactivity 海洋是生命之源,由于海洋环境的特殊性,具有高压、低营养、低温(特别是深海)、无光照以及局部高温、高盐等生命极限环境,海洋生物适应了海洋独特的生活环境,必然造就了海洋生物具有独特的代谢途径和遗传背景,必定也会有新的、在许多陆地生物中未曾发现过的新结构类型和特殊生物活性的化合物。 萜类物质是一类天然的烃类物质,其分子中具有异戊二烯(C5H8)的基本单位。故凡由异戊二烯衍生的化合物,其分子式符合(C5H8)n通式的均称萜类化合物(terpenoids)或异戊二烯类化合物(isopenoids)。但有些情况下,在分子合成过程中由于正碳离子引起的甲基迁移或碳架重排以及烷基化、降解等原因,分子的某一片断会不完全遵照异戊二烯规律产生出一些变形碳架,它们仍属于萜类化合物。海洋生物中萜类化合物主要以单萜、倍半萜、二萜、二倍半萜为主,三萜和四萜种类和数量都较少,且大部分以糖苷形式存在。萜类化合物是海洋生物活性物质的重要组成部分,广泛分布于海藻、珊瑚、海绵、软体动物等海洋生物中,具有细胞毒性、抗肿瘤活性、杀菌止痛等活性作用。 糖苷的分类有多种方法,按照在生物体内是原生的还是次生的可将其分为原生糖苷和次生糖苷(从原生糖苷中脱掉一个以上的苷称为次生苷或次级苷);按照糖苷中含有的单糖基的个数可将糖苷分为单糖苷、双糖苷、三糖苷等;按照糖苷的某些特殊化学性质或生理活性可将糖苷分为皂苷、强心苷等;按照苷元化学结构类型可分为黄酮糖苷、蒽醌糖苷、生物碱糖苷、三萜糖苷等,海洋类的糖苷大部分是按照此特点分类的,主要包括鞘脂类糖苷、甾体糖苷、萜类糖苷和大环内酯糖苷等,在很多海洋生物如海藻、珊瑚、海参、海绵等中均发现有糖苷类化合物存在。已有的研究表明海洋糖苷类成分大都具有抗肿瘤、抗病毒、抗炎、抗菌、增强免疫力等生物活性。抗白血病和艾氏癌药物阿糖胞苷Ara-C(D-arabinosyl cytosine) 1、抗病毒药物的Ara - A 2以及Ara-C的N4-C16-19饱和脂肪酰基化衍生物3是海洋糖苷类药物成功开发的典范〔1〕。 本篇文章对国内外自2005年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了总结。 1 萜类化合物 单萜 2005年M. G. Knott等人〔2〕对从红藻Plocamium corallorhiza中分离得到的三种多卤代单萜化合物plocoralides A-C(1~3)〔3,4〕进行了活性研究,发现化合物Plocaralides B(2), C(3)对食管癌细胞WHCOI具有中等强度的细胞毒作用,这些化合物具有卤素取代基。 倍半萜 从海泥来源的真菌Emericella variecolor GF10的发酵液中分离得到两个新型的倍半萜化合物6-epi-ophiobolin G(4)和6-epi-ophiobolin N(5),化合物在1~3μM浓度时能使神经癌细胞Neuro 2A凋亡,同时伴随细胞萎缩和染色体聚集〔5〕。这一类ophiobolins是天然的三环或四环的倍半萜化合物,对线虫、真菌、细菌以及肿瘤细胞有着普遍的抑制活性。 Willam Fenical等人从海洋沉积物分离得到一株放线菌CNH-099,在该菌的代谢产物中分离到具有细胞毒作用的新颖的 marinonc 衍生物 neomarinone(6)、isomarinone(7)、hydroxydebromomarinone(8)和methoxydeuromomarinonc(9),它们均是倍半萜萘醌类抗生素。Neomarinone(6)和marinones(7~9)对HCrll6结肠癌细胞显示中等程度的体外细胞毒作用(IC50=8μg/ml),而且,neomarinone(6)对NCI-s60癌细胞也具有中等程度细胞毒作用(IC50=10μg/ml)〔6〕。 化合物花侧柏烯倍半萜(10~12)从希腊北爱情海希俄斯岛采集的红藻 L. microcladia中分离得到〔7〕。红藻 L. microcladia 经有机溶剂CH2Cl2/MeOH (3:1)提取,以Cyclohexane/EtOAc(9:1)为洗脱液进行硅胶柱层析,最后经HPLC纯化得到化合物(10-12)。该试验并对化合物活性进行了研究,发现三种化合物均对肺癌细胞NSCLC-N6 和 A-549有抑制作用,化合物(10):IC50= μM (NSCLC-N6)和 μM (A-549),化合物(11):IC50 = μM (NSCLC-N6) 和 μM (A-549) ,化合物(12):IC50= μM (NSCLC-N6)和 μM (A-549)。后两个化合物对肺癌细胞毒活性作用明显高于第一个化合物,推测可能由于后两个化合物结构中酚羟基以及五环内双键的存在提高了化合物活性,而化合物中溴原子的存在并没有对其活性构成影响。从中国南京采集的红藻L. okamurai也分离出四种衍生的花侧柏烯倍半萜化合物,分别是Laureperoxide (13), 10-bromoisoaplysin (14), isodebromolaurinterol (15)和10-hydroxyisolaurene (16)〔8〕。5种snyderane倍半萜(17~21)化合物从红藻L. luzonensis中分离得到〔9〕。 从一个软海绵种属Halichondria sp中分离得到四种具有抗微生物活性的含氮桉烷倍半萜化合物halichonadins A-D(22~25)〔10〕。该海绵采集于日本冲绳运天港, kg样品溶于4L MeOH,所得的115g MeOH提取物分别用1200ml EtOAc和400MlH2O萃取, EtOAc萃取物经硅胶柱层析后,洗脱液为MeOH/CHCl3(95:5)和石油醚/乙醚(9:1),得到化合物halichonadins A-D(22~25)和已知化合物acanthenes B、C。活性检测实验显示:化合物halichonadins A-D均具有抗细菌活性,同时halichonadins B和C也具有抗真菌活性,化合物halichonadins C对新型隐球菌(Cryptococcus neoformans)的半致死浓度(IC50)达到μg/ml。三个部分环化的倍半萜(26~28)化合物具有抑制磷酸酶Cdc25B活性,从海绵Thorectandra sp.中分离得到〔11〕。冷冻的海绵样品经4℃去离子水浸泡冷冻干燥后得到的干涸物, 随后用MeOH/CH2Cl2(1:1)和MeOH/H2O(9:1)的有机溶剂提取获得粗提物。采用活性追踪的方式,对粗提物(IC50=8μg/ml)进一步分离,将其溶于100mlMeOH/H2O(9:1)有机溶剂中,得到的粗提物加入300ml正己烷,获得水相部分溶于MeOH/H2O(7:3)的溶剂中,再用300ml CH2Cl2提取得到的部分经活性测定显示对磷酸酯酶抑制活性最强(IC50=6μg/ml),之后采用反相C-18柱HPLC分离,得到部分环化的倍半萜化合物(26)16-oxo-luffariellolide(12mg, tR=18min),化合物(27) 16-hydroxy-luffariellolide ( mg, tR=19min)以及化合物(28) luffariellolide (, tR=38min)。五种属于倍半萜类的化合物hyrtiosins A-E (29~33),从中国海南两个不同地方的海绵Hyrtios erecta种属中分离得到〔12〕。 氧化的倍半萜化合物gibberodione(34), peroxygibberol(35) 和 sinugibberodiol(36)从台湾软珊瑚Sinularia gibberosa分离得到〔13〕,化合物(35)具有较温和的细胞毒性〔14〕。从珊瑚Eunicea sp.中提取的七种倍半萜代谢产物(37~43)〔15〕,含有榄烷,桉烷和吉玛烷骨架结构,研究显示对Eunicea 种属的疟原虫具有轻度的抑制作用。 二萜 以前很少有从绿藻中分离得到萜类化合物的报道,但是与2004年相比,提取的代谢产物数量有所增加〔16〕。从澳大利亚塔斯马尼亚采集的绿藻Caulerpa brownii中分离出许多新型二萜类化合物,其中化合物(44~48)在没有分支的绿藻中提取得到〔17〕,而类酯萜化合物(49)是从分支的绿藻中获得,该研究同时显示提取的类酯萜化合物对细胞、鱼类、微生物均有不同程度的毒性作用〔18〕。 日本Koyama K等人从褐藻Ishige okamurae来源的未知海洋真菌(MPUC 046)中分离到一种新型的二萜类化合物phomactin H(50)〔19〕。真菌(MPUC 046)经含150g小麦的400ml海水25℃发酵培养31天后,采用CHCl3溶剂提取、硅胶层析及HPLC纯化得到phomactin H。该化合物同已发现的phomactin A-G化合物一样,均属于血小板活化因子(PAF)拮抗剂,能抑制PAF诱导的血小板凝聚,同时推测此活性与化合物的某个特定骨架结构有关。 从法国南部大西洋海滨采集的褐藻Bifurcaria bifurcata中分离得到(51~55)五种新型的极性非环状二萜类化合物〔20〕。该褐藻经CHCl3/MeOH(1:1)提取,硅胶层析(洗脱液为不同比例的Hexane,EtOAc,MeOH),经反相C-18柱HPLC纯化获得十二种化合物,其中五种为新型二萜类化合物。化合物(51~53)在Hexane: EtOAc(2:3)洗脱液中发现,而化合物(54)和(55)则从Hexane: EtOAc(1:4)洗脱液中获得。 6种新型的Dactylomelane二萜类化合物 (56~61)从西班牙特纳里夫南部家那利群岛采集的红藻Laurencia中分离得到〔21〕,其结构具有C-6到C-11环化的单环碳新型结构。采集的红藻经CH2Cl2/MeOH(1:1)有机溶剂提取后,用洗脱液Hexane/CHCl3/MeOH(2:1:1)进行Sephadex LH-20反相色谱分离,结合TLC点样筛选的部分用洗脱液EtOAc/hexane(1:4)进行硅胶柱层析,最后采用硅胶柱进行HPLC纯化得到六种新型的单环碳二萜类化合物Dactylomelans。从红藻L. luzonensis中也分离得到二萜类化合物luzodiol (62)〔9〕。一个溴代二萜类化合物 (63)从日本其他红藻Laurencia物种中分离得到 〔22〕。 Xenicane二萜类化合物(64~71)从台湾珊瑚Xenia blumi分离出来,而化合物xeniolactones A-C (72~74)则是从台湾Xenia florida中分离出来的〔23〕。化合物 (64~67), (69), (70) 和 (72)具有轻微的细胞毒性作用。非Xenicane代谢产物xenibellal (75)对Xenia umbellata也具有轻微的细胞毒性作用〔24〕。化合物Confertdiate (76)是一个四环的二萜类物质,从中国珊瑚Sinularia conferta中分离得到〔25〕。 从史密森尼博物院癌症研究所收集的海葵中分离得到的二萜类化合物actiniarins A-C (77~79)能适度抑制人cdc25B磷酸酶重组〔26〕。 Periconicins A,B (80~81)〔27〕是从内生红树林真菌Periconia sp.分离得到的二萜类的新化合物,能抑制不同微生物的生长活性,诸如bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6358p, Staphylococcus epidermis ATCC 12228等等。 南海真菌2492#是从采自香港红树林植物Phiagmites austrah样品中分离得到的,从2492#菌株的发酵液中分离得到的两种二萜类化合物 (82~83)有很好的生理活性〔28〕,如抗肿瘤、降压、调整心率失常,同时降压调整心率失常的作用在相同的条件下优于临床现用的阳性对照物。 从中国红树林植物Bruguiera gymnorrhiza分离出二萜类化合物 (84~86),化合物(86)对小鼠成纤维细胞具有适当的细胞毒活性〔29〕。也从中国红树林另一物种Bruguiera sexangula var. rhynchopetala分离出三种二萜类化合物 (87~89) 〔30〕。与之结构相似的二萜类化合物 (90~93)从中国Bruguiera gymnorrhiza中分离得到,其中化合物 (92)和 (93)有轻微的细胞毒活性〔31〕。 二倍半萜 Willam Fenical研究小组从曲霉属Aspergillus海洋真菌(菌株编号CNM-713)分离到一个新的二倍半萜化合物aspergilloxide (94),该化合物为含有25个碳原子的新骨架,对人的结肠癌细胞HCT-116有微弱的细胞毒活性〔32〕。在此之前,Willam Fenical等人从巴哈马的红树林中的漂浮木中也分离到一株真菌Fusarium heterosporum CNC-477, 并从中分离得到一系列多羟基二倍半萜类化合物neomangicols A-C(95~97)〔33〕和mangicols A-G (98~104)〔6〕,它们的结构如下图所示。Neomangicols的骨架为25个碳的二倍半萜,是首次从天然物中分离得到。药理实验显示化合物 (96)具有和庆大霉素大致相当的对革兰阳性细菌的抑制能力,化合物 (98)和 (99)对MPA(phorbol myristate acetate)诱导的鼠类耳朵水肿有抗炎症活性。 三萜 从海洋生物中提取得到的三萜类化合物主要以三萜皂苷、三萜烯类、三萜糖苷等形式存在。四环三萜皂苷类化合物nobilisidenol (105) 和 (106)是从中国黑乳海参Holothuria nobilis分离得到的〔34〕。采集于福建东山的黑乳海参洗净切碎后用85%的EtOH冷浸提取,得到的流浸膏均匀分散于水中,依次用石油醚、二氯甲烷、n-BuOH萃取,研究发现n-BuOH提取物经大孔吸附树脂、正相硅胶层析、反相C-18硅胶柱层析以及反相C-18 柱HPLC分离得到三萜皂苷类化合物nobilisidenol (105)和(106)。易杨华等同时从海参中提取到了其它的三萜糖苷类化合物以及三萜皂苷脱硫衍生物〔35,36〕。三萜烯类化合物intercedensides D-I(107-112)从中国海参Mensamaria intercedens中分离得到,具有细胞毒功能〔37〕。新西兰海参Australostichopus mollis是单硫酸酯三萜糖甙化合物mollisosides A(113), B1(114) 和 B2(115)的来源〔38〕。 具有细胞溶解作用的三萜类化合物sodwanone S (116)是从印度洋多毛岛采集的海绵Axinella weltneri中分离得到的〔39〕。三萜苷类化合物sarasinosides J-M (117-120)分离自印尼苏拉威西岛采集的海绵Melophlus sarassinorum,对B. subtilis和S. cerevisae的细菌具有抗微生物活性作用〔40〕。 2 糖苷类化合物 从中国海南采集的甲藻A. carterae中分离得到一种不饱和的糖基甘油酯化合物(121)〔41〕。甲藻采集于中国海南三亚,经分离筛选得到的A. carterae大规模培养后用甲苯/MeOH(1:3)的有机溶剂提取,所得干涸物分别用甲苯、1N NaCl 水溶液提取。研究发现有机相提取物经硅胶柱(洗脱液为不同比例的MeOH/CHCl3)、反相C-18硅胶柱层析(洗脱液为MeOH/H2O=9:1),最后经反相C-18柱制备型HPLC(流动相为MeOH/H2O =95:5)分离纯化得到25mg不饱和的糖基甘油酯化合物(121)。从多米尼克普次矛斯采集的绿藻Avrainvillea nigricans中可以分离出一个甘油酯avrainvilloside(122),该化合物含有6-脱氧-6-氨基糖苷部分〔42〕。 两个甘油一酯化合物homaxinolin(123)和(124),磷脂酰胆碱homaxinolin(125)以及能抑制细胞生长的脂肪酸(126)是从韩国海绵Homaxinella sp.中分离得到的〔43〕。从红海采集的海绵Erylus lendenfeldi分离得到的两个甾体糖苷类化合物erylosides K(127)和L(128)能选择性的抑制酵母菌株的rad50芽体,rad50能修复协调受损的双链DNA〔44〕。 海参Stichopus japonicus是五种糖苷化合物SJC-1(129),SJC-2(130), SJC-3(131), SJC-4(132) 和 SJC-5(133)的主要来源〔45〕。五种化合物均从弱极性CHCl3/MeOH部分分离出来,其中SJC-1(129), SJC-2(130), SJC-3(131)是典型的鞘甘醇或植物型鞘甘醇葡萄糖脑苷脂类化合物,含有羟基化或非羟基化的脂肪酰基结构。SJC-4(132) 和 SJC-5(133)也含有羟基化的脂肪酰基结构,但是含有独特的鞘甘醇基团,是两种新型的葡萄糖脑苷脂类化合物。Linckiacerebroside A(134)是从日本海星Linckia laevigata分离出的一种新型糖苷脂化合物〔46〕。 甾体糖苷孕甾-5, 20-二烯-3β-醇-3-O-α-L-吡喃岩藻糖苷(135) 和 孕甾-5, 20-二烯-3β-醇-3-O-β-D-吡喃木糖苷(136)从中国短足软珊瑚Cladiella sp.中分离得到〔47〕。将新鲜的软珊瑚干质量 kg用乙醇在室温下浸泡 3 次, 合并提取液, 减压浓缩后得到深褐色浸膏 用30%的甲醇溶解后, 依次用石油醚、乙酸乙酯、正丁醇萃取, 石油醚提取液经减压浓缩后得棕黑色胶状物 ,将此提取物硅胶柱减压层析, 用石油醚乙酸乙酯溶剂体系梯度洗脱, 从石油醚/乙酸乙酯(20:80)洗脱液中所得的洗脱部分在反相C-18柱上进行HPLC分离, 用MeOH洗脱得到化合物60mg(135)和3mg(136),该类化合物具有抗早孕和抑制肿瘤细胞生长活性。 四种甾体糖苷化合物(137-140)是从中国珊瑚Junceella juncea EtOH/CH2Cl2提取液中分离得到〔48〕。 3 结语 目前,从海洋生物中发现的萜类和糖苷类天然化合物的数量近几年呈现逐渐增加的趋势,有些化合物的活性确切而且活性作用强烈是很有希望的一些药物先导化合物,但是用于临床研究的化合物还相对较少,因此开发更多新的天然化合物是有必要的。其次,从海洋生物中发现的活性化合物也存在着活性较低或毒性较大等问题,可以通过对其结构进行修饰,使其活性达到最佳效果。此外,从海洋生物中提取的活性化合物含量通常较低,而且化合物在提取过程中受到提取试剂、方法等外界因素的影响,所以采用化学合成的方法进行化合物的半合成或者全合成解决化合物在提取过程中结构易变、试剂耗量大等缺点。例如从海洋真菌中发现的结构新颖,有抗菌、抗癌和神经心血管活性的物质头孢菌素C,就是从海洋真菌中分离得到的,这是一大类半合成的广为人知的抗生素,它已广泛用于临床〔49〕。所以采用合成或半合成的方法解决活性化合物作为药源的大量生产方式是通行的。我们期待着这些药物先导化合物在药物开发方面发挥重要作用。
发酵工程论文
发酵工程是利用工业微生物的特定性状和功能,通过发酵过程来生产目的产物或将生物直接用于工业化生产的技术体系,是建立在发酵工业基础上,与化学工程紧密结合的一门学科,现在是我为您整理的发酵工程论文,希望对您有所帮助。
从多年发酵工程课程的讲授以及国内大部分高校发酵工程课程的讲授内容来看,发酵工程授课案例主要涉及到抗生素、氨基酸、柠檬酸等好氧发酵工艺及发酵机制,以及酒精、酿造酒、乳酸等厌氧发酵机制及工艺,很少涉及到基因工程产品如EGF、EPO、重组人乙肝疫苗等的发酵机制和工艺。生物技术药物已广泛用于治疗癌症、艾滋病、贫血、发育不良、糖尿病、心力衰竭、血友病、囊性纤维变性和一些罕见的遗传疾病[6]。目前我国从事生物技术药物产业研究与开发人数仅相当于美国的1/4,从事生物医药产品研究与开发的人才更是严重不足,已成为制约我国生物医药产业发展的瓶颈。这就要求我们编制、修订教学大纲时,在保留典型的传统菌的好氧发酵和厌氧发酵案例基础上,着重引入基因工程菌制药的发酵工艺,扩展学生的知识面,为他们将来到制药企业就业奠定良好基础。
1选取合适的教材
发酵工程优秀教材很多,像《微生物工程工艺原理》、《微生物工程》、《发酵工艺原理与技术》、《生物工艺学》、《现代工业发酵调控学》、《发酵工艺学》等,我们在前些年的教学过程中也选用了多个版本的《微生物工程》,结合我校生物技术专业学生的知识体系和培养方向,目前我们选用全国高等学校发酵工程专用教材、教育部普通高等教育“十一五”国家级规划教材华南理工大学姚汝华教授编写的《微生物工程工艺原理》,此书按照发酵工艺操作单元的先后顺序排布各章,脉络清晰,系统性好,该书在难易程度上很适合我们的学生,但是该书侧重于发酵机制的讲授,发酵工艺和设备没有涉及。因此,在前期教学积累的基础上,我们授课团队正在努力编写一本适合于我们自己的教材,增添发酵工艺及设备,以及基因工程产品的发酵工艺。同时为提高学习的广度和深度,为学生推荐了《发酵工艺原理》、《发酵设备》、《发酵工程实验技术》等参考书。
2开展发酵工程实验,提高学生综合素质
发酵工程是利用工业微生物的特定性状和功能,通过发酵过程来生产目的产物或将生物直接用于工业化生产的技术体系,是建立在发酵工业基础上,与化学工程紧密结合的一门学科,它是连接生命科学研究与应用的桥梁[7]。在基因工程和细胞工程的应用中,要想把定向改造的物种转化成产品,也需用到发酵工程技术。发酵工程实验开展的场所是发酵罐,这是发酵工业独有的特点,同时有一套严密的工艺流程让发酵原料通过菌种吸收转化成我们所需要的发酵产品,发酵周期长,步骤繁多。通过发酵工程实验课程的学习,培养学生实际动手操作能力,让学生亲自动手操作发酵罐,开展发酵罐空消和实消操作,以及常规发酵产品如酒精、柠檬酸、青霉素的发酵,使学生真正的达到学以致用,同时又锻炼了学生的自主性、创作性和责任心。师范院校的理科学生,普遍缺乏工艺概念,但他们又非常渴望了解真正的生产过程。我们针对发酵工程的主要内容,组织学生到啤酒厂、白酒厂、制药企业开展生产实习,使学生亲自到白酒、啤酒和药物的生产线上了解工艺流程,切切实实的把课堂上学到的理论知识与生产工艺联系起来,学生反映收获很大。总之,发酵工程实验集成度较高,牵涉到生物化学、微生物学、分析化学、有机化学、发酵工艺学、化学原理等学科的实验内容,有别于普通实验课程的是工厂生产实习,真正做到理论实践相结合,最终达到学以致用的培养目的。
3改进教学方法,切实提高学生创新能力
教学方法的改革,首先取决于教师本身的学术水平和综合素质的提高,教学方法改革服从人才素质培养,以大面积提高教学质量为目标,和教学内容的改革密不可分。生动、丰富的教材,有价值的有说服力的'理论,以培养学生学习和实践的态度、思维以及能力的开放式教学,无疑会激发学生的学习兴趣。从某种意义上说教学的目的是教会学生“学会学习”,“授人以鱼,不如授人以渔”。
案例教学
发酵工程是一门实验实践极强的学科,知识的归纳和总结是建立于具体的发酵机制和工艺案例的基础上。在授课过程中,典型的案例不仅使课堂生动形象,而且使学生容易理解和记忆,触类旁通,达到知识迁移的目的。例如在讲青霉素的发酵这部分内容时,通过详细讲解青霉素的发现,引出伟大的科学家弗莱明,进而讲解青霉素发酵的发酵机制、过程控制、提取及纯化相关内容,学生被激起兴趣,学起来也容易接受。学习之后,可以引导学生进行讨论,如抗生素的种类、我们生小病的时候用到了哪些抗生素、抗生素对能治疗那些疾病、滥用抗生素有何危害等等问题,使学生从思想上真正理解“抗生素是一把双刃剑”,从而在以后的生活中学以致用,进而影响身边的人及下一代合理利用抗生素,为社会进步做出贡献。
启发、讨论式教学
讲课的过程中首先讲授难点、重点,善于提出问题,让学生跟着老师的思路走,随着一个又一个的问题启发学生思考、归纳、总结。比如在讲授发酵过程的控制这部分内容开始时,引入酸奶的发酵。酸奶在生活中很普遍,同学们也不陌生,有的同学家做过酸奶,因此对酸奶的发酵还有一点常识,接受起来更容易一些。首先提出问题,酸奶发酵的原料和菌种从哪里来?酸奶发酵是好氧发酵还是厌氧发酵?发酵多长时间合适,夏天和冬天发酵时间一样吗?通过这些问题,启发学生思考讨论,最终引出酸奶的发酵工艺及注意事项,随后在实验课时让每位同学亲自动手做一款自己喜欢的酸奶,巩固和吸收理论学习。
比较归纳教学法
比较式教学法通过对不同知识点的对比分析,找到其相同和不同处,在比较的过程中对知识点归纳概括,有助于从本质上理解和记忆知识。比如在讲授培养基的制备过程中,让学生比较种子培养基与发酵培养基的相同点和不同点,说出两种培养基C/N比有何不同及不同的原因是什么。又比如在讲培养基的灭菌时,在讲述了分批灭菌和三种常见的连续灭菌流程连消塔——喷淋冷却流程、喷射加热——真空冷却流程、薄板热交换器连续灭菌流程之后,让学生对分批灭菌和连续灭菌进行对比总结,学生就容易理清楚,弄懂复杂的内容。
4优化考试模式,重在平时学习的思考与探讨
在发酵工程实验及理论教学考核方法中,一是包括到课情况。在开课之前详细向学生讲述发酵工程课程在生物技术专业的应用及其重要性,课程的讲授和考核方式,通过到课率来约束学生学习及实验的自觉性。二是考核内容和考核方式多样化,加强课堂考核、作业考核,平时考核与期末考核成绩的比例由原来的3∶7加大到6∶4,综合反映发酵工程课程实践性强的特色。三是实践教学实施“以考促训,以赛促练”,强化技能培养,规定技能考试不过关,不允许参加理论考试。四是在教学中注重因材施教和个性化培养。
5小结
当前生物技术飞速发展,发酵新产品不断涌出,它要求我们的发酵工程专业课教师在讲授传统知识的同时,不断学习发酵工程方面的前沿知识,及时根据发酵工程产品市场更新教学内容,同时在授课的过程中灵活采用各种教学方法,甚至有必要到工厂车间实习实训。从当前经济发展和高校改革趋势来看,生物技术专业不但在地方师范院校有很大的发展空间,而且也将是今后一些师范院校向综合型大学转型的必要环节。发酵工程课程作为生物技术专业的核心课程,是微生物学、生物化学、数学、计算机技术的应用,同时又是分子生物学、细胞工程、基因工程技术的深入开展,而生化工程、生物工业下游技术、微生物遗传育种技术又是发酵工程课程的深入和补充,因此发酵工程课程在生物技术专业承上启下,是一门非常重要的专业必修课程。所以,在当前转型发展大形势下,发酵工程课程教学改革势在必行,必须以培养学生观察问题、分析问题和解决问题的能力为目标,在开展理论教学基础上,切实开展实验教学和生产实习,最终培养出满足企业、市场和科研需要的优秀毕业生。
发酵臭豆腐方法:将老豆腐压干水分,然后切成小块装入盒子里面,用锡纸盖起来,放在通风地方发酵3天即可
很多人喜欢吃臭豆腐或豆腐乳,但是又担心买来的不干净。那么今天,小编就教你在家自制臭豆腐,既干净卫生又好吃美味。第一步,准备好一个坛子,最好是农村以前腌制咸菜的坛子为佳,如果没有坛子,用装水果罐头的玻璃瓶也可以,先将坛子或者玻璃瓶用开水洗净晾干。第二步,从市场上买1-2斤老豆腐,在室内晾至半干,切成3厘米见方、厘米的方块,将豆腐块直立码入坛内(注意块间留有空隙),盖上盖并用塑料薄膜将坛口封闭。第三步,将坛放置阴暗处,使豆腐块自然发酵。发酵的适宜的温度为10℃—20℃(10℃条件下发酵15天左右;20℃条件下发酵5天左右)。当豆腐块表面长出一层白色菌毛时,表明初期发酵成功。第四步,制作卤汁。取少量陈皮、八角、花椒、桂皮、姜丝、食盐,放入适量的水(以能够没过豆腐块为宜),煮沸10分钟,之后冷却待用。第五步,将冷却的卤汁加入坛内,液面高出胚块—厘米,封好坛口继续发酵(如果喜欢吃辣,可以放入适量的辣椒面)。经10天左右,菌毛融化,家庭自制的臭豆腐就制作成功了!注意事项1、装豆腐的坛子一定用沸水洗净,以免其他微生物污染2、将豆腐原胚码入坛内时,要留有间隙,以利于毛霉的生长繁殖和卤汁的浸入。3、卤汁要没及豆腐块。
臭豆腐发酵的方法:把豆腐放在阴凉处发酵三天,每天打开锡纸换一次气。三天后豆腐上面会有粘液,如果温度够高会有黄色的毛就说明发酵成功了。商家在制作臭豆腐的时候,一般会先发酵臭卤水,然后再制作豆腐胚,最后将做好的豆腐胚,浸泡在发酵好的臭卤水。
发酵臭豆腐的方法——1:尽量选择一块老一点的豆腐。2:将豆腐洗净后切成厚块。3:用重物压在豆腐上,使其溢出水分。4:准备一个无油无水的容器,整齐地摆放入豆腐块。5:盖上锡纸,注意不需要完全密封,静置3天就可以了。静置一段时间后,臭豆腐就发酵成功了,可以适当加上喜欢的酱料煮来食用啦。
为温室供能用沼气发酵方法及发酵系统摘要:介绍了一种能够为温室供能用的沼气发酵方法及发酵系统的专利技术。发酵系统具体由生物酸化积肥装置、缓冲调节池、高效沼气发生装置、出水沉淀池、出水暂存池和沼气缓存装置等依次经管道和阀门连接组成。发酵方法具体步骤包括生物酸化积肥装置的启动和原料的生物酸化储存,高效沼气发生装置的启动、沼气生产供应、休停和再启动等。该技术与传统沼气技术相比,具有一定的优势能够根据温室生产实际,及时把分散在全年产生的种植业有机废弃物投加到产酸积肥池中,然后根据温室供能需求,随时通过发酵系统生产沼气。发酵残渣根据生产需要分批取出用于温室有机肥。该技术实现了可以根据温室需求对沼气发酵灵活调节的要求。 关键词:沼气;温室;供能;可调控性 1.引言 温室是现代农业工程中重要的技术主题,温室的发展使传统露天农业转化为保护条件下的可控制农业[1]。目前国际上,温室已经广泛应用于花卉、蔬菜栽培[2]。温室栽培的最大优势是通过温室环境的控制,满足作物的最佳生活条件,抵抗自然灾害等,从而获取最大的生产效益。在温室管理中,温室冬季加温、补光和二氧化碳施肥是重要的环境调控措施[3]。这些调控过程都需要能源的消耗,目前的能源消耗以一次化石能源煤和二次能源柴油、电力[4]为主。这些能源的大量消耗一方面加重了全社会的能源供给负担,另一方面也大幅度提高产品的生产成本。受能源价格影响,许多温室不得不放弃温室的冬季加温、补光和二氧化碳施肥,这样不仅不能充分发挥温室的应有功能,甚至会造成温室管理的失败。 在温室管理中,每年会产生大量的种植业有机废弃物。目前,这些被随意堆放的废弃物,造成了严重的农业面源污染[3,4]。然而,这些有机废弃物本身富含大量有机质,是非常好的沼气生产原料。如果能用温室生产管理过程中产生的有机废弃物来生产沼气,从而替代煤、石油、电力等不可再生能源用于温室供能,不仅可以降低温室供能成本,同时废弃物中的营养物质又可以循环利用,减少废弃物排放,改善农业环境。但是,迄今为止没有沼气在温室供能领域应用的成功案例。 2.传统沼气技术与温室供能需求的背离沼气发酵技术可以分为两类,即传统沼气发酵技术和水溶性有机物高效沼气发酵技术[5, 6]。这两类技术应用于温室沼气供应都存在诸多技术难点。具体分析如下: 传统的沼气发酵技术,利用复杂性有机质发酵沼气,沼气产生具有非常大的周期性,往往开始投料时产气慢,中间产气旺盛,而且一旦沼气发酵系统启动,是否产沼气和产生多少沼气,要受原料特性和发酵规律的内在约束,很难调节。而温室用能表现在取暖、二氧化碳施肥等方面,这些能源需求往往受天气的控制,而天气又变化无常。因此,往往是要气时没有气,不要气时产气,如果满足需求将要建立庞大的储气装置,这在投资和占地上是不允许的。如果根据长期天气预报进行计划式投料,在理论上可行,但在实践上是难操作的。一方面,长期天气预报目前的准确性较差,另一方面,关于复杂有机质的产气规律不可能准确预测。同时,温室产生有机废弃物是分散在全年的各个时段,所产生的废弃物大多易腐烂,很难储存。因此传统的沼气技术基本不能适应温室供能需求。 水溶性有机物高效沼气发酵技术,利用可溶解的简单微生物进行沼气发酵,采用高效反应器可以实现较高的效率[7,8]。一是可溶性有机质非常容易反应,沼气的产生量在反应器负荷允许的范围内,基本决定于短期内的进料量,即进料多产气量大,进料少产气量小,停止进料短期即停止产气。二是成熟反应器中的沼气发酵厌氧微生物具有非常强的耐饥饿性,在长期不进料的情况下,反应器内的微生物能够长期耐受,而且再启动时可以迅速恢复正常高效产气。水溶性有机物高效沼气发酵技术的以上两点技术特征均符合温室需能波动性的要求。但是,如果单独为了温室供能需要而刻意外购水溶性有机物作为发酵原料生产沼气,不仅成本上与化石能源不具竞争优势,而且也达不到生物质废弃物资源就地利用、开展循环经济和环境建设的目的。因此,水溶性有机物高效沼气发酵技术也不适合温室供能需求。 3.技术内容本文提供一种可以根据温室生产实际,把分散在全年产生的种植业有机废弃物投加到发酵系统中,然后根据温室供能需求,随时通过发酵系统生产沼气,能够为温室提供可用的沼气发酵系统及发酵方法。其中,发酵系统由生物酸化积肥装置、 缓冲调节池、 高效沼气发生装置、出水沉淀池、出水暂存池和沼气缓存装置依次经管道和阀门连接组成。其结构如图1所示。其中,生物酸化积肥装置和缓冲池设置主控制阀,缓冲池与高效沼气发生装置之间设置泵, 高效沼气发生装置、出水沉淀池出水暂存池之间通过水的重力自流完成连接, 出水暂存池同时与缓冲调节池和生物酸化积肥装置相连, 中间依次设泵和配水器,高效沼气发生装置联接沼气缓存装置。为了保证沼气发酵能够满足温室供能需求,以上发酵系统按如下步骤管理第一、进行生物酸化积肥装置的启动和原料生物酸化储存,具体方法如下 (1)按相当于温室平均每天产生量的~倍质量收集温室种植业有机废弃物或其他种植业有机废弃物作为启动原料,对启动原料进行粉碎预处理;(2)向步骤(1)所得预处理原料中添加含N元素物质,混合,控制混合料碳氮比为(20:1)~(30:1);(3)将步骤(2)所得混合料投入到初次使用的生物酸化积肥装置中,加入接种物进行接种,混合,得到发酵原料,接种物的加入量为启动原料干重的3%~5%;(4)向步骤(3)中生物酸化积肥装置中加水进行发酵,水的加入量为至少高于启动原料平面10cm,发酵温度控制在20~40℃;(5)经过4~5天发酵后,发酵液pH值降到6以下,即完成酸化积肥装置的启动;(6)按照步骤(1)~(2)的方法随时收集处理温室生产的有机废弃物,及时投入已经启动的生物酸化积肥装置中,不需接种,直接加水至原料平面以上10cm;(7)重复步骤(6)直至一个生物酸化积肥装置投满,重新启用另一个生物酸化积肥装置,重复操作步骤(1)~(6) ;第二、进行高效沼气发生装置启动,调控装置运行满足温室用能与沼气生产的协调,具体方法如下: (1)高效沼气发生装置启动:投入接种物进入高效沼气发生装置,用水或水与生物酸化积肥装置中抽出的酸液混合物加满沼气发生装置,静止3~5d,接种物加入量为3~10kgVSS/m3;从生物酸化积肥装置抽出有机酸液泵入缓冲调节池中,用出水暂存池中的系统出水或外来水调节,控制有机酸液的化学耗氧量(COD)浓度为2000~5000mg/L,作为沼气发酵料;按 COD/( m3·d)~2kg COD/( m3·d)的速率阶段式调整水力负荷,连续进料直到实现水力负荷为5kg COD/( m3·d)~10kg COD/( m3·d),即完成沼气发生装置的启动,整个启动大约需50~80d。启动期间,温度控制为25~35℃。负荷调整的原则为,每次水力负荷调整运行稳定后,才开始进行下一阶段负荷的增加;沼气发生装置的出水经沉淀池沉淀后,流入出水暂存池,部分作为生物酸化积肥装置液体补加,部分用于缓冲调节池酸液的发酵料调节使用(2)沼气生产供应:根据温室生产实际预算沼气需求的时间和数量,按1kg COD产 ~沼气折算有机酸液的需求数量和时间,并按时按量从生物酸化积肥装置中抽机酸液进入缓冲调节池,按步骤(1)中所述方法调节成沼气发酵料;按5kgCOD/( m3·d)~30kg COD/(m3·d)水力负荷的流量,采用间歇或连续方式向已经启动好的沼气发生装置中进料进行沼气生产,产生的沼气进入沼气缓存装置备用;进料的流速控制、间歇或连续方式取决于每次沼气的需求量和沼气缓存装置的体积。沼气需求大、沼气缓存装置体积小时,采用大流量连续进料,反之,使用小流量间歇进料;当一个生物酸化积肥装置中的抽出物小于800~1000mg/L时,即该生物酸化积肥装置停止产酸,停止从该装置继续抽取发酵液。(3)沼气生产休停:对于启动好而温室不需要使用沼气,或者一个沼气使用周期结束,温室很久不使用沼气时,停止向高效沼气发生装置中继续进料,装置进入休停状态。休停期间,保持每10~30d补加一次发酵料,保证系统内微生物的营养需求。补加发酵料的调节方法同步骤(1)所述;补加发酵料的量为反应器体积1~3倍,补加速度为2~5kg COD/(m3·d)。(4)沼气生产休停后的再启动:对于步骤(3)中已经处于休停状态的高效沼气装置,再进入新的用气周期前必须进行再启动;再启动的方法是在新用气周期开始前3~10d,按照步骤(1)中所述方法调节发酵料,按 COD/(m3·d)~ kg COD/(m3·d)负荷向高效沼气装置进行适应性进料。
微生物的发酵作用对传统酿造食品安全性的影响摘要:对我国酿造食品的工艺特点和生物转化作用机制进行了阐述,分析了发酵过程中微生物的发酵作用对食品酿造过程中的生物性污染、化学性污染和物理性污染等食品安全性因素的影响,得出我国传统酿造食品由于微生物的发酵作用经过分解、消除和滤过等过程使其更具有安全性特征。关键词:传统酿造食品;发酵作用;食品安全食品为人类提供营养要素,同时也是微生物生长的天然培养基。我国传统酿造食品(酱油、酱类、食醋、腐乳、白酒、酸菜、泡菜等)多以谷类、豆类、蔬菜等为原料,将自然界的群体微生物引入发酵过程共同作用形成风味独特的食品。通过微生物发酵作用引起的生物转化食品具有良好的品质、感官特性、可消化性和营养价值。随着现代工业发展,工业“三废”中的有毒有害物质(如重金属毒物、N-亚硝基化合物、多环芳烃化合物等)在环境中污染逐渐增多,这些有毒有害物质通过土壤、水体、空气等环境污染酿造食品原料、食品容器和包装材料等。化学农药、化肥和仓储药剂(如杀虫剂、杀菌剂、除草剂、植物生长调节剂、粮食熏蒸剂、防护剂等)通过各种渠道污染食品酿造原料,作为发酵原料的粮食在生产、加工、贮藏等环节受到霉菌、细菌、寄生虫等生物污染。本文从我国传统食品酿造的工艺特点、微生物的生物转化机制对食品污染的作用进行分析,探究传统酿造食品在发酵过程中的安全性问题。1传统酿造食品的工艺特点我国传统酿造食品历史悠久,经过千百年的实践形成独特的酿造工艺特点。敞口固态发酵传统酿造一般采用固态发酵技术,在添加谷糠或稻壳等辅料之后进行边糖化边发酵的“双边发酵”工艺,具有发酵时间长、产品风味浓厚、管理粗放等特点。整个过程采用敞口式工艺,充分利用物产资源与自然资源,制曲时富集各种功能性微生物,驯化和培育了特定的微生物群落结构体系,将主体微生物与环境微生物融为一体。同时摸索出一套完整的温度、湿度、酸碱度、通气量、发酵时间等酿造工艺条件,创立了产品增香与各种加工技术,对创造我国独特的酿造食品风味和保证产品质量具有十分重要的作用。多种微生物共同作用酿造过程是一个复杂的生物化学反应过程,产品品质主要取决于多种微生物的协同作用。微生物主要来自于曲种和环境,包括霉菌、酵母菌、细菌等,各种微生物共栖生长,赋予醅料复杂而完整的酶系,具有较强的糖化、液化和蛋白分解能力。各种微生物在发酵过程中盛衰交替,此消彼长,协同作用,产生单一菌种所不能比拟的作用。在发酵过程中水解与发酵交替进行,避免过高浓度底物对有益微生物和生化反应的负面影响。发酵时间长,酶促反应深入而完善,代谢产物丰富多彩,产品风味醇厚、浓郁[1-2]。多样的产品防腐措施传统酿造食品采取灵活多样的产品安全措施,一是依靠代谢产物本身的防腐作用(如白酒是依赖酒精的杀菌作用,食醋是靠醋酸的抑菌作用);二是利用高浓度的食盐抑制微生物的生长繁殖(如酱油、酱、腐乳等)。2传统酿造食品的生物转化机制传统酿造过程是多种微生物将原料中的淀粉、蛋白质和脂类等大分子物质转化为产品的各种小分子风味物质,构成产品的主要成分。酱油的风味物质按其化合物性质可分为醇类、酯类、酸类、醛类及缩醛类、酚类、呋喃酮类和含硫化合物等[3-4];食醋中除含有主要成分醋酸外,还含有糖分、氨基酸、酯、醛、醇、酚、酮类等化学成分[5-6]。酱油和食醋等酿造食品的风味物质构成产品特有的色、香、味,其来源主要是2方面,一是植物原料的“主生物质”(如蛋白质、淀粉等“,次生物质”如丹宁、芳香族化合物、异黄酮);二是微生物及其酶对植物原料作用后的代谢产物。此外,白酒、酱油、食醋等在贮藏过程中各种代谢产物相互作用形成各种风味物质,据分析酱油含有300多种风味物质[4]。多糖的转化传统酿造食品原料的主要成分为淀粉,它在曲霉菌分泌淀粉酶的作用下分解为葡萄糖。这些单糖一部分作为霉菌、酵母菌和细菌生长繁殖的碳源和能源,一部分在微生物的作用下形成发酵产品的各种代谢产物。由淀粉转化来的代谢产物包括各种酸类、醇类、酚类以及低聚糖等[7]。酱油的糖分包括由大豆转化的低聚糖(如水苏糖、棉子糖等)和由小麦淀粉转化的蔗果三糖、低聚果糖、低聚半乳糖、低聚异麦芽糖以及低聚木糖等,而酿造食品的酸类、醇类、酚类等小分子产物是构成产品风味的物质基础。蛋白质的转化