算数据造假,但是已经毕业,应该不至于被取消学位。
硕士论文算错也就是数据造假。如果论文数据的确存在造假行为,那就存在被人发现的可能,一旦被查,将会受到相应的处罚。据统计,数据造假发生最多的领域,第一是医学, 其次是药理学。硕士论文一般是由学校保存,只有优秀的论文才能被知网等网络数据库收录。
但是在论文答辩之前要经过审核的,还是要注意一些为好。 对论文的认真程度,要看你的答辩组的老师态度了,还有硕士论文在毕业之后,还会经历一次教育部的抽查, 如果到那时被发现出了问题,就比较麻烦了。所以建议你如果数据可以得到真实的,就避免使用虚假数据。
论文数据重要性:
虽然审稿专家没有发现,但是并不代表论文发表出去后,别人发现不了。要知道论文发表出去,面向的是与你方向相同的人员,肯定会有不少同行业的人员阅读你的论文,若是发现错误,那么会质疑你的论文水平,也会怀疑杂志社及审稿专家的水平,对你今后在行业的发展并没有好处。
所以,一旦发现错误之后,就要及时联系杂志社或是审稿专家修改。尤其是医学方面的作者来说,任何一个小数的错误,可能都会影响整个研究实验,甚至会造成连锁反应。就拿药学论文来说,因为一个小数原则,可能导致某一项药品成分增加或是减少, 起到相反的作用,那么后果是非常严重的。
而对于一件机械零件的设计而言,可能因为一厘一毫的差别, 而导致一批零件无法投入使用。所以发现错误后要及时修改,这既是对自己,也是对他人负责的表现。
呵呵~~~没事,查到也是学校的责任,学校会帮你的,没事放心吧!
每一个孩子都经历过被论文支配的痛苦,大多数学生写完了文之后要去相关网站进行查重,如果某一位学生写出来的作文不合格,这位学生会根据不合格的原因进行修改。还有一部分学生论文,写完之后发给辅导员及专业课,老师,查看之后没有问题,却在答辩上出现问题,这类学生可以申请第二次答辩,答辩老师不会为难你的。学生并不害怕答辩,他们害怕自己写的论文效果不显着,那么当我们遇到论文效果不显著时,该怎么办呢?
每一个学生都会得到学校的安排,每一个学生都有专业课老师进行论文辅导。我们学校每一个班级都有一个专业老师,他会帮助我们修改论文,解决论文中的问题。当我们出现任何论文问题时,这位老师会查阅相关资料,给予我们最正确的答复。如果你的论文结果不显著,可以请教专业老师帮忙指导。
绝大部分学生论文效果不显著的原因是资料匮乏,所提出的观点得不到验证。还有一部分学生论文效果不显著的原因是查重率太高,论文不通过。既然你没有查阅相关资料就开始写论文,那么论文的结果肯定不会尽如人意,所以如果碰到论文结果不显著的情况,可以继续查阅资料,丰富论文内容。
这里指的是与其他人进行互帮互助,每一个班里都有学习很好的学生。如果你是一名学渣,所写出的作文结果不如人意,可以向同学寻求帮助,也可以和学习好的同学进行合作。许多人通过讨论与合作完成论文,寻求他人合作与帮助的过程中,千万不要害羞,让同学知道你有一颗爱学习的心。
论文查重结果不准确的原因有以下几点:
1使用了假的知网查重报告目前的知网论文查重市场鱼龙混杂,良莠不齐。有些不法商家用假的知网查重报告欺骗消费者。如果是一份假的知网论文查重报告,那么自然查重结果是不一样的。所以我们要学会识别知网查重报告的真伪。
2知网查重的版本不一致知网论文查重为了应对不同类型的论文,其内部也细分为很多的版本。如果是本科论文,就选pmlc.如果是研究生论文就选检测时间因为知网查重的对比库也是在不断更新中的,如果检测时间相隔过大的话,那么可能会导致检测结果不准确。所以一般建议,间隔时间在3-7天,这样不仅检测结果准确,而且还有修改论文的时间。4学校有自建库顾名思义,这是学校自己建的库。一般来说,学校有自建库的少,而且就算有也就是数篇而已。但是如果抄袭了本校论文,那么确实存在一定的风险。5两次论文不一样这里的不一样指两种情况,一是提交的内容,二是提交的格式。如果学校要求提交全文,而你第一次删除了目录,开题报告的话,那么检测结果是不一致的。目前知网查重确实可以识别多种论文格式。但是实际操作中发现,同一篇论文,如果格式不同,其最终的检测结果也是不同的。并且pdf格式容易出错。
可以看看论文查重修改的规律,如下图:
再好好分析,用别的的数据、别的方法再去研究,得出新的分析结论。可以去咨询老师,看看是哪里出的错误,能及时纠正。
进行科研,少不了做实验。得到实验原始数据后,要进行分析处理,来判断所得结果是否具有统计学意义上的显著相关性,是否支持研究设想,然后对数据结果进行解释,最后得出结论。 无论是期刊论文还是学位论文,在引言或前言(Introduction)中提出本研究的目的(aim/purpose),和研究假设(hypothesis),完成一系列的实验后,在报告方法(Materials and Methods)一节中,要进行数据分析。 通过数据分析,发现得出的结论具有相关性,从而验证了你的研究设想,实现了你的研究目的。 但也有可能实验结果的相关性不显著,得出的结果和研究设想不一致,甚至相反。你的第一反应也许是不理会那些数据,甚至想到要剔除掉它们。这是错误的做法。 一个科研人员应具备科研素质,尊重科学,严谨治学。其实相关性不显著,就是你实验的科学结论,只不过不支持你的研究设想罢了。你的实验结果证明你的设想不成立,从而否定了这一假设,这本身就是一结论。 一般情况下,如得出实验结果相关性不显著时,作者还要分析一下其原因,如样本不够大、变量不易控制、人为因素等。 下面以一篇SCI文章为例,来看看如果处理“不完美”的数据。 ❶We met with mixed success in our objectives. ❷We had believed that our results would indicate that trust was best described as a concept with two distinct dimensions. ❸Instead, we found an overall trust dimension that best characterized the data. ❹At least two plausible reasons may explain this difference, each providing rich areas for further research. ❺In part, some of the inconsistency may exist because of cross cultural variations. ❻In addition, some dissimilarity in results may exist because of methodological differences. 第一句话直接指出了部分结果与设想不一样,第二句和第三句分别阐述了原来的设想和实际得到的实验结果。第四句写出有两个原因,第五、六句具体分析了两个原因。
看看数据是否出现了错误,可以先认真的核查一遍,看看自己的计算过程是否正确,如果没有错误,那就更换下实验的数据的,把数据修改一下。
1、我们的论文提交给学校后,这时学校会统一对论文进行查重率检测,一旦重复率超出要求就会导致查重不通过,那么肯定是对我们能不能正常毕业的有一定的影响的。
2、每所学校对论文查重不合格的会区别情况进行处理,比如本科毕业论文重复率超出30%同时低于50%的,那么论文就会面临退回,这时我们就还要机会对论文进行修改然后再提交。如果论文重复率超出50%会判定为抄袭,答辩时间机会推迟。研究生毕业论文重复率超出50%的情况下,很大可能会直接延毕。当然,在具体的处理方式上,不同学校或多或少会有差别。
3、学校对我们论文进行查重检测后,查重率不达标的情况下论文就会被退回,在自己没有意见的时候就要在有效的时间内修改好论文。假如有异议,也能向学校提出申诉,但要弄清楚申诉后再次复查不合格的情况下,仍然要对论文进行重新修改;更严重的,要延期答辩,取消答辩资格,或者开除学籍。
4、大部分高校一般都只会通过1-2次的查重机会,也就是两次查重都不达标的情况下,答辩时间是会延期的,那么并不表示第三次给学生重新修改的机会,此时肯定会影响到学生的正常毕业,所以论文的撰写和查重大家一定要认真对待,不要存在侥幸心理。
可以重新进行实验或者是重新计算。论文一个结果算不出,可以重新进行实验或者是重新计算。论文是一个学术内容的论述,是研究生学术水平的展现,肯定要做到精确无误才好。如果算不出结果,你可以先检验一下演算步骤是否有误。如果自己找不出错误之处,可以找学姐学长或者导师帮忙。
再好好分析,用别的的数据、别的方法再去研究,得出新的分析结论。可以去咨询老师,看看是哪里出的错误,能及时纠正。
看看数据是否出现了错误,可以先认真的核查一遍,看看自己的计算过程是否正确,如果没有错误,那就更换下实验的数据的,把数据修改一下。
通常在写作论文时,实证分析一般是必不可少的,那么实证分析又该如何写比较好呢?实证分析目的是,为了让论文中所提出的观点或证明某一理论做支撑,其中包括有两种分析方法,一种是统计分析,另一种是回归分析。对于某些理论性的观点,需要举例一些论证来证明它。如果论证的结果与事实不符合,那可能会有这几个原因:(1)如果事实与理论不符,理论并不能解释这一现象;(2)理论本身就错误的,只要反例可以否定一个理论(被事实篡改),没有任何反例理论被认为是暂时可以接受的假设;(3)该理论的所在背景与目前社会的实际情况有所差异,我们应该分析不一致的地方,然后进行理论改进,或者提出相对应的政策建议来改变现实。相对比理论分析,实证分析则应该成为论文写作和选题的重点。由于理论创新的难度,实证分析能够并且能够反映论文写作过程中的工作量,从而使论文更容易被采纳。毕业论文(尤其是学士和硕士论文)应以实证分析为基础,包括:1、案例的调查与分析可以包括:具有一定创新意义的案例分析,如果案例可以否定某一理论,或解释该理论不适用于某一领域,则进行具有现实意义的社会调查。2、发现一个有利的论据,可以证明别人已经提出的但尚未被人证明过的理论,属于实证分析的创新。3、使用大样本数据验证理论或新方法来验证理论或观点,尽管其他人使用了相同的数据,但我们自己使用的数据更多,这样可以显得更有说服力,具有一定的创新价值。4、进行历史分析或比较分析的,尽量比别人收集更多的信息,或寻找新的证据,可以提出新的想法,或有第一手资料,这样的实证分析往往会成为新颖点,毕竟一篇论文的重点就是创新。
对于实验来说,没有修正实验数据这一项内容。实验数据显示的都是正确的。但是实验出现错误,会导致得到的数据不正确。此时要从新做实验。这是正确的做法。如何判断实验数据是否正确呢?或者说实验的步骤出错如何尽早发现?预习实验时,要把实验里每步的理论值算出来。做实验时得到的数据与理论值对比,如果差很多,那就是实验出现了错误,须重新做实验。直接将实验数据改成理论值附近的数据的做法是不负责任的。
检查与实验相关的过程
与实验有关的过程直接影响实验结果,相对来说具体形象,容易分析。分析的目的是确保你设计的实验是可以用来检验假设的,并且获得的实验结果是可靠的。
需要检查的与实验相关的过程包括三方面:实验设计的合理性、实验数据的可靠性、数据分析的合理性。
丢失重要数据
也许由于实验室出现问题或存储数据的硬盘出现技术问题等,你丢失了大量对项目至关重要的数据。
首先,你应该请教导师,询问解决方法。在你有时间、有资源的情况下,可以考虑重新进行数据收集或实地考察,再次获取这些数据。
如果无法重新收集数据,那么可以与导师讨论如何把数据丢失纳入项目,成为研究的一部分。例如,如果是由于你所使用的某种研究方法导致数据丢失(比如,一个实验出现重大错误,导致部分数据被破坏),那就会引发非常耐人寻味、同时也十分重要的讨论。你可以研究并讨论数据丢失和错误的研究方法所带来的影响,这样也能够向该领域贡献有价值的原创知识。
不可以。论文里面阐述的就是题目的要求,到时候答辩,老师问里面的数据和来源以及相关问题回答不出来是不可以的,所以还是要一致才有说服力。毕业论文中的数据必须真实的。一般情况下,答辩过程中老师不会让你演示数据的分析过程,但一般会问到你你的论文理论基础,数据是如何收集的(即通过哪些途径收集的),你的问卷设计,数据分析结果,得出结论等。
会。研究生毕业论文出现了实验数据,要确保数据必须是真实的,有效的,实证是会查数据的,但具体的还要看专业和学校,毕业论文按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。
有的毕业论文是需要实证分析的,有的是不需要的,看选题了
拓展:毕业论文能否通过评审,不仅仅是看是否有实证分析,而是需要从论文的整体质量、内容、结构和价值等方面进行综合评估。理论部分和实证分析都是毕业论文的重要组成部分,两者之间没有必然的联系。
即使没有实证分析,只要论文结构严谨、论点清晰、思路条理清楚、表述正确、研究文献全面,同时又有新颖的视角和独特的见解,也是可以通过评审的。当然,在不同学科领域中,对实证分析的重视程度也有所不同,有些专业的毕业论文可能更加强调实证分析的重要性。总之,毕业论文的质量是多方面的,需要从多个角度进行综合评估,因此无法简单地以是否有实证分析来判断论文的优劣。
毕业论文必须要用实证。
拓展资料如下:
现在写论文都要求实证过程,就是利用模型拟合数据达到自己预期的结果,论文实证的模型主要有:普通回归,静态面板回归,动态面板回归,门槛回归,断点回归,两阶段回归,双重差分回归,分位数回归,逻辑回归,空间回归,结构方程还有时间序列等一系列的处理方法。
确定权重计算综合得分的模型主要有因子分析,主成分分析,熵值法,层次分析法还有综合迷糊评价法等等,本科生应用的模型可以稍微简单一些,普通回归,静态面板回归就差不多了,研究生毕业论文的模型要复杂一些,目前门槛和断点模型运用的比较广泛。
实证分析这一章直接决定了整篇文章的价值以及这篇文章能否顺利进行下去,因此对于现阶段的论文来说,实证分析章节是一篇文章最为核心的部分,也是每一位写毕业论文的同学应该最先处理的一个章节,只要这一章的内容搞定了,整篇文章水到渠成。
为什么说实证部分最重要应该最先写呢,第一,实证不通过整篇文章是没有意义的,没有写下去的必要,可能需要更换主题;第二,实证一旦通过,你最担忧的问题已经解决,并且你已经读了一些的文献,你对研究的主题有了较深的认识,整篇文章你已经做到了心中有数。
因此,各位同学,如果有实证要求,请一定先写实证部分,即使不写,也要把数据处理的结果先做出来。
如何做实证分析呢,首先一定明确自己的研究主题,因为研究主题一般就确定了实证模型的因变量和核心自变量,比如说“养老金收入与农村老年人口的劳动供给--基于断点回归的分析”,从标题中,我们可以确定文章的因变量是农村老年人口的劳动供给,自变量养老金收入,用到的模型是断点回归。