首页 > 毕业论文 > 最牛的量子力学毕业论文

最牛的量子力学毕业论文

发布时间:

最牛的量子力学毕业论文

与.艾利斯合著的《时空的大规模结构》,与W.以色 列合著的《广义相对论:爱因斯坦世纪眺望》和与W.以色列合著的《重力300年》 。史蒂芬·霍金有两部畅销书:他的最畅销书--《时间简史》,和后来的《黑 洞、婴儿宇宙及其他》。

时间简史,万物简史。《时间简史续编》 是宇宙学无可争议的权威,霍金的研究成就和生平一直吸引着广大的读者,《时间简史续篇》是为想更多了解霍金教授生命及其学说的读者而编的。该书以睿智真挚的私人访谈形式,叙述了霍金教授 《时间简史》 的生平历程和研究工作,展现了在巨大的理论架构后面真实的人性。该书本来就不是一部寻常的口述历史,而是对二十世纪人类最伟大的头脑之一的极为感人又迷人的画像和描述。对于非专业读者,本书无疑是他们绞尽脑汁都无法真正理解的,只能当科幻小说看。《霍金讲演录——黑洞、婴儿宇宙及其他》,是由霍金1976-1992年间所写文章和演讲稿共13篇结集而成。讨论了虚拟空间、有黑洞引起的婴儿宇宙的诞生以及科学家寻求完全统一理论的努力,并对自由意志、生活价值和人的生存方式及进化原理作出了独到的见解。 时间简史中,霍金念念不忘的就是大统一理论,这是爱因斯坦未竟的梦想。霍金在本书中坦言,不能用单独的美妙的公式描述和预测宇宙的每一件事情,因为量子理论的测不准原理决定了宇宙是不确定性和确定性统一的。在本书中,霍金通过地图模型来说明宇宙的多样性可能需要一族理论来进行描述。 《时空本性》80年前广义相对论就以完整的数学形式表达出来,量子(他个人认为这只是研究理论物理目前的最小单位)理论的基本原理在70年前也已出现,然而这两种整个物理学中最精确、最成功的理论能被统一在单独的量子引力中吗?世界上最著名的两位物理学家就此问题展开一场极端与极端的辩论。本书是基于霍金和彭罗斯在剑桥大学的6次演讲和最后辩论而成。 《未来的魅力》本书以史蒂芬·威廉·霍金预测宇宙今后十亿年前景开头,以唐·库比特最后的审判的领悟为结尾,介绍了预言的发展历程,及我们今天预测未来的方法。该书文字通俗易懂,作者在阐述自己观点的同时,还穿插解答了一些饶有有趣的问题。 《果壳中的宇宙》该书是霍金教授继《时间简史》后最重要的著作。霍金教授在这本书中,再次把我们带到理论物理的最前沿,在霍金教授的世界里,真理和幻想有时只是一线之差。霍金教授用通俗的语言解释提示我们对宇宙的展开充分的想象,并以他独特的热情,邀请我们一起展开一场非凡的时空之旅。《时间简史——从宇宙空间大爆炸到黑洞》(1988年撰写)这本书是霍金的代表作。作者想象丰富,构思奇妙,语言优美,字字珠玑,更让人咋惊,"世界"之外,未来之变,是这样的神奇和美妙。这本书至今累计发行量已达2500万册,被译成近40种语言。 在这本书中,霍金将试图勾勒出我们心目中的宇宙历史——从大爆炸到黑洞,并有机结合各类宗教学理论。在第一讲里,他将简要地回顾过去关于宇宙的构想,并说明我们是如何得到目前的图像的。这或许可以称之为宇宙史的历史。 第二讲将解释牛顿和爱因斯坦的两种引力理论何以得出这样的结论——宇宙不可能是绝对静止的,它不得不或是膨胀,或是收缩。而这又意味着,在前200亿年到前100亿年之间,必定有某一时刻,那时宇宙的密度为无穷大或是脱离了某个空间,这就产生了所谓的大爆炸。它极可能就是宇宙的开端。 第三讲将谈谈黑洞。黑洞是当某个巨大的星球,或者更大的天体,受其自身引力吸引而自行塌缩(塌陷并紧缩)时形成的(另一种猜测:黑洞是脱离了某个集合空间中的某一元素)。综合感性的哲学理论,“任何事物在时间和空间的洗礼下必将从一个极端走向另一个极端”,这可能正是白洞产生的原因。根据爱因斯坦的广义及狭义相对论,宇宙中可能存在无数黑(白)洞,(也可能我们存在的世界正是黑(白)洞的某一分支)。而有关他们的历史,可能是某一领域的终结,也或许只是一个新的开始,因为知识领略得越多,越发现自己知道的只不过是冰山一角。广(狭)义相对论是经典理论(因为这个世界不存在绝对的理想状态),包括量子力学的不确定原理。 第四讲将讲述量子力学如何允许能量从黑洞泄漏出来。黑(白)洞并不像人们所描绘的那样可怕。 第五讲将把量子力学思想应用于大爆炸和宇宙的起源。这就得出了这样的设想:时空可能在范围(维)上有限,但没有边缘。这或许类似于地球表面,但它多了两维。 第六讲将说明这个新的边界条件如何能用现有的知识结构解释这个问题:尽管物理学定律是时(空)间对称的,但根据化学理论中的微观粒子守恒,任何物质(包括真空状态等),即使是“最”稳定的,也会在本质上发生“相对微小”的变化(具体解释请见化学领域的微观粒子(带电粒子的绕核“行星”运转)。 最后,第七讲将讲述我们正如何试图找寻一种统一的理论,如何能把involve量子力学、引力(etc.)的物理学及其他学科(“包括”很智慧地谈到“人”有不灭灵魂的宗教学)真正大一统地联系成一“片”知识的“海洋”。如果我们做到了这一点,我们也许就能真正理解了宇宙(involve natural power),以及我们在其中的位置。 该书不是一部寻常的口述历史,而是对二十世纪人类最伟大的头脑之一的极为interesting的theories和discriptions。对于非专业读者,本书无疑是他们享受人类文明成果的机会和滋生宝贵灵感的源泉。《霍金讲演录——黑洞、婴儿宇宙及其他》,是 史蒂芬·霍金与第一任妻子珍·王尔德 由霍金1976—1992年间所写文章和演讲稿共13篇结集而成。讨论了虚时(空)间、有黑(白)洞引起的初始宇宙,维的诞生以及科学家寻求完全统一理论的努力,并对自由意志、生活价值和死亡作出了独到的见解。在三年工作量并不巨大的学习之后,他获得了一等自然科学荣誉学位,之后进入剑桥大学研究宇宙学,当时牛津大学还没有宇宙学这个专业,于是他试图努力开创。尽管他希望能够跟当时在剑桥的弗雷德·霍伊尔(Fred Hoyle)身边做研究,但是他的导师却是丹尼斯·西艾玛(Dens Scama)。在获得博士学位之后,他成为一名研究员,后来成为冈维尔和凯厄斯学院(Gonvlle and Caius College)的教授。 1992年耗资350万英镑的同名电影问世。霍金坚信关于宇宙的起源和生命的基本理念可以不用数学来表达,世人应当可以通过电影——这一视听媒介来了解他那深奥莫测的学说。本书是关于探索时间本质和宇宙最前沿的通俗读物,是一本当代有关宇宙科学思想最重要的经典著做,它改变了人类对宇宙的观念。《时间简史》作为宇宙学无可争议的权威,霍金的研究成就和生平一直吸引着广大的读者,《时间简史续编》是为向更多了解霍金教授生命及其学说的读者而编的。该书以坦白真挚的私人访谈形式,叙述了霍金教授的生平历程和研究工作,展现了在巨大的理论架构后面真实的“人”。 《乔治开启宇宙的秘密钥匙》中文版发行于2008年年初,这本书由史蒂芬·霍金、其女儿露西·霍金、其学生克里斯托弗·加尔法德所著,是史蒂芬·霍金的“儿童”时期“科普三部曲”之一,这本书当中论黑洞以及很多部分都简述了霍金的新想法,这本书在国内外好评如潮。 新纪录片《跟随霍金进入宇宙》10年4月25日在美国探索频道播出。2004年-斯蒂芬·威廉·霍金的霍金悖论与信息守恒2004年7月21日,在爱尔兰都柏林举行的“第17届国际广义相对论和万有引力大会”上,霍金的态度来了个180度转弯,表示自己原来的观点错了,信息应该守恒。宣布了他对宇宙黑洞的最新研究结果:黑洞并非如他和其他大多数物理学家以前认为的那样,对其周遭的一切“完全吞食”,事实上被吸入黑洞深处的物质的某些信息实际上可能会在某个时候释放出来:信息守恒。原因是先前把黑洞想得太理想化了,把黑洞热辐射也想得太理想化了。不过,霍金一直没有给出严格的证明来支持自己的新观点。索恩表示此事不能由霍金一个人说了算,他仍坚持信息不守恒的看法。普瑞斯基则表示没有听懂霍金的演讲,不明白自己为什么赢了。目前,这一牵扯到量子论基础的敏感问题还远未解决。 黑洞理论的研究已经超出了黑洞本身,它不仅通过信息疑难触及了量子论的重要基石——幺正性,而且掀开了探讨时间性质的新篇章。 20世纪60年代到80年代,黑洞研究取得了重大进展。最初人们认为黑洞是一颗死亡了的星体,什么东西都可以掉进去,但任何东西都跑不出来。1974年霍金证明黑洞有温度、有辐射。霍金辐射的发现使黑洞和霍金本人都变得家喻户晓。 20世纪80年代以后,黑洞研究的重点逐渐从温度转向信息佯谬。人们早已知道,黑洞外部观测者会失去形成黑洞以及后来落入黑洞的物质的几乎全部信息,这就是“无毛定理”。著名的“霍金辐射”理论.所谓“毛”是指“信息”。黑洞只剩下总质量、总电荷和总角动量3根“毛”可以被外界探知。人们最初认为,虽然外部观测者不能探知黑洞内部物质的信息,但这些信息并没有从宇宙中消失,只不过隐藏在了黑洞的内部。霍金辐射发现之后,人们知道黑洞中的物质最后将全部转化为热辐射,而热辐射几乎不带出任何信息。这样,形成和落入黑洞的物质的信息将从宇宙中消失,信息不再守恒,不仅重子数守恒、轻子数守恒等定律不再成立,量子论的幺正性也将受到破坏。面对如此严重的理论困难,物理学家展开了激烈的争论。理论物理学家大都相信信息守恒,坚信幺正性这一量子论的基石不会被破坏。总之,信息应该守恒。以霍金和索恩为代表的相对论专家则认为信息不一定守恒,幺正性完全有可能被破坏。为此,霍金和索恩与坚信信息守恒的普瑞斯基打赌。 "这种理论从诞生之初就遇到了麻烦:它同很多科学家坚持的"信息守恒定律"互为矛盾.这一度被人们称为"黑洞悖论". 如同19世纪的科学家断定了能量守恒定律一样,20世纪的许多科学家提出了信息守恒一说——假如这个说法成立,那么"信息守恒定律"无疑将成为科学界最为重要的定律,也许比物质,能量守恒定律的意义更为深远.霍金的黑洞理论引起的激烈争执就是"信息"在黑洞中是否能够保存,守恒."

世界上有确定的东西吗?正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式: 。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。”1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,向量子力学提出了严峻的挑战。光子箱的结构很简单,一个匣子挂在弹簧称上,一个相机快门一样的装置控制匣子内光子的射出。每次射出光子的时间由快门控制,弹簧称上可以读出整个盒子因光子出射而减少的质量,根据大名鼎鼎的爱因斯坦质能关系: 得出光子的能量,这样原则上时间和能量不存在不能同时确定的问题。 据说玻尔看到这个装置登时口吐白沫,经过紧急抢救时的输氧加上彻夜的苦思之后,玻尔终于搬来了救星,呵呵,那竟然是爱因斯坦本人的广义相对论。发射出光子后,光子箱的质量减少纵然可以精确测出,然而弹簧秤收缩,引力势能减小,根据广义相对论的引力理论,箱子中的时钟会走慢,归根到底时间又是不确定了。 这次轮到爱因斯坦吐血三天了,他费尽心思找来的实验居然成了量子力学测不准关系的绝妙证明,还被玻尔等人堂而皇之的载入他们的论文之中。 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这个我们应该能得出结论:当然存在测不准关系。我们做实验的时候,一旦到了处理实验数据就要同时算出相应的不确定度。这是为什么呢?测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。任何测量仪器、测量环境、测量方法、测量者的观察力都不可能做到绝对严密,这就使测量不可避免地伴随着有误差产生。因此,分析测量可能产生的各种误差,尽可能可消除其影响,并对测量结果中未能消除的误差做出估计,就是物理实验和许多科学实验中必不可少的工作。但是,我们只能尽力减小误差,却不能消除它。从上面可以看得出,世界上是不存在测得准的东西的,正所谓世界是辩证统一的,事物是相互影响的,既存在相对性,又存在绝对性。事物的测不准关系,就因为它既有相对性,又有绝对性,而我们通常所说的某某物重多少,高多少,等等看似绝对的数据其实是相对的。在某一个时段里,物体趋向于某个值的概率最大,因而我们就把这个值称作在这个时段里的相对准确值,它本是使不可能测准的。事物之间又存在着相互作用,因而又由于相互作用是具体的,因而是有限的,具有一定的认识意义;而本体则是抽象的,因而是无限的,并不具有任何确定的认识意义。所以,世界上并不存在确定的东西。参考文献:张三慧,《大学物理学<量子物理>》清华大学出版社2000年8月第二版34页35页李士本,张力学,王晓峰《自然科学简明教程》,浙江大学出版社2006年2月第一版,68页.72页 资料来源:

先引入一个生活中的例子,然后就此展开讨论力与运动的各种关系,后总接一下。

量子力学的毕业论文好写吗

如果不当做专业论文,而当做科学随笔或者科研感想还是不错的,作为科研论文深度还是不够。文中讨论了量子力学对经典物理学颠覆后,对原有经典物理学科研评价指标造成的影响冲击。进而转向数学,用数学界评价科研工作的标准试图去寻找更普遍的评价物理学乃至整个自然科学的评价标准。全文从开头到结尾一直贯穿着马克思的唯物观点,直到最后的三个代表。 此文确实很明显在探讨科技进步对于哲学进步和人类认识发展的促进作用,以及人类认识活动(马克思认为评价活动是一种认识活动)该如何根据科技而进行修正。我认为这篇文章做论文不足,但鉴于我国目前高校理工科学生文科偏废和文科生的理科偏废(尤其是莫名来的学科优越感和学科鄙视链),用来当做科技哲学领域的小散文看看,还是很好的。

量子物理学是关于自然界的最基本的理论,人类在20世纪20年代发现了它,然而至今却仍然无法理解这个理论的真谛。大多数人根本没听说过量子,而初学者无不感到困惑不解,实际上,所有20世纪最伟大的科学家都没有真正理解它,并一直为之争论不休。然而,越困难、越具有挑战性的问题就越让人类的好奇心无法割舍,人类志在理解自然的本性,并最终理解自己。 今天,对于每一个仍然对自然充满好奇的现代人来说,不理解量子,就无法理解我们身边的世界,就不能真正成为一个有理性的、思想健全的人。同时,让我们所有人感到幸运的是,现在想真正理解神秘的量子却是一件容易的事情,这会让那些逝去的伟人们感到羡慕和由衷的欣慰。 发现量子 人们将量子的发现称为人类科学和思想领域中的一场伟大的革命,因为它会让所有第一次试图接近她的人感到从未有过的心灵震撼。现代人所缺少的正是这种真正的心灵震撼,他们太沉迷于感性的快乐,而忽视了理性的清新魅力。 1900年,普朗克在对热辐射的研究中第一个窥见了量子。这一年的12月14日,普朗克在德国物理学会会议上宣布了他的伟大发现---能量量子化假说,根据这一假说,在光波的发射和吸收过程中,发射体和吸收体的能量变化是不连续的,能量值只能取某个最小能量元的整数倍,这一最小能量元被称为“能量子”。普朗克的能量子概念第一次向人们揭示了微观自然过程的非连续本性,或量子本性。 1905年,爱因斯坦提出了光量子假说,进一步发展了量子概念。爱因斯坦认为,能量子概念不只是在光波的发射和吸收时才有意义,光波本身就是由一个个不连续的、不可分割的能量量子所组成的。利用这一假说,爱因斯坦成功地解释了光电效应等实验现象。光量子概念首次揭示了光的量子特性或波粒二象性,即光不仅具有波动性,同时也具有粒子性。 继普朗克和爱因斯坦之后,玻尔进一步发现了原子系统的量子特性。1913年,玻尔把量子概念成功地应用于氢原子系统,并根据卢瑟福的核型原子模型创立了玻尔原子理论。这一理论指出,原子中的电子只能存在于具有分立能量的定态上,并且电子在不同能量定态之间的跃迁是本质上非连续的。 1924年,在爱因斯坦光量子概念的启发下,德布罗意提出了物质波假说,最终将光所具有的波粒二象性赋予了所有物质粒子,从而指出了自然界中的所有物质都具有波粒二象性,或量子特性。德布罗意的物质波概念为人们发现量子的规律提供了最重要的理论基础。 最初的理论 终于在1925-26年间,定量描述物质量子特性的最初理论---量子力学诞生了,并且是以两种不同的面孔---矩阵力学和波动力学接连出现的。1925年7月,海森伯在玻尔原子理论的基础上,发现了将物理量(如位置、动量等)及其运算以一种新的形式和规则表述时,物质的量子特性,如原子谱线的频率和强度可以被一致地说明,这是关于量子规律的一种奇妙想法。之后,玻恩和约丹进一步在数学上严格地表述了海森伯的思想,他们指出了海森伯所发现的用于表述物理量的新形式正是数学中的矩阵,而物理量之间的运算就是矩阵之间的运算。同时,玻恩和约丹还发现了用于表达粒子位置和动量的矩阵之间满足一个普遍的不对易关系,即[p,q]=ih。基于这一表达量子本性的对易关系,玻恩、约丹和海森伯终于建立了一个全新的量子理论体系---矩阵力学,这一理论只涉及测量结果,而并不涉及原子系统的量子状态和测量过程。 在矩阵力学建立的同时,另一种基于德布罗意物质波概念的新力学正在孕育。1925年末,在爱因斯坦的建议下,薛定谔仔细研究了德布罗意的论文,并产生了物质波需要一个演化方程的想法。1926年初,经过反复尝试和努力之后,薛定谔终于发现了物质波的非相对论演化方程,即今天人们熟知的薛定谔方程。薛定谔方程的发现标志了量子力学的另一种形式体系---波动力学的建立。 波动力学为物质的量子表现提供了进一步的直观图像(即波函数)说明,同时,在波动力学中,位置与动量之间的对易关系成为了波动方程的一个自然结果,而不是如矩阵力学那样,只能假设它的存在。在此意义上,波动力学优于矩阵力学。 1926年下旬,看上去非常不同的矩阵力学和波动力学很快被证明在数学上是等价的。薛定谔首先证明了波动力学与矩阵力学的等价性,之后,狄拉克进一步通过变换理论把矩阵力学和波动力学统一起来。至此,量子力学的理论体系被创建完成。 从此,人类开始进入量子时代。越来越多的人投入到量子力学的应用研究中,基于量子规律的新技术也不断涌现,这些量子技术深深地改变了人类的生活,其中最引人注目的成就就是激光技术和电子计算机的出现。 反对者们 人类完全有理由为这些辉煌的量子成就而骄傲,然而在这些成就背后却隐藏着一个令人不安的事实,那就是我们至今仍然不理解量子,而其根源在于量子力学并不完善。 1926年,玻恩在量子力学建立后不久即提出了量子力学的几率波解释,之后这一解释又进一步为海森伯的不确定关系和玻尔的互补性原理所补充,它们共同形成了量子力学的正统解释。在1927年的第五届索尔维会议之后,这一解释渐渐为更多的物理学家所接受。 然而,反对者们依然存在,其中主要包括量子力学的奠基者和创立者---爱因斯坦和薛定谔,他们分别以EPR悖论和薛定谔猫来对量子力学的正统解释进行反驳。20世纪50年代,当新一代物理学家们成长起来之后,正统解释开始受到越来越多的怀疑和攻击,并且人们也开始寻求对量子的新的理解。玻姆的隐变量解释和埃弗雷特的多世界解释就是其中最有生命力的两种解释,它们至今仍为很多物理学家所信奉和讨论。 不相容危机 爱因斯坦最早注意到量子力学与相对论的不相容性。在1927年的第五届索尔维会议上,爱因斯坦对刚刚建立的量子力学理论表示了不满,他在反对意见中指出,如果量子力学是描述单次微观物理过程的理论,则量子力学将违反相对论。1935年,在论证量子力学不完备性的EPR文章中,爱因斯坦再一次揭示了量子力学的完备性同相对论的定域性假设之间存在矛盾。在爱因斯坦看来,相对论无疑是正确的,而量子力学由于违反相对论必然是不正确的,或者至少是不完备的。 1964年,在爱因斯坦的EPR论证的基础上,贝尔提出了著名的贝尔不等式,这一不等式进一步显示了相对论所要求的定域性与量子力学之间的深刻矛盾,并提供了利用实验来进行判决的可能性。根据贝尔的分析,如果量子力学是正确的,它必定是非定域的。利用贝尔不等式,人们进行了大量实验来检验量子力学的正确性,其中最有说服力的是阿斯派克特等人于1982年所做的实验,他们的实验结果证实了量子力学的预言,并显示了量子非定域性的客观存在。 尽管量子非定域性的存在已经为实验所证实,然而,量子力学与相对论的不相容问题至今仍然没有得到满意的解决。根本原因在于,一方面,量子力学的理论基础仍没有坚实地建立起来,另一方面,量子力学所蕴含的非定域性又暗示了相对论的普适性将同样受到怀疑。 松散的基础 费因曼于60年代曾经说过,没有人理解量子力学。今天,情形依然如旧。即使量子力学已出现并被广泛应用近四分之三个世纪,即使它的大多数创立者已乐观地认为它是一个完善的理论,即使今天量子理论的正统解释已为人们普遍接受,但事实仍然是:量子力学甚至还不能称为一种理论。 首先,量子力学没有解决理论所描述的物理对象问题,人们对于理论中所出现的波函数还没有找到一个满意的物理解释,甚至不清楚波函数究竟是描述什么的。人们放弃了经典运动图像,却没有给出微观粒子真实的客观运动图像。 其次,量子力学本身没有解决测量问题,它没有描述理论与经验的连接纽带---测量过程,人们至今还不清楚波函数的测量投影过程是客观的还是主观的,亦或是一种虚幻。在量子力学中,测量过程被简单地当作是一种瞬时的、非连续的波函数投影过程,然而对于这一过程为何发生及如何发生它却说不清楚,因此,目前的量子理论对测量过程的描述是不完备的。另一方面,一旦将测量投影过程解释为一种客观的物理过程,它的存在将明显与相对论不相容,这导致了人们一直在投影过程的客观性和相对论的有效性之间摇摆不定,从而在很大程度上阻碍了对量子测量问题的解决,并进而阻碍了人们对波函数的物理含义的探求。 目前,越来越多的物理学家已认识到量子测量问题是目前量子理论中最重要,也是最棘手的物理问题,它的最终解决将不仅使现有量子理论更加完善,同时也将为量子理论与相对论的结合铺平道路。 引力也来“捣乱” 量子理论与引力的结合,即量子引力理论同样遇到了前所未有的困难。困难的根源来自于这两个理论的概念体系之间存在着固有的不相容性,这种不相容性更加基本,也更加深刻,它可能危及整个理论大厦。 一方面,根据量子理论,粒子波函数的一致定义需要预先给定的确定的时空结构,另一方面,根据目前的引力理论---广义相对论,时空结构将由粒子的波函数动态地决定,而粒子波函数所决定的时空结构一般却是不确定的。量子理论与广义相对论的这种不相容性暗示了量子理论中满足线性叠加定律的粒子波函数可能本质上已无法严格定义,于是量子理论中波函数的线性演化规律也将失效。这一结论的一个直接后果是,它将为波函数投影过程的存在提供一个自然的客观解释,从而可彻底解决量子测量问题,因此量子理论本身所存在的问题似乎需要广义相对论的帮助才能最终得以解决。 另一方面,量子理论也将对广义相对论所依赖的连续时空观念产生根本影响。人们已经证明,量子理论和广义相对论的适当结合将导致实验上所能测量到的最小的时间尺度和空间尺度不再是任意小,而是有限的普朗克时间和普朗克长度;同时,量子引力理论中恼人的时间问题也从理论上暗示了时间的连续性假设是不适当的。因此可以预计,只有放弃时空的连续性假设,我们才能从根本上解决量子理论与广义相对论的相容性问题,进而为量子引力理论提供一个一致的理论框架,而这无疑将再一次大大加深我们对时间、空间和运动的理解。 混乱的现状 人们关于量子力学看法的不一致可以通过下述事实最明显地说明,即量子理论的两位奠基人---爱因斯坦和玻尔竟为此进行了长达近30年的争论,并且最终也没有获得一致的意见。对于量子理论,谁还能比他们更有发言权呢?在这两位科学巨人离开我们近半个世纪后的今天,情况变得更糟,新的看法和解释不断涌现,不同的物理学家对量子理论几乎都持有不同的看法。 1997年8月,在UMBC(马里兰大学)举行的量子力学讨论会上,物理学家们对他们最喜欢的量子力学解释进行了投票表决,下表是投票结果: 量子力学的解释 投票数 哥本哈根解释 13 多世界解释 8 隐变量解释 4 一致历史 4 修正的量子动力学(GRM/DRM) 1 其他解释(包括未决定者) 18 图1 量子力学解释排名 实际上,更多的物理学家是实用型的,他们只专注于量子理论的应用,而根本不顾及它的基础是否坚实可靠。 拨开迷雾 如果你觉得量子力学难以理解甚至不可理喻,这并不奇怪,因为你生活在经典世界中,你看到的和经历的都是经典物体和它们的连续运动,并且从一开始你所受的科学教育也都是牛顿的经典力学。然而,这一切对于量子世界中的粒子和运动都已不再适用,每个人都会有一种脚下的地面突然被抽去的感觉。是的,你正在进入一个完全陌生的世界,通常的感觉和经验不再能帮助你,你需要利用理性的光辉来照亮前进的道路。不必担心,跟随我们,保持开放的思维,并乐于去理解,你会渐渐认识这个新的量子世界,并真正窥见它的神秘和美丽。 这里我们从一个最典型的例子---双缝实验讲起,这个例子“包含了量子力学的唯一神秘”(费因曼语)。通过这个例子,我们将让你最终熟悉并理解自然最神秘的量子本性。 自20世纪20年代量子力学建立以来,关于微观粒子(如电子,光子等)是如何通过双缝的问题一直未被真正客观地解决。尽管正统观点认为它已给出了满意的答案,但由于答案中并未给出粒子通过双缝的客观运动图像,实际上,这一图像的存在已为正统观点所否定,因此喜欢客观实在性观念的人们一直在问:“但是,粒子究竟是如何通过双缝的呢?”。 图1 双缝实验示意图 上图是双缝实验的示意图。我们以光子为例来讨论,假设单个光子可以相继从光源S发出,然后通过光阑A的两条狭缝到达光敏屏B。这样,当有大量光子到达光敏屏后将形成双缝干涉图样,在干涉峰处光子到达的数目最多。 首先,我们看一看利用连续运动图像是否可以解释光子通过双缝所形成的干涉图样。根据粒子的连续运动图像,在双缝实验中光子每次只能穿过两条狭缝中的一条,并且不受另一条狭缝的影响。于是很显然,双缝干涉图样应该和分别打开每条缝时所产生的单缝干涉图样的混合图样一致,因为双缝实验中每次单个光子通过的情形将同样出现在单缝实验中。但是,至今关于光子的双缝实验都否定了这个结论,这两种情况下所产生的干涉图样并不一样,这就是利用连续运动来理解双缝实验所导致的困惑。实际上,我们可以通过下述事实更容易地看出困惑所在,即当一条狭缝关闭时,光子会到达屏上的某一位置,然而当这条狭缝打开时,它将阻止并不通过这条狭缝的光子到达屏上的上述位置。 我们没有出路,只有放弃粒子的连续运动图像。量子力学的正统解释也同样放弃了这一图像,然而它却同时放弃了所有可能的粒子运动图像,并证明这种放弃竟是理论的必然。于是,正统解释不仅没有给出粒子通过双缝的客观运动图像,并且还惊人地宣称这不是它的无能,而是因为这一图像根本就不存在。下面我们看一看正统解释是如何“瞒天过海”的,又是在哪里“露出马脚”的。 正统解释首先隐含地假定了连续运动是唯一可以存在的客观运动形式,然后它通过类似于上面的论证证明了连续运动无法解释量子力学所预测的双缝干涉图样。于是,正统解释抛弃了连续运动这一可能的客观运动形式,而由于连续运动的唯一性,正统解释便得到下述结论:不存在客观的运动形式,或者说,不存在独立于观察的客观实在,当你谈论微观粒子的某种性质时,你必须测量这种性质。进一步地,正统解释在测量的意义上解释了双缝实验的怪异,并认为这是唯一可能的客观解释。这一解释可简单叙述如下:如果想知道光子如何通过双缝形成双缝干涉图样,你就必须利用位置测量直接观察光子究竟通过哪条狭缝,而根据量子力学,这一位置测量无疑将破坏掉双缝干涉图样,因此在双缝干涉图样不被破坏的前提下,我们无法测定光子究竟通过哪条狭缝,从而也就无法知道光子如何通过双缝形成双缝干涉图样。于是正统解释认为,光子通过双缝的客观运动图像在本质上是不存在的。 正统解释的上述论证看似天衣无缝,的确,它几乎欺瞒了20世纪的所有伟大人物,然而,上述证明中却存在两个致命的缺陷。其一是正统解释隐含地假设了连续运动是唯一可以存在的客观运动形式,但并未给出充分的证明或说明。实际上,这一隐含的假设从没有人认真怀疑过,甚至可以说,从没有人指出它是一个假设,因为几乎所有人,包括反对正统解释的人们,如爱因斯坦,都如此深信它,并认为它的正确性是显然的。然而,它却是根深蒂固的偏见,它被成功的经验和伟人的教诲喂养长大,但最后它却禁锢了人们的思想,并试图去抹煞经验背后的实在。的确,导致人们深信上述假设的原因有很多,其中来自经验和历史的原因可能起了决定性的作用,但人们很少去考虑这一假设自身的合理性,也从没认真想过还存在其它可能的、甚至是更为基本的运动形式,即使他们面对量子力学不得不抛弃连续运动时也依然如此。人们为什么如此笃信呢?一个有趣的原因可能是,在量子力学出现以前,人们没有必要怀疑这一假设,而在量子力学出现以后,正统解释又禁止了人们去怀疑这一假设。 上述证明中的第二个缺陷是一个技术性缺陷,即在测量上它只考虑(利用位置测量)去观察光子究竟通过哪条狭缝。这一缺陷实际上由第一个缺陷所导致,因为在正统解释对双缝实验进行测量意义上的解释时,它仍假设客观运动形式,如果存在,只能是连续运动。因此,正统解释只考察了利用位置测量去观察光子究竟通过哪条狭缝,而丝毫没有想过光子的客观运动形式可以是不同于连续运动的其它形式,从而可能以某种方式“同时”通过两条狭缝,而我们的测量也必须设计得可以适应这种运动形式。于是,正统解释始终执拗地在某条缝处进行位置测量,殊不知这正中了量子力学的计谋,它因此可以轻易地用测量投影过程来对付正统解释的这种测量探求,并成功地隐藏了量子的真实面目。根据量子力学,这种测量将破坏光子的真实运动状态,并导致光子投影到单条缝处,从而不仅破坏了双缝干涉图样,同时也无法使我们看到光子真实的客观运动形式。可以看出,正统解释论证中的第一个缺陷从根本上阻碍了人们提出不同于连续运动的客观运动形式,而第二个缺陷则进一步阻碍了人们发现这种运动的具体形式。 一旦意识到正统解释的上述技术性缺陷,我们就可以尝试采用新的测量方式,它可以对付光子以某种方式“同时”通过两条狭缝的可能情况,并且不引发量子力学的投影过程,从而可以帮助我们窥见量子的真实面目。实际上,人们已经发现了这种测量方式,它就是由阿哈朗诺夫等人于1993年所提出的保护性测量。由于在双缝实验中我们预先知道光子的量子态,从而原则上可以采取相应的保护性措施,使我们既可以测量出光子真实的量子态或客观运动状态,又可以不破坏光子的量子态,从而也不破坏双缝干涉图样。因此,我们利用保护性测量就可以在不破坏双缝干涉图样的前提下,发现光子真实的客观运动形式。 非连续的运动 双缝实验清晰地告诉我们,微观粒子的运动是非连续的,非连续运动是自然留给我们的唯一选择。下面我们将给出光子通过双缝的量子运动图像,但是在此之前,我们还必须再驱除人们思想中所固有的关于“同时”的偏见,因为它也一直在阻止人们去发现光子通过双缝的客观运动图像。 我们要指出,一直被认为是正确的粒子不能同时通过双缝的结论是经不起深究的,人们对此结论中“同时”的理解只是局限在“同一时刻”这个框架内,并且将粒子不能于同一时刻处于两个不同的空间位置这一看法等效于不存在半个微观粒子这一正确事实,从而否证了连续运动之外的其他运动形式的存在,这最终导致了没有量子的正统量子观点。实际上,我们应该抛弃关于“同时”的狭隘理解,由于双缝的缝长是有限的,而不是零,双缝论证中的“同时”应指极短的有限时隙,而不是同一时刻。 现在,我们终于可以发现光子通过双缝的客观运动图像,即光子的量子运动图像了,它就是:进行量子运动的光子于极短的有限时隙内非连续地“同时”经过双缝,尽管它于此时隙内的某个时刻只能位于一条缝中,但是在不同时刻它可以处于不同的缝中,从而在很短的时间内通过两条缝。由于光子的运动是这种非连续的量子运动,我们将很容易解释光子双缝干涉图样的怪异,因为在每次实验中光子都非连续地通过了两条缝,从而到达屏上的光子同时含有了两条缝的信息,而不只是一条缝的信息,因此双缝干涉图样自然不会是两个单缝图样的简单混合。 新的曙光 最近,随着《量子运动与超光速通信》一书的出版,一种基于非连续量子运动的更完备的量子理论被提出来。在这本书中,作者通过对宏观连续运动的深刻分析,利用清晰严谨的逻辑论证和有力的实验证实提出了物质的基本运动形式---非连续量子运动及其规律,并令人信服地论证了微观运动与宏观运动都是量子运动的表现。这不仅解决了量子力学中波函数的物理含义问题,为波函数的测量投影过程提供了客观的物理解释,并且将人们对微观世界与宏观世界的描述有机地统一起来。在此基础上,作者进一步分析了量子运动所蕴含的奇妙的量子非定域性,给出了将量子力学与相对论相融合的途径,并对基于量子非定域性的超光速通讯进行了大胆的探索。 量子是什么? 现在,人们终于明白了量子是什么,并可以解开所有的量子困惑了。量子就是物质粒子的非连续运动,而所有的量子困惑都起源于这种非连续运动。 正是这种非连续运动导致了原子系统分立能级的存在,这种能量分立性最早为普朗克于1900年所发现,它的发现标志了量子时代的开端;正是这种非连续运动导致了光波的粒子性表现,这使年轻的爱因斯坦于1905年试探性地假设了光量子的存在,并用它成功地解释了光电效应。这种非连续运动还导致了原子系统的稳定存在,这种稳定存在表现为玻尔于1913年所大胆假设的原子定态,而原子的稳定性在当时仍是一个谜,连续运动无法解释这一现象。 正是这种非连续运动导致了物质的波粒二象性,爱因斯坦于1909年最早注意到了光具有这种神秘性质,而德布罗意在1923年最终将这种性质赋予了所有物质粒子;正是这种非连续运动导致了量子跃迁的存在和非连续性的出现,爱因斯坦最早认识到普朗克量子假说隐含着这种非连续性,以及它可能给物理学所带来的革命性变革,玻尔于1913年进一步假设了定态之间存在本质上非连续的量子跃迁,并一直主张所有原子过程都包含非连续性。 正是这种非连续运动导致了粒子运动方程的类波动形式,薛定谔于1926年最早发现了这一方程的近似形式,建立了量子力学的形式体系之一---波动力学;也正是这种非连续运动导致了波函数投影过程的存在,冯诺依曼最早严格地表述了这一过程的瞬时形式,并将它作为波函数的一种特殊演化过程。这种投影过程进一步导致了宏观物体的连续运动表现,因此,我们熟悉的连续运动只是非连续运动的一种特殊的理想化形式。 正是这种非连续运动导致了量子非定域性的存在,爱因斯坦于1927年最早注意到了量子的这一神秘特性,并指出了它与相对论的不相容性,然而爱因斯坦却嘲讽地称之为“幽灵般的超距作用”,同样,玻尔也利用互补性来避开它的真实存在,但实验却严格证明了量子非定域性的客观存在;也正是这种非连续运动导致了量子以太---特殊惯性参照系的存在,从而导致相对论必须被修正。 当然,正是这种非连续运动导致了今天诸多量子新技术的出现,如量子通信,量子计算等等。最终,正是这种非连续运动导致了微观世界的存在,从而允许宏观世界和我们自身的存在。 如果物质的运动不是连续运动,那它就是非连续运动,这是一个简单而直接的逻辑推理。如果你理解了这一点,你也就理解了量子,并知道了量子是什么。

怎样才能看懂量子力学的论文?1. 首先,要了解量子力学的基本概念,包括它的历史、基本方程式以及核心思想。2. 其次,需要熟悉相关的数学表达式和物理名词。利用书籍或者在网上进行大量的阅读是一个不错的选择。3. 然后尝试理解文章中出现的具体问题:作者所使用的方法、已得到的实验结果以及对应的理论意义都是很重要内容。 4. 最后,多看看图表材料或者直方图材料能帮助你进一步了解作者所传递出来信息。

本科毕业论文量子力学

量子电动力学 量子电动力学(Quantum Electrodynamics,简写为QED),是量子场论中最成熟的一个分支,它研究的对象是电磁相互作用的量子性质(即光子的发射和吸收)、带电粒子的产生和湮没、带电粒子间的散射、带电粒子与光子间的散射等等。它概括了原子物理、分子物理、固体物理、核物理和粒子物理各个领域中的电磁相互作用的基本原理。 量子电动力学是从量子力学发展而来。量子力学可以用微扰方法来处理光的吸收和受激发射,但却不能处理光的自发射。电磁场的量子化会遇到所谓的真空涨落问题。在用微扰方法计算高一级近似时,往往会出现发散困难,即计算结果变成无穷大,因而失去了确定意义。后来,人们利用电荷守恒消去了无穷大,并证明光子的静止质量为零。量子电动力学得以确立。量子电动力学克服了无穷大困难,理论结果可以计算到任意精度,并与实验符合得很好,量子电动力学的理论预言也被实验所证实。到20世纪40年代末50年代初,完备的量子电动力学理论被确立,并大获全胜。 量子电动力学认为,两个带电粒子(比如两个电子)是通过互相交换光子而相互作用的。这种交换可以有很多种不同的方式。最简单的,是其中一个电子发射出一个光子,另一个电子吸收这个光子。稍微复杂一点,一个电子发射出一个光子后,那光子又可以变成一对电子和正电子,这个正负电子对可以随后一起湮灭为光子,也可以由其中的那个正电子与原先的一个电子一起湮灭,使得结果看起来像是原先的电子运动到了新产生的那个电子的位置。更复杂的,产生出来的正负电子对还可以进一步发射光子,光子可以在变成正负电子对……而所有这些复杂的过程,最终表现为两个电子之间的相互作用。量子电动力学的计算表明,不同复杂程度的交换方式,对最终作用的贡献是不一样的。它们的贡献随着过程中光子的吸收或发射次数呈指数式下降,而这个指数的底,正好就是精细结构常数。或者说,在量子电动力学中,任何电磁现象都可以用精细结构常数的幂级数来表达。这样一来,精细结构常数就具有了全新的含义:它是电磁相互作用中电荷之间耦合强度的一种度量,或者说,它就是电磁相互作用的强度。 1965年诺贝尔物理学奖授予日本东京教育大学的朝永振一郎(Sin-Itiro Tomonaga,1906—1979),美国马萨诸塞州坎布里奇哈佛大学的施温格(Julian ,1918—1994)和美国加利福尼亚州帕萨迪那加州理工学院的费曼(Richard Phillips Feynman,1918—1988),以表彰他们在量子电动力学所作的基础工作,这些工作对基本粒子物理学具有深远的影响。 费曼、施温格和朝永振一郎的贡献就是用不同方法独立地异途同归地解决了这一困难,从而建立了量子电动力学的新理论体系。他们从不同的渠道运用“重正化”概念把发散量确切地归入电荷与质量的重新定义中,从而使高阶近似的理论结果不再会遇到发散。“重正化”的意思就是用一定的步骤把微扰论积分中出现的发散分离出去,吸收到相互作用耦合常数及粒子的质量中,并通过重新定义相互作用耦合常数和粒子的质量,来获得不发散的矩阵元,使计算结果可与实验对比。 有了重正化方法,量子电动力学获得了巨大成功,由此计算出来的电子反常磁矩和兰姆位移与实验结果相符达十几位量级。可见,量子电动力学是何等精确的理论。这一切既要归功于众多对现代物理学作过贡献的物理学家,更要归功于1965年这三位诺贝尔物理学奖获得者。 费曼1918年5 月11日出生于美国纽约市郊俄国移民犹太族家庭里,1935年进入麻省理工学院(MIT),先学数学,后转物理。1939年本科毕业,毕业论文发表在《物理评论》(.)上,内有一个后来以他的名字命名的量子力学公式。1939年9月在普林斯顿大学当惠勒()的研究生,致力于研究量子力学的疑难问题:发散困难。第二次世界大战中,参加洛斯阿拉莫斯科学实验室研制原子弹。1942年得普林斯顿大学理论物理学博士学位。战争结束后到康奈尔大学任教。自1951年起任加利福尼亚理工学院教授。 费曼于40年代发展了用路径积分表达量子振幅的方法,并于1948年提出量子电动力学新的理论形式、计算方法和重正化方法,从而避免了量子电动力学中的发散困难。目前量子场论中的“费曼振幅”、“费曼传播子”、“费曼规则”等均以他的姓氏命名。费曼图是费曼在四十年代末首先提出的,用于表述场与场间的相互作用,可以简明扼要地体现出过程的本质,费曼图早已得到广泛运用,至今还是物理学中对电磁相互作用的基本表述形式。 1958年费曼和盖尔曼合作,提出了弱相互作用的矢量-膺矢量型理论(即V-A理论,又称普适费米型弱相互作用理论)。这是经过20余年曲折发展以后所达到的关于弱相互作用的正确的唯象理论。这一理论为以后温伯格、萨拉姆和格拉肖建立电磁相互作用和弱相互作用的统一理论开辟了道路。在50年代前期,费曼还曾经从事发展液氮的微观理论的研究工作。 费曼的路径积分方法是他的独创性又一个鲜明的例证。 费曼总是以自己独特的方式来研究物理学。他不受已有的薛定谔的波函数和海森堡的矩阵这两种方法的限制,独立地提出用跃迁振幅的空间-时间描述来处理几率问题。他以几率振幅叠加的基本假设为出发点,运用作用量的表达形式,对从一个空间-时间点到另一个空间-时间点的所有可能路径的振幅求和。这一方法简单明了,成了第三种量子力学的表述法。 1968年费曼根据电子深度非弹性散射实验和布约肯()的标度无关性提出高能碰撞中的强子结构模型。这种模型认为强子是由许多点粒子构成,这些点粒子就叫部分子(parton)。部分子模型在解释高能实验现象上比较成功,它能较好地描述有关轻子对核子的深度非弹性散射、电子对湮灭、强子以及高能强子散射等高能过程,并在说明这些过程中逐步丰富了强子结构的物理图像。 1986年2月费曼应邀参加总统委员会,调查“挑战者”号失事原因。会议前一天,他先去喷气推进实验室了解情况,作了详细记录。当时众说纷纭,莫衷一是。他敏锐地注意到密封问题。会议令他失望,互相扯皮,推卸责任,没完没了地听取证人的证词。费曼要求再去调查,结果发现美国航天局的报告自相矛盾。他注意到,他们原来是用计算机分析橡胶的弹性,条件不合要求。有一将军问费曼,低温对橡胶有无影响?提醒了他注意到用于密封的O圈在-2℃可能失去弹性。费曼还注意到,在发射前火箭公司有一位工程师坚持不宜发射的意见,但经理在军方压力下同意了。进一步调查还表明,发射台的温度数据欠准。1986年2月,费曼公正地把真相公之于众。1986年2月11日在总统委员会开会论证时,费曼把一块与O圈材料相同的橡胶投入冰水中,证明“挑战者”号失事的原因就在于寒冷的气候。这件事曾经轰动了全世界,但是人们哪里知道,这时费曼正在顽强地与胃癌斗争,不久他就与世长辞了。 费曼的重要著作有:《量子电动力学》、《量子力学和路径积分》,与希布斯合著《光子强子相互作用》等。《费曼物理学讲义》(共三卷)是美国六十年代科学教育改革的重要尝试,虽然深度、广度过高,但不失为优秀参考读物。费曼在前言中写道:“我讲授的主要目的,不是帮助你们应付考试,也不是帮你们为工业或国防服务。我最希望做到的是,让你们欣赏这奇妙的世界以及物理学观察它的方法”。1973年诺贝尔物理学奖获得者贾埃沃()说过:费曼是对他影响最大的物理学家,而《费曼物理学讲义》是对他影响最深的书籍。这套讲义的特色是:引人入胜,丰富生动,论述精辟,富于启发。费曼透彻讲解了物理现象的本质和规律。费曼的自传:《别闹了,费曼先生》是一本备受欢迎的文学著作。 如果说费曼是一代奇才,则施温格也不愧为物理学家中的“莫扎特”。施温格1918 年2月12日出生于纽约,他自幼聪慧过人,在数学和科学方面显示出非凡的才能。由于多次跳级,14岁即高中毕业,进入纽约市立学院学习。他爱好自学,从图书馆中借阅了各种物理书籍,经常不到课堂听讲。据说,统计力学课他从未出席,却在期末考试中成绩突出,因为他推导的步骤比其他同学按课堂上学到的方法简捷得多。有人夸奖年轻的施温格说:“他对物理学就像莫扎特对音乐那样。”哥伦比亚大学的拉比教授非常欣赏施温格的才华,对人说:施温格已经知晓了物理学的 90%,其余的“只要几天就够了”。在拉比的推荐下,施温格转到哥伦比亚大学,并于1936年获学士学位,1939年获博士学位,时年21岁。然后到伯克利加州大学当了奥本海墨的研究助理。1941年到柏图大学任教,后来到芝加哥大学参加原子反应堆设计。为了避免卷入�拥�苹��┪赂裨?943年离开芝加哥,转到麻省理工学院,从事雷达系统的改进。正是这项工作使他对电磁辐射理论发生了兴趣,把工作重点转到量子电动力学的理论。1945年施温格应聘成为哈佛大学副教授,两年后升教授,成为该校最年轻的教授。就是在这段时期,施温格进行了重正化的研究。他的方法与费曼的不同,如果说费曼用的是“积分”方法,则施温格用的是“微分”方法,但是两种方法得到的结果是一样的。 量子电动力学的另一位奠基人朝永振一郎1906 年3月31日出生于日本东京,1929年毕业于京都大学理学部物理学科,随后在玉城嘉七郎研究室任临时见习研究生,3年之后,赴东京理化研究所,在仁科芳雄研究室当研究员,1937年留学德国,在海森伯的领导下研究原子核理论和量子理论,1939年底,回国接受东京帝国大学的理学博士学位。1941年,任东京文理科大学物理学教授,提出量子场论的超多时理论,第二次世界大战期间,曾经研究雷达技术中磁控管的理论,发表了《分割阳极磁电管理论》的论文,战后继续研究和发展他的超多时理论和介子耦合理论,同时参与《理论物理进展》的创办工作。朝永振一郎以他的超多时理论为基础,找到了一种避开量子电动力学中发散困难的重正化方法,利用这种方法,可以成功地解释兰姆位移和电子反常磁矩的实验。他的工作几乎与施温格和费曼同时。他们独立地完成了类似的研究,达到了同样的目的,真可谓殊途同归。他们的研究使得描写微观世界的量子电动力学理论成为一个精确的理论,并对以后的理论发展产生了深远影响。1949年,朝永振一郎应聘赴美国普林斯顿高级研究院工作,提出了高密度极限的多费密子体系的一维模型理论。回国后创建了东京大学原子核研究所。1956年以后,先后出任东京教育大学校长、日本学术会议会长、东京教育大学光学研究所所长。他还得到日本学士院院士、日本文化勋章以及好几个国家的科学院荣誉院士称号。1957年5月朝永振一郎曾率领日本物理代表团来中国访问并进行学术交流。朝永振一郎于1979年7月8日在东京病逝。

为了准确测量一粒子现在的位置和速度,显而易见的方法是将光照到这粒子上,一部分光波被此粒子散射开来,由此指明它的位置。然而,人们不可能将粒子的位置确定到比光的两个波峰之间距离更小的程度,所以必须用短波长的光来测量粒子的位置。现在,由普朗克的量子假设,人们不能用任意少的光的量,至少要用一个光量子。这量子会扰动这粒子,并以一种不能预见的方式改变粒子的速度。而且,位置测量的越准确,所需的波长就越短,单独量子的能量就越大,这样粒子的速度就被扰动的越厉害。换言之,你对速度的测量就越不准确,反之亦然。

你好:这个问题是经过深入思考提出的,且是困扰很多人的基本问题,有的不确定怎么问。由于不管本科毕业论文,还是研究生毕业论文,甚至科学研究,针对这点,基本方法都是一样的。为此,常见的有比较方法、历史资料借鉴方法、实验或者实例方法、理论或者数值模拟分析法、引用借鉴方法,等等。

怎样才能看懂量子力学的论文?1. 首先,要了解量子力学的基本概念,包括它的历史、基本方程式以及核心思想。2. 其次,需要熟悉相关的数学表达式和物理名词。利用书籍或者在网上进行大量的阅读是一个不错的选择。3. 然后尝试理解文章中出现的具体问题:作者所使用的方法、已得到的实验结果以及对应的理论意义都是很重要内容。 4. 最后,多看看图表材料或者直方图材料能帮助你进一步了解作者所传递出来信息。

量子力学本科毕业论文题

一、参照物和质点 为了研究物体的运动而假定为不动的那个物体,叫做参照物。 在研究物体的运动时,不考虑物体的大小和形状,而把物体看作一个有质量的点,这个用来代替物体的有质量的点就叫做质点。 1、选择参照物的必要性一个物体相对于别的物体的位置的改变,叫做机械运动,简称运动。机械运动是最普遍的自然现象,宇宙中的一切物体,都在不停的运动着。因此,我们在研究物体的运动时,就必须假定某个物体是不动的,参照这个物体来确定其它物体的运动。 2、怎样选择参照物同一个运动,由于选择的参照物不同,观察的结果常常是不同的。例如,坐在运动着的火车里的乘客,若选车厢做参照物,则乘客相对于车厢是静止的;若选铁路旁边的树为参照物,则乘客是和火车一起运动的。参照物的选取往往是为了研究问题的方便。在研究的地面上的物体运动时,常取地球为参照物;在研究太阳系中行星的运动时,太阳就是最恰当的参照物,即假定太阳是静止不动的。 3、质点是一种科学的抽象物理学对实际问题的简化,叫做科学抽象。科学抽象不是随心所欲的,必须从实际问题出发。例如我们研究地球公转时,由于地球的直径(约×10^4千米)比地球和太阳之间的距离(×10^8千米)要小的多,这时我们可以把地球的大小和形状忽略不计,即把地球当做质点。可是在研究地球的自转时,地球的大小和形状不能忽略,不能把地球当作质点。 一般来讲,在研究地球上的物体运动时,除非设计到物体的转动,都可以把物体看作质点。 【例题】在下列运动中,可以当作质点的有()。 A、做花样溜冰的运动员 B、远洋航行中的巨轮 C、转动着的砂轮 D、从斜面上滑下来的木块 【解答】质点是力学中的一个科学抽象概念,是一个理想化的模型。在研究某些问题时,如果物体的大小和形状在所研究的现象中起的作用很小,可以忽略不计,就可以把物体当作质点。 做花样溜冰的运动员,有着不可忽略的旋转等动作,身体各部分的运动情况不全相同,故不能当作质点。砂轮在转动过程中,大小和形状对运动起主要作用,更不可忽略,故不能当作质点。远洋航行中的巨轮和有关距离相比极小,从斜面上滑下的木块各点的运动情况相同,故都可以当作质点。 故选B、D

论文题目:探讨突破认知的书籍对个人成长的影响——以《时间简史》为例摘要:突破认知的书籍能够挑战我们的思维方式,启发我们的想象力和创造力,并促使我们重新审视世界和自我。本文以《时间简史》为例,探讨了突破认知的书籍对个人成长的影响。通过对书籍内容的分析、对读者反馈的考察,发现突破认知的书籍能够激发读者的好奇心和探索欲望,拓展读者的知识面和视野,增强读者的思维能力和创新能力。因此,推荐突破认知的书籍作为个人成长的重要资源。关键词:突破认知、书籍、个人成长、《时间简史》1. 引言突破认知的书籍能够挑战我们的思维方式,启发我们的想象力和创造力,并促使我们重新审视世界和自我。在当今高速发展的信息时代,读书已成为个人成长的重要途径。本文以《时间简史》为例,探讨突破认知的书籍对个人成长的影响,并探讨如何通过阅读突破认知的书籍实现个人成长。2. 《时间简史》的内容分析《时间简史》是英国物理学家史蒂芬·霍金所著的一本科普书,涉及宇宙学、相对论、量子力学等多个领域。该书以通俗易懂的方式讲解了科学发展的历史和现状,探讨了人类对宇宙的认识和探索。通过对书籍内容的分析,我们可以发现,该书涉及的领域非常广泛,包含了多个学科和领域,内容深入浅出,易于理解,具有很高的科普价值。同时,该书在讲解科学原理的过程中,也反思了科学的局限性和人类对宇宙的认知能力。3. 《时间简史》对读者的影响通过对读者反馈的考察,我们可以发现,《时间简史》对读者的影响很大。首先,该书能够激发读者的好奇心和探索欲望,促使读者重新审视世界和自我。其次,该书拓展了读者的知识面和视野,增强了读者的思维能力和创新能力。最后,该书让读者意识到科学的局限性和人类对宇宙的认知能力的有限性,促使读者对科学的发展和人类对宇宙的认知能力进行深思。4. 阅读突破认知的书籍的意义突破认知的书籍能够拓展我们的思维方式和视野,激发我们的创造力和想象力,让我们重新审视世界和自我。在当今快速发展的信息时代,阅读成为了一个重要的个人成长途径。阅读突破认知的书籍能够帮助我们不断提升自我,增强我们的思维能力和创新能力,让我们在竞争激烈的社会中获得更多的机会和竞争优势。5. 结论本文以《时间简史》为例,探讨了突破认知的书籍对个人成长的影响。通过对书籍内容的分析、对读者反馈的考察,我们发现,突破认知的书籍能够激发读者的好奇心和探索欲望,拓展读者的知识面和视野,增强读者的思维能力和创新能力。因此,我们推荐突破认知的书籍作为个人成长的重要资源。

物理小论文(力学)世界上有确定的东西吗?正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式: 。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。”1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,向量子力学提出了严峻的挑战。光子箱的结构很简单,一个匣子挂在弹簧称上,一个相机快门一样的装置控制匣子内光子的射出。每次射出光子的时间由快门控制,弹簧称上可以读出整个盒子因光子出射而减少的质量,根据大名鼎鼎的爱因斯坦质能关系: 得出光子的能量,这样原则上时间和能量不存在不能同时确定的问题。 据说玻尔看到这个装置登时口吐白沫,经过紧急抢救时的输氧加上彻夜的苦思之后,玻尔终于搬来了救星,呵呵,那竟然是爱因斯坦本人的广义相对论。发射出光子后,光子箱的质量减少纵然可以精确测出,然而弹簧秤收缩,引力势能减小,根据广义相对论的引力理论,箱子中的时钟会走慢,归根到底时间又是不确定了。 这次轮到爱因斯坦吐血三天了,他费尽心思找来的实验居然成了量子力学测不准关系的绝妙证明,还被玻尔等人堂而皇之的载入他们的论文之中。 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这个我们应该能得出结论:当然存在测不准关系。我们做实验的时候,一旦到了处理实验数据就要同时算出相应的不确定度。这是为什么呢?测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。任何测量仪器、测量环境、测量方法、测量者的观察力都不可能做到绝对严密,这就使测量不可避免地伴随着有误差产生。因此,分析测量可能产生的各种误差,尽可能可消除其影响,并对测量结果中未能消除的误差做出估计,就是物理实验和许多科学实验中必不可少的工作。但是,我们只能尽力减小误差,却不能消除它。从上面可以看得出,世界上是不存在测得准的东西的,正所谓世界是辩证统一的,事物是相互影响的,既存在相对性,又存在绝对性。事物的测不准关系,就因为它既有相对性,又有绝对性,而我们通常所说的某某物重多少,高多少,等等看似绝对的数据其实是相对的。在某一个时段里,物体趋向于某个值的概率最大,因而我们就把这个值称作在这个时段里的相对准确值,它本是使不可能测准的。事物之间又存在着相互作用,因而又由于相互作用是具体的,因而是有限的,具有一定的认识意义;而本体则是抽象的,因而是无限的,并不具有任何确定的认识意义。所以,世界上并不存在确定的东西。参考文献:张三慧,《大学物理学<量子物理>》清华大学出版社2000年8月第二版34页35页李士本,张力学,王晓峰《自然科学简明教程》,浙江大学出版社2006年2月第一版,68页.72页黄理稳,李学荣《科学技术发展简史》华南理工大学出版社,2002年3月第一版,136页全林,《科技史简论》,科学出版社,2002年3月第一版,213页,214页周建,《没有极限的科学》,北京理工大学出版社,2006年4月第一版,102页吴平,《大学物理实验教程》机械工业出版社,2005年9月第一版,4页

最牛掰的毕业论文

现在又到了一年一度的毕业季,也相信很多临近毕业的学生们都在一遍又一遍改着自己的毕业论文,试图降低查重率。每年只要一看到有关翟天临被骂的词条上热搜,就知道这一定是那些改论文改到崩溃的学生们在发表自己无声因为翟天临事件的曝出,导致很多学校对学生毕业论文的要求变得过分的严苛,以至于学生们采用各种方式来降低查重率,而毕业论文中能够自由发挥的致谢部分,也就成了大家八仙过海,各显神通的地方。而最近关于一些离谱的毕业论文致谢的事情又引起了网友们的热议,接下来小编给大家带大家一起来看一下这些出人意料的毕业论文致谢吧。

其实在毕业论文中致谢自己的父母,同学老师,等这些在生活或学习上给予自己帮助的人是很常见的,但是有人却在致谢部分也加上了一直陪伴自己的猫。其实去看那些熬夜写论文的学生们的分享就可以知道,很多时候在他们熬夜肝论文时,都是猫猫一直陪伴在他们左右,给予了他坚持下去的勇气和动力。如此看来,对于这些人来说,猫好像已经成为了他的半个家人,因此在毕业论文的致谢部分,加上自己的猫,好像也就没有那么奇怪了。

如果说上面说的,在论文中致谢自己的猫还可以接受,那么有些人在论文中致谢自己玩过的游戏就有些出人意料了。可能是这些游戏带给了他快乐的时光,让他暂时能够从熬夜写论文的痛苦中解放出来那么一瞬间吧。

除了上面所说的这些,还有人在论文中致谢自己喜欢的明星或者演员。当然也有很多歌手的歌,陪伴着这些学子们走过了一个又一个写论文的深夜,所以有些歌手也经常出现在毕业论文的致谢部分。

我没有见过最离谱的事情,在大学里人们的毕业论文都非常的认真,也都非常顺利的毕业了。

我见过最离谱的毕业论文致谢写了一大串的人物,而且基本上每一个同学的名字都包含其中,让人觉得特别的长。

将格式写错的,而且还有一些论点不明确的,其实什么样的都有,有些同学不明白论文的主要作用。

  • 索引序列
  • 最牛的量子力学毕业论文
  • 量子力学的毕业论文好写吗
  • 本科毕业论文量子力学
  • 量子力学本科毕业论文题
  • 最牛掰的毕业论文
  • 返回顶部