1主题内容与适用范围 本导则适用于电压等级在35~220kV的国产油浸电力变压器、6kV及以上厂用变压器和同类设备,如消弧线圈、调压变压器、静补装置变压器、并(串)联电抗器等。 对国并进口的油浸电力变压器及同类设备可参照本导则并按制造厂的规定执行。 本导则适用于变压器标准项目大、小修和临时检修。不包括更换绕组和铁芯等非标准项目的检修。 变压器及同类设备需贯彻以预防为主,计划检修和诊断检修相结合的方针,做到应修必修、修必修好、讲究实效。 有载分接开关检修,按部颁DL/T574-95《有载分接开关运行维修导则》执行。 各网、省局可根据本导则要求,结合本地区具体情况作补充规定。 2引用标准 电力变压器 油浸式电力变压器技术参数和要求 GB7251-87变压器油中溶解气体分析和判断导则 GBJ148-90电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 GB7665-87变压器油 DL/T572-95电力变压器运行规程 DL/T574-95有载分接开关运行维修导则 3检修周期及检修项目 检修周期 大修周期 一般在投入运行后的5年内和以后每间隔10年大修一次。 箱沿焊接的全密封变压器或制造厂另有规定者,若经过试验与检查并结合运行情况,判定有内部故障或本体严重渗漏油时,才进行大修。 在电力系统中运行的主变压器当承受出口短路后,经综合诊断分析,可考虑提前大修。 运行中的变压器,当发现异常状碚或经试验判明有内部故障时,应提前进行大修;运行正常的变压器经综合诊断分析良好,总工程师批准,可适当延长大修周期。中华人民共和国电力工业部1995-06-29发布1995-11-01实施 小修周期 一般每年1次; 安装在2~3级污秽地区的变压器,其小修周期应在现场规程中予以规定。 附属装置的检修周期 保护装置和测温装置的校验,应根据有关规程的规定进行。 变压器油泵(以下简称油泵)的解体检修:2级泵1~2年进行一次,4级泵2~3年进行一次。 变压器风扇(以下简称风扇)的解体检修,1~2年进行一次。 净油器中吸附剂的更换,应根据油质化验结果而定;吸湿器中的吸附剂视失 程度随时更换。 自动装置及控制回路的检验,一般每年进行一次。 水冷却器的检修,1~2年进行一次。 套管的检修随本体进行,套管的更换应根据试验结果确定。 检修项目 大修项目 吊开钟罩检修器身,或吊出器身检修; 绕组、引线及磁(电)屏蔽装置的检修; 铁芯、铁芯紧固件(穿心螺杆、夹件、拉带、绑带等)、压钉、压板及接地片的检修; 油箱及附件的检修,季括套管、吸湿器等; 冷却器、油泵、水泵、风扇、阀门及管道等附属设备的检朔; 安全保护装置的检修; 油保护装置的检修; 测温装置的校验; 操作控制箱的检修和试验; 无盛磁分接开关和有载分接开关的检修; 全部密封胶垫的更和组件试漏; 必要时对器身绝缘进行干燥处理; 变压器油的处理或换油; 清扫油箱并进行喷涂油漆; 大修的试验和试运行。 小修项目 处理已发现的缺陷; 放出储油柜积污器中的污油; 检修油位计,调整油位; 检朔冷却装置:季括油泵、风扇、油流继电器、差压继电器等,必要时吹扫冷却器管束; 检修安全保持记装置:包括储油柜、压力释放阀(安全气道)、气体继电器、速动油压继电器等; 检修油保护装置; 检修测温装置:包括压力式温度计、电阻温度计(绕组温度计)、棒形温度计等; 检修调压装置、测量装置及控制箱,并进行调试; 检查接地系统; 检修全部阀门和塞子,检查全部密封状态,处理渗漏油; 清扫油箱和附件,必要时进行补漆; 清扫并绝缘和检查导电接头(包括套管将军帽); 按有关规程规定进行测量和试验。 临时检修项目 可视具体情况确定。 对于老、旧变压器的大修,建议可参照下列项目进行改进 油箱机械强度的加强; 器身内部接地装置改为引并接地; 安全气道改为压力释放阀; 高速油泵改为低速油泵; 油位计的改进; 储油柜加装密封装置; 气体继电器加装波纹管接头。 4检修前的准备工作 查阅档案了解变压器的运行状况 运行中所发现的缺陷和异常(事故)情况,出口短路的次数和情况; 负载、温度和附属装置的运行情况; 查阅上次大修总结报告和技术档案; 查阅试验记录(包括油的化验和色谱分析),了解绝缘状况; 检查渗漏油部位并作出标记; 进行大修前的试验,确定附加检修项目。 编制大修工程技术、组织措施计划 其主要内容如下: 人员组织及分工; 施工项目及进度表; 特殊项目的施工方案; 确保施工安全、质量的技术措施和现场防火措施; 主要施工工具、设备明细表,主要材料明细表; 绘制必要的施工图。 施工场地要求 变压器的检修工作,如条件许可,应尽量安排在发电厂或变电所的检修间内进行; 施工现场无检修间时,亦可在现场进行变压器的检修工作,但需作好防雨、防潮、防尘和消防措施,同时应注意与带电设备保持安全距离,准备充足的施工电源及照明,安排好储油容量、大型机具、拆卸附件的放置地点和消防器材的合理布置等。 5变压器的解体检修与组装 解体检修 办理工作票、停电,拆除变压器的外部电气连接引线和二次接线,进行检修前的检查和试验。 部分排油后拆卸套管、升高座、储油柜、冷却器、气体继电器、净油器、压力释放阀(或安全气道)、联管、温度计等附属装置,并分别进行校验和检修,在储油柜放油时应检查油位计指示是否正确。 排出全部油并进行处理。 拆除无励磁分接开关操作杆;各类有载分接开关的拆卸方法参见《有载分接开关运行维修导则》;拆卸中腰法兰或大盖宫接螺栓后吊钟罩(或器身)。 检查器身状况,进行各部件的紧固并测试绝缘。 更换密封胶垫、检修全部阀门,清洗、检修铁芯、绕组及油箱。 组装 装回钟罩(或器身)紧固螺栓后按规定注油。 适量排油后安装套管,并装好内部引线,进行二次注油。 安装冷却器等附属装置。 整体密封试验。 注油至规定定的油位线。 大修后进行电气和油的试验。 解体检修和组装时的注意事项。 拆卸的螺栓等零件应清洗干净分类妥善保管,如有损坏应检修或更换。 拆卸时,首先拆小型仪表和套管,后拆大型组件,组装时顺序相反。 冷却器、压力释放阀(或安全气道)、净油器及储油柜等中件拆下后,应用盖板密封、对带有电流互感器的升高座应注入合格的变压器油(或采取其它防潮密封施)。 套管、油位计、温度计等易损部件拆下后应妥善保管,防止损坏和受潮;电容式套管应垂直放置。 组装后要检查冷却器、净油器和气体继电器阀门,按照规定开启或关闭。 对套管升高座、上部管道孔盖、冷却器和净油器等上部的放气孔应进行多次排气,直至排尽为止,并重新密封好擦净油迹。 拆卸无盛磁分接开关操作杆时,应记录分接开关的位置,并作好标记;拆卸有载分接开关时,分接头应置于中间位置(或按制造厂的规定执行)。 组装后的变压器各零部件应完整无损。 认真做好现场记录工作。 检修中的起重和搬运 起重工作及注意事项 起重 荼应分工明确,专人指挥,并有统一信号; 根据变压器钟罩(或器身)的重要选择起重工具,包括起重机、钢丝绳、吊环、U型挂环、千斤顶、枕木等; 起重前应先拆除影响起重工作的各种连接; 如系吊器身,应先紧固器身有关螺栓; 起吊变压器整体或钟罩(器身)时,钢丝绳应分别挂在专用起吊装置上,遇棱角处应放置衬垫;起吊100mm左右时应停留检查悬挂及捆绑情况,确认可靠后再继续起吊; 起吊时钢丝绳的夹角不应大于60°,否则应采用专用吊具或调整钢丝绳套; 起吊或落回钟罩(或器身)时,四角应系缆绳,由专人扶持,使其保持平稳; 起吊或降落速度应均匀,掌握好重心,防止倾斜; 起吊或落回钟罩(或器身)时,应使高、低压侧引线,分接开关支架与箱壁间保持一定的间隙,防止碰伤器身; 当钟罩(或器身)因受条件限制,起吊后不能移动而需在空中停留时,应采取支撑等防止坠落措施; 吊装套管时,其斜度应与套管升高座的斜度基本一致,并用缆绳绑扎好,防止倾倒损坏瓷件; 采用汽车吊起重时,应检查支撑稳定性,注意起重臂伸张的角度、回转范围与临近带电设备的安全距离,并设专人监护。 搬运工作及注意事项 了解道路及沿途路基、桥梁、涵洞、地道等的结构及承重载荷情况,必要时予以加固,通过重要的铁路道口,应事先与当地铁路部门取得联系。 了解沿途架空电力线路、通信线路和其它障碍物的高度,排除空中障碍,确保安全通过。 变压器在厂(所)内搬运或较长距离搬运时,均应绑轧固定牢固,防止冲击震动、倾斜及碰坏零件;搬运倾斜角在长轴方向上不大于15°,在短轴方向上不大于10°;如用专用托板(木排)牵引搬运时,牵引速度不大于100m/h,如用变压器主体滚轮搬运时,牵引速度不大于200m/h(或按制造厂说明书的规定)。 利用千斤顶升(或降)变压器时,应顶在油箱指定部位,以防变形;千斤顶应垂直放置;在千斤顶的顶部与油箱接触处应垫以木板防止滑倒。 在使用千斤顶升(或降)变压器时,应随升(或降)随垫木方和木板,防止千斤顶失灵突然降落倾倒;如在变压器两侧使用千斤顶时,不能两侧同时升(或降),应分别轮流工作,注意变压器两侧高度差不能太大,以防止变压器倾斜;荷重下的千斤顶不得长期负重,并应自始至终有专人照料。 变压器利用滚杠搬运时,牵引的着力点应放在变压器的重心以下,变压器底部应放置专用托板。为增加搬运时的稳固性,专用托板的长度应超过变压器的长度,两端应制成楔形,以便于放置滚框;运搬大型变压器时,专用托板的下中应加设钢带保护,以增强其坚固性。 采用专用托板、滚框搬运、装卸变压器时,通道要填平,枕木要交错放置;为便于滚杠的滚动,枕木的搭接处应沿变压器的前进方向,由一个接头稍高的枕木过渡到稍低的枕木上,变压器拐弯时,要利用滚框调整角度,防止滚杠弹出伤人。 为保持枕木的平整,枕木的底部可适当加垫厚薄不同的木板。 采用滑全国纪录组牵引变压器时,工作人员和需站在适当位置,防止钢丝绳松扣或拉断伤人。 变压器在搬运和装卸前,应核对高、低压侧方向,避免安装就位时调换方向。 充氮搬运的变压器,应装有压力监视表计和补氮瓶,确保变压器在搬运途中始终保持正压,氮气压力应保持,露点应在-35℃以下,并派专人监护押运,氮气纯度要求不低于。 (2005-06-25)整体组装 整体组装前的准备工作和要求 组装前应彻底清理冷却器(散热器),储油柜,压力释放阀(安全气道),油管,升高座,套管及所有组、部件。用合格的变压器油冲洗与油直接接触的组、部件。 所附属的油、水管路必须进行彻底的清理,管内不得有焊渣等杂物,并作好检查记录。 油管路内不许加装金属网,以避免金属网冲入油箱内,一般采用尼龙网。 安装上节油箱前,必须将油箱内部、器身和箱底内的异物、污物清理干净。 有安装标志的零、部件,如气体继电器、分接开关、高压、中压套管或高座及压力释放阀(或安全气道)升高座等与油箱的相对位置和角度需按照安装标志组装。 准备好全套密封胶垫和密封胶。 准备好合格的变压器油。 将注油设备、抽真空设备及管路清扫干净;新使用的油管亦应先冲洗干净,以去除油管内的脱模剂。 组装 装回钟罩(或器身); 安装组件时,应按制造厂的“发装使用说明书”规定进行; 油箱顶部若有定位件,应按并形尺寸图及技术要求进行定位和密封; 制造时无升高坡度的变压器,在基础上应使储油柜的气体继电器侧具有规定的升高坡度; 变压器引线的根部不得受拉、扭及弯曲; 对于高压引线,所包扎的绝缘锥部分必须进入套管的均压球内,防止扭曲; 在装套管前必须检查无盛磁分接开关连杆是否已插入分接开关的拨叉内,调整至所需的分接位置上; 各温度计座内应注以变压器油; 按照变压器外形尺寸图(装配图)组装已拆卸的各组、部件,其中储油柜、吸湿器和压力释放阀(安全气道)可暂不装,联结法兰用盖板密封好;安装要求和注意事项按各组部件“安装使用说明书”进行。 排油和注油 排油和注油的一般规定 检查清扫油罐、油桶、管路、滤油机、油泵等,应保持清洁干燥,无灰尘杂质和水分。 排油时,必须将变压器和油罐的放气孔打开,放气孔宜接入干燥空气装置,以防潮气侵入。 储油柜内油不需放出时,可将储油柜下面的阀门关闭。将油箱内的变压器油全部放出。 有载调压变压器的有载分接开关油室内的油应分开抽出。 强油水冷变压器,在注油前应将水冷却器上的差压继电器和净油器管路上的塞子关闭。 可利用本体箱盖阀门或气体继电器联管处阀让安装抽空管,有载分接开关与本体应安连通管,以便与本体等压,同时抽空注油,注油后应予拆除恢复正常。 向变压器油箱内注油时,应经压力式滤油机(220kV变压器宜用真空滤油机)。 图1真空注油连接示意图 1-油罐;2,4,9,10-阀门;3-压力滤油机或真空滤油机;5-变压器;6-真空计;7-逆止阀;8-真空泵 真空注油 220kV变压器必须进行真空注油,其它奕坟器有条件时也应采用直空注油,真空注油应遵守制造厂规定,或按下述方法进行,其连接图见图1。 通过试抽真空检查油箱的强度,一般局部弹性变形不应超过箱壁厚度的2倍,并检查真空系统的严密性。 操作方法: 以均匀的速度抽真空,达到指定真空度并保持2h后,开始向变压器油箱内注油(一般抽空时间=1/3~1/2暴露空气时间),注油温度宜略高于器身温度; 以3~5t/h的速度将油注入变压器距箱顶约200mm时停止,并继续抽夫空保持4h以上; 变压器补油:变压器经真空注油后补油时,需经储油柜注油管注入,严禁以下部油门注入,注油时应使油流缓慢注入变压器至规定的油面为止,再静止12h。 胶囊式储油柜的补油 进行胶囊排气:打开储油柜上部排气孔,由注油管将油注满储油柜,直至排气孔出油,再关闭注油管和排气孔; 从变压器下部油门排油,此时空气经吸湿器自然进入储油柜胶囊内部,至油位计指示正常油位为止。 隔膜式储油柜的补油 注油前应首先将磁力油位计调整至零位,然后打开隔膜上的放气塞,将隔膜内的气体排除再关闭放气塞; 由注油管向隔膜内注油达到比指定油位稍高,再次打开放气塞充分排除隔膜内的气体,直到向外溢油为止,经反复调整达到指定油位; 发现储油柜下部集气盒油标指示有空气时,应用排气阀进行排气; 正常油位低时的补油,利用集气盒下部的注油管接至滤油机,向储油柜内注油,注油过中发现集气盒中有空气时应停止注油,打开排气管的阀门向外排气,如此反复进行,直至储油柜油位达到要求为止。 油位计带有小胶带时储油柜的注油 变压器大修后储油柜未加油前,先对油位计加油,此时需将油表呼吸塞及小胶囊室的塞子打开,用漏斗从油表呼吸塞座处徐徐加油,同时用手按动小胶带,以便将囊中空气全部排出; 打开油表放油螺栓,放出油表内多余油量(看到油有内油位即可),然后关上小胶囊室的塞子,注意油表呼吸塞不必拧得太紧,以保证油表内空气自由呼吸。 整体密封试验 变压器安装完毕后,应进行整体密封性能的检查,具体规定如下: 静油柱压力法:220kV变压器油柱高度3m,加压时间24h;35~110kV变压器油柱高度2m,加压时间24h;油柱高度从拱顶(或箱盖)算起。 充油加压法:加油压时间12h,应无渗漏和损伤。 变压器油处理 一般要求 大修后注入变压器内的变压器油,其质量应符合GB7665-87规定; 注油后,应从变压器底部放油阀(塞)采取油样进行化验与色谱分析; 根据地区最低温度,可以选用不同牌号的变压器油; 注入套管内的变压器油亦应符合GB7665-87规定; 补充不同牌号的变压器油时,应先做混油试验,合格后方可使用。 压力滤油 采用压力式滤油机过滤油中的水分和杂质;为提高滤油速度和质量,可将油加温至50~60℃。 滤油机使用前应先检查电源情况,滤油机及滤网是否清洁,极板内是否装有经干燥的滤油纸,转动方向是否正确,外壳有无接地,压力表指示是否正确。 启动员滤油机应先开出油阀门,后开进油阀门,停止时操作顺序相反;当装有加热器时,应先启动滤油机,当油流通过后,再投入加热器,停止时操作顺序相反。 滤油机压力一般为,最大不超过
牵引变电所是牵引供电系统的可靠动力,牵引变电所一旦发生故障,迫使行车中断或运输能力下降,直接影响着运输生产,为了在发生事故后能尽快处理,恢复送电。根据兄弟站段二十多年的运行经验,结合西康线特点,现制定出变电所各类故障判断和应急处理方案。望各所结合现场实际情况,比照执行! 一、处理故障的原则 1、故障处理及事故抢修,要遵循“先通后复”的原则。有备用设备,首先考虑先投备用,采用简便、易行、正确、可行的方案,沉着、冷静、迅速、果断地进行处理和事故抢修,以最快的速度设法先行送电。然后通知有关部门再修复或更换故障设备,恢复正常运行状态。 2、故障处理及事故抢修,由当班值班员或所长任事故抢修总指挥,其余人员则任组员,服从指挥。指挥长在处理事故前应简要向组员说明抢修方案,其余人员有不同见解,可当场提出,指挥长可适当考虑。 二、故障判断的一般方法步骤 1、一般方法: 西康线主要开关投撤为远动操作,且主变电器、主断路器馈线开关为100%备用。因此,要求各变电所值班人员根据指示仪表、灯光显示、事故报告单,以及设备巡视、外观等情况,综合分析判断。 2、一般步骤 ⑴、根据断路器的位置指示灯,确定是哪台断路器跳闸。 ⑵、根据继电保护装置动作指示灯显示,或信号继电器的掉牌及事故报告单确定是哪个设备的哪套保护动作。 ⑶、根据事故报告单及继电保护范围,推判出故障范围,明确是所内故障,还是所外故障。 ⑷、结合设备外观检查情况,确定故障设备是否需要退出,否则投入备用设备。 三、常见故障的应急处理方案 1、馈线自动跳闸、且重合成功 如果变电所某馈线开关跳闸且重合成功时,可按以下顺序进行: 确认跳闸断路器及各种信号。 ⑴、确认哪台开关跳闸。 ⑵、确认开关跳闸时间。 ⑶、确认跳闸断路器,哪个保护动作,重合闸是否启动,故测仪,短路电流,故测仪指示公里数,(汇报以故测仪报告单为准,63型保护报告单可做参照)。 向供电调度汇报,根据电调命令执行。 复归其它信号。 巡视相关设备,并将有关情况做好记录。 按有关规定及时向段生产调度汇报跳闸记录。 2、馈线自动跳闸且重合失败(或重合闸未启动): 按执行。 如实向供电调度汇报,并要说明是重合失败,还是重合闸未启动,认真严格执行电调命令,并且恢复相应信号。 根据电调命令,依据信号提示及故障电流,以及设备巡视情况,正确迅速判断是所内故障,还是所外故障,并及时向供电调度和段生产调度汇报。 如果是所外故障,要做好随时投运送电的各项准备工作,严格执行电调命令,认真监视仪表。 如果是所内一次设备故障,依据相关规定,根据其具体实际情况,做出具体的临时处理方案,并经电调同意后,方可实施,对有备用设备而事故难于一时处理,应首先考虑撤除事故设备,而投入备用设备,尽快恢复供电。 如果是所内二次设备故障,且一时难于处理或难于查找的故障,根据我段实际情况,开关目前100%备用,保护为100%备用,因而撤除原故障设备以及相关的保护,投入备用系统及相应保护,迅速恢复供电。 如果重合闸未启动,向供电调度汇报后,巡视与跳闸馈线相关设备,正常后向供电调度汇报。在供电调度指挥下执行强送命令,并注意监视仪表,确认是否是永久故障,还是瞬时故障,如果是永久故障则按执行。若为瞬时故障则按执行。 恢复送电后,巡视设备,并将有关情况做好记录。 向段生产调度汇报有关情况。 3、馈线断路器故障应急措施 馈线断路器,拒动或误动。 检查相关二次设备,保护、信号回路是否正常,有无短接和接地现象。 检查直流系统,电压是否稳定正常,绝缘是否良好,有无接地现象。 确认在开关动作时,是否误操作,或操作正确时线路是否有故障。 在、、均正常情况下,方可认为是断路器故障。 在短时不能排除故障情况下,向供电调度申请,并经供电调度同意后,方可撤除故障断路器及相关设备和保护装置,并拔掉相应保险,投送另一条备用断路器及保护,辅助设备改变运行方式,迅速恢复供电。 送电后,巡视设备,并将有关情况做好记录。 向段调度及相关股室汇报事故情况。 4、110KV少油断路器故障应急措施 根据电调命令合上110KV少油断路器时,发现烧毁合闸线圈、合闸保险甚至击穿保险底座,造成直流接地,给出直流接地信号。 液压操作机构打压装置异常,压力保持不住,液压机构渗油不能保证断路器合闸。 如果发生以上两种情况,应立即向供电调度汇报,并申请改变运行方式,经供电调度同意后,按有关倒闸作业程序撤除事故断路器和保护装置,并拔掉相应的保险。在投送另一台主变及断路器之前,必须检查其保护装置和相应的保险是否良好后,严格按供电调度命令和倒闸程序进行倒闸,尽快恢复送电。 5、馈线隔离开关的事故应急处理 接触部分过热、发热、发红、熔焊现象时应及时向供电调度汇报,根据具体情况,采取停电后临时处理。 馈线隔离开关在引线处烧断,应及时向供电调度汇报事故概况,经供电调度同意后,在做好安全措施的前提下,用同型号(或载流量相同)的导线和线夹将烧断的接通,并尽快送电。等有停电点时再更换整个引线。 馈线隔离开关电动操作失灵,将盘上转换开关打至单独位,操作机构箱开关打至手动位,进行手动操作,并将具体情况汇报供电调度及段生产调度,在停电时进行相应处理。 隔离开关瓷柱破损、裂纹、放电严重,爆炸时,根据设备具体情况,若放电不严重时,可暂时不停电,必须加强巡视、观察。并向供电调度和段生产调度汇报,做好随时抢修的准备,等有停电点,进行更换处理,若放电严重造成直接接地,必须向供电调度和段生产调度说明情况,经供电调度同意后,在做好安全措施的前提下,将爆炸瓷柱拆除掉。并将两引线用线夹按规定连接在一起、尽快供电。加强巡视、观察等有停电点时再更换、恢复正常运行。 6、并补电容补偿装置故障。 并补电容保护动作,各种信号显示正常,向供电调度汇报具体情况,若不是装置本身原因造成跳闸则立即投入并补,若是装置本身原因造成跳闸则向供电调度申请经供电调度同意后,撤除并补装置,并根据信号显示,查找原因并处理。 并补电容装置电容击穿、电容器烧损或放电线圈二次线烧断。应及时向供电调度汇报,撤除并补装置,在不影响供电的前提下,进行更换处理,并向段生产调度汇报情况。 7、穿墙套管击穿 穿墙套管击穿、爆炸,首先向供电调度如实汇报,经供电调度同意后,在能改变运行方式不影响供电的前提下,先改变运行方式,尽快供电。然后,根据电调命令,撤除故障穿墙套管的断路器,并做好安全措施,进行穿墙套管的更换,尽快使设备达到正常运行方式;若其不能,则考虑将故障穿墙套管所在进线或馈线断路器小车拉出,并断开与其相连的隔离开关,使击穿的穿墙套管处于隔离状态;在做好安全措施的前提下,根据实际情况,从两供电线相距较近且容易接线处将两供电线短接,先行送电,等有停电点后在更换穿墙套管,恢复设备运行状态。 8、高压室硬母线支持绝缘子击穿 高压室内支持绝缘子因表面脏污、裂纹,釉质老化等,使绝缘降低引起绝缘件闪络,若是轻微放电、闪络,应对其表面进行清扫或涂以快干型有机硅树脂。以提高其绝缘水平,然后,经供电调度同意下可强送,并加强设备巡视、观察。 如果母线支持瓷瓶因误操作或因潮湿,湿闪严重烧伤或者爆炸,应在不影响母线与接地部分之间安全距离的条件下,拆掉其严重烧伤或爆炸的绝缘件,尽快恢复送电,加强巡视等有停电点,再安装支持瓷瓶,恢复正常运行状态。 如果室内隔离开关支持瓷瓶严重烧伤或爆炸时,在不影响开关带电部分与接地距离的条件下,应砸掉严重烧伤绝缘件,用手动使开关良好接触,恢复送电。等到条件许可后再申请停电处理。并加强巡视。 无论哪种原因,必须向供电调度和段生产调度如实汇报,随时保持联系。 9、直流系统故障 蓄电池组故障: 应首先将蓄电池组退出运行,利用充电机独立向直流母线供电。值班人员必须向供电调度和段生产调度说明情况,迅速查明原因,进行相应处理,然后立即将蓄电池组投入,恢复正常浮充状态。在此期间,值班人员加强巡视、检测,并了解清楚,此时为不正常运行状态,一旦发生交流失压,则各种信号无法显示,故障打印无法进行。若出现变电所近点短路,造成直流母线电压过低,开关拒动,值班人员应迅速采用手动,将馈线开关断开。 交流自用电系统故障或失压: 交流自用电系统故障或失压,硅整流充电装置将失去电源而无法工作,则此时无法向蓄电池充电,由蓄电池组完全承担直流母线上的负荷,值班人员应通过调节蓄电池电压调节手柄位置,来维持直流母线水平。 四、安全 1、一切作业必须有供电调度命令,严禁无令操作,臆测行事。 2、一切作业均应做好安全措施,确保人生安全和设备正常运行。 3、在作业过程中,若发现危机人身安全和设备安全,应果断中断作业后,方可向供电调度汇报。 4、在设备异常情况下,值班人员应加强设备巡视,认真细致的监视各类仪表,及信号显示,若发现新问题及时汇报、及时处理。 5、事故情况不可能如上单一,各所应根据具体情况参照执行,切忌生搬硬套。
【摘 要】本文就变电运行常见故障进行分析,并就处理方法做了论述。【关键词】变电运行;故障;处理措施1、一般故障变电所常见的一般故障主要有系统接地、PT保险熔断、谐振、断线等故障。在不直接接地和经消弧线圈接地的小电流接地系统中,发生这四种故障时,中央信号都会发出“10(35kV)系统接地”光字牌或报文。这是因为在小电流接地系统的母线辅助线圈的开口三角接有电压继电器,系统三相平衡运行时开口三角电压近于零。当发生系统接地、高压保险熔断、铁磁谐振、系统断线时,三相电压不平衡,当开口三角电压达到整定值时,电压继电器动作,发接地信号。因此,仅以光字牌或报文还不能断定故障的性质,还应结合其他现象来判断。当有一相或两相电压为零,其他两相或一相为相电压者为高压保险熔断;当有一相降低或为零,另两相超过相电压而小于等于线电压者为接地;当有一相降低,两相升高达到线电压或三相都超过相电压且有摆动者为谐振;当有一相升高,另两相降低时为线路断线。 针对不同故障应采取不同处理方法。判断接地要巡视一次设备,应检查母线及连接设备、变压器有无异常,设备瓷质部分有无损坏,有无放电闪络,设备上有无落物,有无小动物及外力破坏,有无断线接地,检查互感器、避雷器、电缆头有无击穿损坏等。如经检查,站内设备无异常,则有可能是某一线路有故障,而其接地故障保护失灵,应用瞬停的方法,查明故障线路;判断保险熔断要检查二次电压,以判定是否是高压保险熔断;判断为谐振,就要通过瞬间改变设备的运行方式来消除谐振,比如用瞬时并列或解列、瞬时拉合空载线路的开关等方法;如果判断为线路断线则立即汇报调度,及时安排查线。 2、跳闸故障 主变开关跳闸: 根据断路器的跳合位置、保护的动作掉牌或信号、事件记录器的指示及负荷状况等,判断是否为变压器故障跳闸,并向调度汇报;检查变压器跳闸前的负荷、油位、油温、油色,变压器有无喷油、冒烟,瓷套有无闪络、破裂,压力释放阀是否动作或其它明显的故障迹象;检查站用电的切换是否正常,直流系统是否正常,分析故障录波的波形和微机保护打印报告。变压器的主保护同时动作跳闸,未查明原因和消除故障之前不得强送;变压器的瓦斯或差动保护动作跳闸经检查判明不是变压器内部故障而属于保护误动时,在系统急需时可以强送一次;变压器后备过流保护动作跳闸,在找到故障并有效隔离后,一般可以对变压器试送一次。 瓦斯保护动作 瓦斯保护动作的原因有:变压器内部发生故障;二次回路故障;呼吸器堵塞后突然冲开;外部发生穿越性短路故障或变压器附近有较强的振动。因此一旦发生瓦斯保护动作,要重点检查变压器本身有无着火、变形;检查变压器差动保护是否掉牌;检查压力释放阀是否动作、喷油;检查呼吸器是否喷油;检查油位、油温、油色等情况。通过以上检查,未发现任何故障象征,可判定瓦斯保护动作为二次回路因短路或接地等的误动。 差动保护动作 差动保护动作的原因有:变压器及其套管引出线,各侧差动电流互感器以内的一次设备故障;变压器内部发生故障;差动电流互感器开路或由于电流回路极性接错等,差动保护范围内以外故障造成差动保护误动作。一次设备的检查范围为主变三侧差动CT 间瓷质部分是否完整,有无闪络放电痕迹;变压器及各侧断路器、隔离开关、避雷器、绝缘子等有无接地短路现象,有无异物落在设备上。若差动保护动作的同时,瓦斯保护也动作,说明是变压器内部故障,故障不消除,不得将变压器投入运行;若检查是差动保护范围内故障,应设法修复故障设备,恢复变压器的运行;若检查是差动保护范围外故障,应对差动保护误动作的原因进行检查,重点是电流互感器二次回路;如果检查结果是主变和差动区都无异常,可以判断为保护误动。 主变后备保护动作单侧开关跳闸 主变三侧,某一侧过流等后备保护动作,单侧开关跳闸有三种情况:母线故障或母差保护拒动、越级跳闸、开关误动。具体是哪一种情况要通过对二次侧和一次设备检查来分析判断。当主变三侧,某一侧过流等后备保护动作,可通过检查保护动作情况和对站内设备的检查进行初步的判断。检查保护时,不仅要检查主变的保护还要检查线路的保护是否同时动作。主变保护和线路保护同时动作,线路开关拒动的,这种故障容易判断。开关因机械原因拒动的故障处理较为简单,先手动断开开关,再拉开两侧刀闸,然后恢复其他设备送电。对于是母线故障还是线路故障因保护拒动而越级的故障,要通过对设备的检查进行判断。检查二次设备时,重点检查所有设备的保护压板是否有漏投的;检查所有设备的保护是否有异常报警;检查线路开关操作直流电源开关是否有断开的;检查故障录波器。检查一次设备,重点检查站内的主变某一侧过流保护区,即从主变相应侧主CT 至母线,至所有母线连接的设备,再至线路出口。 主变后备保护动作三侧开关跳闸 主变后备保护动作三侧开关跳闸原因:①主变主保护范围内短路而主保护拒动;②主变中低压侧后备保护范围内短路而后备保护拒动或开关拒动;③保护误动;④主变电源侧母线故障而母差保护拒动。主变后备保护动作三侧开关跳闸后检查二次设备时,重点检查所有设备的保护动作情况;所有设备的保护压板是否有漏投的;检查开关操作直流电源开关是否有断开的;检查故障录波器。检查一次设备,重点检查站内的主变中、低压侧过流保护区,还应该检查主变主保护范围内是否故障,并检查缩小故障范围,注意主变中性点及母差保护方式变更。 3、线路跳闸 线路跳闸应认真检查保护及自动装置动作情况,检查故障录波器动作情况,检查断路器的三相位置、油位、油色及有无喷油等异常现象。线路跳闸后,自动重合闸动作但未重合成功,或者未动作,或者无自动重合闸,都要手动强送一次。强送时应考虑:①正确选取强送端,一般采用大电源侧进行强送;②强送的开关及其速动保护完好,系统保护的配合应协调;③改变接线,使对电压波动反应灵敏的用户远离强送电端;④超高压长线路为防止末端电压升高,降低强送电端电压,如果线路上有电抗器时应带电抗器强送。变电站可根据故障录波器判明故障地点和故障性质。线路故障时,如伴有明显的故障现象,如火光、爆炸及系统振荡等,不应马上强送,需检查设备并消除振荡后再考虑强送。一般情况下单电源线路,系统稳定无特殊要求并且受端用户允许者可不与调度联系,跳闸后立即强送。此外均需与调度联系后强送。凡是有带电作业的线路跳闸,调度必须与作业负责人联系,取得允许后方可强送。充电运行的输电线路、全电缆线路、断路器遮断容量不够、断路器事故跳闸次数累计超过规定的,跳闸后一般不能强送电。安全稳定联切装置或低周减载装置动作跳闸的断路器也不得试送。 因而,作为一名合格的运行人员,正确快速判断处理设备和系统故障是必备的技能之一。只有掌握了这些技能,才能使我们的电力系统永葆安全与稳定。 4、结束语 对变电运行故障及处理方法的分析,针对电力设备和电力系统在运行中常常会发生各种异常现象或事故,提出科学正确及时处理问题,希望对今后变电运行故障及处理方法研究能够有所帮助。
某月某日几时几分,接到某某公司的报修电话。于几时几分到达现场。发现电梯处于什么状态。如电梯内关人。按解困救人流程把人放出。根据电梯现在的状态。分期故障的原因。更换或调整某些部件。对调整好的电梯进行调试。电梯于几时几分恢复正常运行。
电梯论文答辩ppt
电梯是我们日常生活最常接触的工具了,那么关于电梯的毕业论文应该怎样去设计PPT呢?
》》》 电梯论文答辩ppt
各位老师好,感谢各位老师来听我的毕业答辩。我是**,来自******班,本次毕业设计的题目是“基于S7-200PLC控制的四层电梯系统的设计”,指导老师是****老师,
众所周知,现在,中国的发展越来越快,经济越来越好,人们的生活水平也越来越高,所以对衣食住行的要求都在不断的提高,所建的楼房也是越建越高,而随着楼层的增高,必不可少的就要用到电梯这一建筑物内部的交通工具。本次毕业设计就是针对电梯来进行的。以前,老式的电梯主要采用继电器逻辑控制方式,存在功能弱、故障多、可靠性差和工作寿命短等缺陷。所以为了克服这些缺点,本次设计采用了PLC进行控制,它更加的安全可靠。本文主要分为六章四个部分,第一部分主要是绪论,第二部分简单的介绍了一下电梯本身的一些概况,第三部分为硬件设计,由于涉及到了变频器和PLC的选型,所以分为了三个章节(所以担心篇幅太大了,就把他们单独提出来作为一章,)第四部分主要是软件设计以梯形图的形式呈现。下面详细的介绍一下各个部分。
第一部分,绪论主要描述了研究的目的及意义,国内外的发展情况,和本课题的研究内容。
第二部分主要介绍了研究对象电梯的一些情况,对电梯有一个系统的了解。 最开始的电梯是1854年,美国人发明的,从那以后,电梯就得到了越来越广泛的应用。电梯是机电合一的一种大型的复杂的产品,是现代科学技术的综合产品。电梯的结构包括四大空间和八大系统。(其中,四大空间包括:机房部分、井道部分、层站部分和轿厢部分。八大系统包括:曳引系统、导向系统、轿厢、门系统、重量平衡系统、电力控制系统、电气控制系统、和安全保护系统。)
电梯的分类也是多种多样的,有按照用途分,按照速度分,也可以按照拖动方式分。 电梯要投入使用,就要对它的主要参数有一个了解,如载重量,轿厢的尺寸、形式,开门的宽度、方向,曳引方式,额定速度等(停层站数、提升高度、顶层高度、底坑深度、井道尺寸、井道高度等)
同时要保证人员的安全。(电磁知道器、强迫减速开关、限位开关、行程极限保护开关、急停按钮、厅门开关、关门安全开关、超载开关)
第三部分为硬件设计,而这部分又包括变频器的.选择和参数设计,PLC的选择,系统主要实现的功能,以及I/O接口的分配。 因为电梯专业变频器成本太高,为了节约成本,所以选择通用变频器。变频器采用的是西门子新一代MM440变频器。具有矢量控制和可编程的S曲线功能,使轿厢在任何情况下都能平稳运行且保持乘客的舒适感。MM440变频器内置了制动单元,用户只需选择制动电阻即可实现再生发电制动,因此可节约系统成本。(容量计算采用P=F*V的方式)。而PLC则选择西门子S7-200系列,而本设计要实现的功能是:
(1)用一台电机控制上升和下降,开始时,电梯处于任意一层。
(2)各层均设有上升和下降呼叫开关,其中最顶层只有下降呼叫开关,最下层只设有上升呼叫开关,电梯内部具有方向指示灯及以及内呼按钮。
(3)当有外呼或者内呼信号时,电梯响应信号,到达信号楼层时,打开电梯门,延时5s后,自动关门。
(4)运行途中若遇到呼梯信号,顺向截车,逆向不截车。
(5)电梯到达指定楼层时,自动开门,此时若无人按下关门按钮则,延时5s后关门,同时电梯还可以实现手动开门,手动关门的操作。
(6)电梯运行时不能开门,开关门按钮均不能作用,同样开门时不能行车。
(7)设有红外线人体检测和超重按钮,在电梯关门过程中如果有人员再次进入则电梯停止关门,再次开门,电梯超重时,也不会关门,并报警。
第四部分是系统的软件设计,编程软件采用STEP7-Micro/WIN32编程软件。以梯形图的方式呈现,实现自动平层、自动开关门、自动掌握停站时间、内外呼叫信号的登记与消除、顺向截梯等控制功能。
正常情况下,电梯开门可以是到达指定楼层后自动开门,也可以是按下手动开门按钮开门。开门过程中若碰到开门限位按钮,说明电梯门完全打开,则门电机停止转动,开门延时5s后,关门,关门过程中若无人员进入没有超重或者没有再次按开门按钮则电梯正常关门,否则电梯再次开门并延时后关门。延时采用的定时器型号为T33,分辨率为10ms,预置值为500,因此设定值为5s。
当然当有人按下开门按钮后,在电梯没有运行且已经平层的状态下,电梯开门,开门到位后延时5s后关门。
如开门控制一样,关门控制也分为开门延时结束电梯自动关门和按关门按钮手动关门两种情况。当关门按钮按下时,电梯关门,但当有外来人员再次进入时,红外检测常闭触点断开,这时电梯就会再次开门;或者这时若有人按下开门按钮电梯也会停止关门再次开门。当
超载时,超重常闭触点断开,电梯也不能进行正常关门并且报警。当电梯门完全关闭时,关么限位按钮作用,使电机停止运转,关门动作停止。
对于轿厢内呼叫,信号的登记采用的是PLC中的置位指令,不论电梯上行或者下行,当轿厢运行至有内呼信号的楼层时,均要停车开门并且还要消除指令信号。而消除信号则用的是PLC中的复位指令。
轿厢外呼叫,厅外召唤信号同样需要进行登记、显示本层停车信号。轿厢外呼除了第一层和第四层之外,每一层都设有上呼和下呼两个按键,电梯开门的依据为:当电梯没有运行接收到外呼信号时或者当轿厢运行到该楼层,并且运行方向和按钮呼唤方向一致时,响应该楼层呼唤,电梯开门载客。
对于内呼指令,电梯均需平层停车,并且只停内选层站,当外召唤方向与电梯运行方向相同时,电梯换速停车,即顺向截车。例如电梯要从一楼上行到四楼,若此时有二楼上行外呼信号或者三楼上行外呼信号,则电梯运行到二楼或三楼时,响应该信号停车开门。
反向截梯:在电梯运行过程中,电梯上升或下降途中,任何反方向的外呼信号均不响应,但如果反方向的外呼信号前方无其它内、外呼信号时,则电梯响应该外信号。如电梯上行至三楼,若四楼没有任何呼叫信号,则电梯就可以响应三层向下外呼信号。同时,电梯应具有最远反向外呼叫响应功能。例如,电梯在一楼,而同时二楼外呼下行,三楼外呼下行,四楼外呼下行,则电梯应首先响应四层外呼下行信号,而二楼、三楼则采用顺向截车的方法。
以上就是我的论文的总体内容,谢谢。
电梯的常见故障及其分析 电梯使用一段时期以后,常会出现一些故障。出现的故障并不一定就是机器零件有磨损或电气元件型号较老所引起的,故障的原因是多种多样的,作为维护保养人员应根据电梯出现的故障准确判别属于哪一种类别,然后着手解决。 一、电梯故障的类别: 1.设计、制造、安装故障 一般来说,新产品的设计、制造和安装都有一个逐步完善的过程。当电梯发生故障以后,维护人员应找出故障所在部位然后分析故障产生的原因。如果是由于设计、制造、安装等方面所引起的缺陷,此时维护保养人员不要妄动盲目拆卸修理,必须尽快与制造厂家或安装维修单位取得联系如实反应故障原因,由其制造厂家技术人员和安装单位技术人员共同解决 。 2.操作故障 操作故障一般是由于使用者野蛮操作引起的,在正常运行情况下随意开启层、轿门,这种不文明的行为必然造成电梯发生故障,还有如维修工违章操作随意短接门联锁或安全回路,制动器调整不当使电梯带故障运行,随时都可能危及生命安全或财产安全。 3.零部件损坏故障 这一类故障现象是电梯运行中较常见的也是最多的,如机械部分传动装置相互受力或摩擦造成间隙过大或位移引起的故障。电气部分的接触器、继电器触点烧灼引起粘连或氧化造成接触不良引起的故障,电器元件老化等。我们必须尽量避免由于电梯故障而引起的对人的伤害,除此之外,还必须避免由此而引起电梯经常停止运行降低输送能力等。因此,严格遵守电梯安全操作规程,维护保养人员平时仔细地做好检查工作,维护保养三个要素就是清洁、调整、润滑是保证电梯安全、高效运行的重要措施。 二、电梯常见故障及分析 以上我们讲了电梯故障的三种类型,下面就典型常见的故障加以分析,供参考。 1-1电梯机械部分常见故障分析
变频器由主回路、电源回路、IPM驱动及保护回路、冷却风扇等几部分组成。其结构多为单元化或模块化形式。若使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。为防患于未然,事先对故障原因进行认真分析尤为重要。 1、主回路常见故障分析 主回路主要由三相或单相整流桥、滤波电容器、平滑电容器、限流电阻、IPM逆变桥、接触器等元件组成。其中许多常见故障是由电解电容引起。电解电容的寿命主要由加在其两端的直流电压和内部温度所决定,在回路设计时已经选定了电容器的型号,所以内部的温度对电解电容器的寿命起决定作用。电解电容器会直接影响到变频器的使用寿命,一般温度每上升10 ℃,寿命减半。因此一方面在安装时要考虑适当的环境温度,另一方面可以采取措施减少脉动电流。采用改善功率因数的交流或直流电抗器可以减少脉动电流,从而延长电解电容器的寿命。在电容器维护时,通常以比较容易测量的静电容量来判断电解电容器的劣化情况,当静电容量低于额定值的80%,绝缘阻抗在5 MΩ以下时,应考虑更换电解电容器。 2、主回路典型故障分析 故障现象:变频器在加速、减速或正常运行时出现过电流跳闸。首先应区分是由于负载原因,还是变频器的原因引起的。如果是变频器的故障,可通过历史记录查询在跳闸时的电流,超过了变频器的额定电流或电子热继电器的设定值,而三相电压和电流是平衡的,则应考虑是否有过载或突变,如电机堵转等。在负载惯性较大时,可适当延长加速时间,此过程对变频器本身并无损坏。若跳闸时的电流,在变频器的额定电流或在电子热继电器的设定范围内,可判断是IPM模块或相关部分发生故障。首先可以通过测量变频器的主回路输出端子U、V、W, 分别与直流侧的P、N端子之间的正反向电阻,来判断IPM模块是否损坏。如模块未损坏,则是驱动电路出了故障。如果减速时IPM模块过流或变频器对地短路跳闸,一般是逆变器的上半桥的模块或其驱动电路故障;而加速时IPM模块过流,则是下半桥的模块或其驱动电路部分故障,发生这些故障的原因,多是由于外部灰尘进入变频器内部或环境潮湿引起。 3、控制回路故障分析 控制回路影响变频器寿命的是电源部分,是平滑电容器和IPM电路板中的缓冲电容器,其原理与前述相同,但这里的电容器中通过的脉动电流,是基本不受主回路负载影响的定值,故其寿命主要由温度和通电时间决定。由于电容器都焊接在电路板上,通过测量静电容量来判断劣化情况比较困难,一般根据电容器环境温度以及使用时间,来推算是否接近其使用寿命。 1)电源电路板给控制回路、IPM驱动电路和表面操作显示板以及风扇等提供电源,这些电源一般都是从主电路输出的直流电压,通过开关电源再分别整流而得到的。因此,某一路电源短路,除了本路的整流电路受损外,还可能影响其他部分的电源,如由于误操作而使控制电源与公共接地短接,致使电源电路板上开关电源部分损坏,风扇电源的短路导致其他电源断电等。一般通过观察电源电路板就比较容易发现。 2)电路板包含驱动和缓冲电路,以及过电压、缺相等保护电路。从逻辑控制板来的PWM信号,通过光耦合将电压驱动信号输入IPM模块,因而在检测模块的同时,还应测量IPM模块上的光耦。 3)逻辑控制电路板是变频器的核心,它集中了CPU、MPU等大规模集成电路,具有很高的可靠性,本身出现故障的概率很小,但有时会因开机而使全部控制端子同时闭合,导致变频器出现EEPROM故障,这只要对EEPROM重新复位就可以了。 4、外部的电磁感应干扰 如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。减少噪声干扰的具体方法有:变频器周围所有继电器、接触器的控制线圈上,加装防止冲击电压的吸收装置,如RC浪涌吸收器,其接线不能超过20cm;尽量缩短控制回路的配线距离,并使其与主回路分离;变频器控制回路配线绞合节距离应在15 mm以上,与主回路保持10 cm以上的间距;变频器距离电动机很远时,这时一方面可加大导线截面面积,保证线路压降在2%以内,同时应加装变频器输出电抗器,用来补偿因长距离导线产生的分布电容的充电电流。变频器接地端子应按规定进行接地,必须在专用接地点可靠接地,不能同电焊、动力接地混用;变频器输入端安装无线电噪声滤波器,减少输入高次谐波,从而可降低从电源线到电子设备的噪声影响;同时在变频器的输出端也安装无线电噪声滤波器,以降低其输出端的线路噪声。 5、冷却系统 冷却系统主要包括散热片和冷却风扇。其中冷却风扇寿命较短,临近使用寿命时,风扇产生震动,噪声增大最后停转,变频器出现IPM过热跳闸。冷却风扇的寿命受陷于轴承,大约为10000~35000 h。当变频器连续运转时,需要2~3年更换一次风扇或轴承。为了延长风扇的寿命,一些产品的风扇只在变频器运转时而不是电源开启试运行。 6、电源异常 电源异常大致分为缺相、低电压、停电,有时也出现它们的混合形式。这些异常现象的主要原因,多半是输电线路因风、雪、雷击造成的,有时也因为同一供电系统内出现对地短路及相间短路。而雷击因地域和季节有很大差异。除电压波动外,有些电网或自行发电的单位,也会出现频率波动,并且这些现象有时在短时间内重复出现,为保证设备的正常运行,对变频器供电电源也提出相应要求。有条件因需可加装自动切换的不停电源装置或备用的稳定电源。 7、雷击、感应雷电 雷击或感应雷击形成的冲击电压,有时也会造成变频器的损坏。此外,当电源系统一次侧带有真空断路器时,短路开闭会产生较高的冲击电压。为防止因冲击电压造成过电压损坏,通常需要在变频器的输入端加压敏电阻等吸收器件。真空断路器应增加RC浪涌吸收器。若变压器一次侧有真空断路器,应在控制时序上,保证真空断路器动作前先将变频器断开。 本文地址:
由于时间和精力有限,在此只能罗列一些日常的故障处理:变频器比较常见的故障:过流、过压、过载、过热、欠压、过流分为真过流和假过流;假过流是由于电流检测电路引起的如采样电路、霍尔元件、放大电路。真过流是由于负载过大,加速时间短,变频器模块损坏引起。过压、欠压一般是由于检测电路、模块损坏、减速时间短、工频电压过高引起。希望帮到你,有问题随时联系!河南台达代理商-郑州鑫凯电子科技有限公司!
机电毕业论文-实现变频调速器多电机控制[摘要]本文介绍了一种plc与变频调速器构成的多分支通讯网络,阐明了该网络控制调速系统与一般模拟量控制调速系统相比的优越性,给出了系统框图及plc程序。[关键词]plc变频调速器多电机控制网络通讯协议一、引言以变频调速器为调速控制器的同步控制系统、比例控制系统和同速系统等已广泛应用于冶金、机械、纺织、化工等行业。以比例控制系统为例,一般的系统构成如图1所示。工作时操作人员通过控制机(可为plc或工业pc)设定比例运行参数,然后控制机通过d/a转换模件发出控制变频调速器的速度指令使各个变频调速器带动电机按一定的速度比例运转。此方案对电机数目不多,电机分布比较集中的应用系统较合适。但对于大规模生产自动线,一方面电机数目较多,另一方面电机分布距离较远。采用此控制方案时由于速度指令信号在长距离传输中的衰减和外界的干扰,使整个系统的工作稳定性和可靠性降低;同时大量d/a转换模件使系统成本增加。为此我们提出了plc与变频调速器构成多分支通讯控制网络。该系统成本较低、信号传输距离远、抗干扰能力强,尤其适合远距离,多电机控制。二、系统硬件构成系统硬件结构如图2所示,主要由下列组件构成;1、fx0n—24mr为plc基本单元,执行系统及用户软件,是系统的核心。2、fx0n—485adp为fx0n系统plc的通讯适配器,该模块的主要作用是在计算机—plc通讯系统中作为子站接受计算机发给plc的信息或在多plc构成n:n网络时作为网络适配器,一般只作为规定协议的收信单元使用。本文作者在分析其结构的基础上,将其作为通讯主站使用,完成变频调速器控制信号的发送。3、fr—cu03为fr—a044系列比例调速器的计算机连接单元,符合rs—422/rs—485通讯规范,用于实现计算机与多台变频调速器的连网。通过该单元能够在网络上实现变频调速器的运行控制(如启动、停止、运行频率设定)、参数设定和状态监控等功能,是变频器的网络接口。4、fr—a044变频调查器,实现电机调速。在1:n(本文中为1:3)多分支通讯网络中,每个变频器为一个子站,每个子站均有一个站号,事先由参数设定单元设定。工作过程中,plc通过fx0n—485adp发有关命令信息后,各个子站均收到该信息,然后每个子站判断该信息的站号地址是否与本站站号一致。若一致则处理该信息并返回应答信息;若不一致则放弃该信息的处理,这样就保证了在网络上同时只有一个子站与主站交换信息。三、软件设计1、通讯协议fr—cu03规定计算机与变频器的通讯过程如图3所示,该过程最多分5个阶段。?、计算机发出通讯请求;?、变频器处理等待;?、变频器作出应答;?、计算机处理等待;?、计算机作出应答。根据不同的通讯要求完成相应的过程,如写变频器启停控制命令时完成?~?三个过程;监视变频器运行频率时完成?~?五个过程。不论是写数据还是读数据,均有计算机发出请求,变频器只是被动接受请求并作出应答。每个阶段的数据格式均有差别。图4分别为写变频器控制命令和变频器运行频率的数据格式。2、plc编程要实现对变频器的控制,必须对plc进行编程,通过程序实现plc与变频器信息交换的控制。plc程序应完成fx0n—485adp通讯适配器的初始化、控制命令字的组合、代码转换及变频器应答信息的处理等工作。plc梯形图程序(部分程序)如图5所示。程序中通讯发送缓冲区为d127~d149;接受缓冲区为d150~d160。电机1启动、停止分别由x0的上升、下降沿控制;电机2启动、停止分别由x1的上升、下降沿控制;电机3启动、停止分别由x2的上升、下降沿控制。程序由系统起始脉冲m8002初始化fx0n—485adp的通讯协议;然后进行启动、停止信号的处理。以电机1启动为例,x0的上升沿m50吸合,变频器1的站号送入d130,运行命令字送入d135,enq、写运行命令的控制字和等待时间等由编程器事先写入d131、d132、d133;接着求校验和并送入d136、d137;最后置m8122允许rs指令发送控制信息到。变频器受到信号后立刻返回应答信息,此信息fx0n—485adp收到后置m8132,plc根据情况作出相应处理后结束程序。四、变频器制动的思路和新方法在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。1、能耗制动利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。一般在通用变频器中,小功率变频器(22kw以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kw以上)就需外置刹车单元、刹车电阻了。2、回馈制动实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。3、新型制动方式(电容反馈制动)主回路原理整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块igbt、充电、反馈电抗器l及大电解电容c(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块igbt组成。保护回路,由igbt、功率电阻组成。(1)电动机发电运行状态cpu对输入的交流电压和直流回路电压νd的实时监控,决定向vt1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380vac—530vdc)高到一定值时,cpu关断vt3,通过对vt1的脉冲导通实现对电解电容c的充电过程。此时的电抗器l与电解电容c分压,从而确保电解电容c工作在安全范围内。当电解电容c上的电压快到危险值(比如说370v),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制vt3的关断与开通,从而实现电阻r消耗多余的能量,一般这种情况是不会出现的。(2)电动机电动运行状态当cpu发现系统不再充电时,则对vt3进行脉冲导通,使得在电抗器l上行成了一个瞬时左正右负的电压,再加上电解电容c上的电压就能实现从电容到直流回路的能量反馈过程。cpu通过对电解电容c上的电压和直流回路的电压的检测,控制vt3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。系统难点(1)电抗器的选取(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。所以笔者建议充电、反馈回路各采用一个电抗器。(2)控制上的难点(a)、变频器的直流回路中,电压νd一般都高于500vdc,而电解电容c的耐压才400vdc,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容c的瞬时充电电压为νc=νd-νl,为了确保电解电容工作在安全范围内(≤400v),就得有效的控制电抗器上的电压降νl,而电压降νl又取决于电感量和电流的瞬时变化率。(b)、在反馈过程中,还得防止电解电容c所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。主要应用场合及应用实例正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列,到目前为止,这种电容反馈制动的变频器正长期正常运行在山东宁阳保安煤矿及山西太原等地,填补了国内这一空白。随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。五、结语1、实际使用表明,该方案能够实现plc通过网络对变频调速器的运行控制、参数设定和运行状态监控。2、该系统最多可控制变频调速器32台,最大距离500m。3、控制多台变频器,成本明显低于d/a控制方式。4、随着变频器的增加,通讯延迟加大,系统响应速度低于d/a控制方式。参考文献1、韩安荣.通用变频器及其应用(第2版)[m].北京:机械工业出版社,2、刘文兵(1981—)男从事过变频器的应用工作,现在台州富凌机电制造有限公司,从事变频器的设计与制造。鸣谢在论文完成之际,我真心地感谢在设计之中给予我帮助的荀延龙老师和各位同事,使我如期完成毕业论文,并使我终生受益。在论文的完成过程中,系里的各位老师对我帮助很大。在此深表谢意!其他的同学也给予我许多关心和帮助,真诚地感谢他们。
您好, 很高兴能够回答您的问题。变频器常见的故障及处理方法如下:过载保护:当变频器所驱动的负载过载时,会出现过载保护,此时需要减少负载或增加变频器的容量。过热保护:当变频器运行过程中温度过高时,会出现过热保护,此时需要检查风扇是否正常工作、散热器是否清洁等。过流保护:当变频器输出的电流超过额定电流时,会出现过流保护,此时需要检查电源电压、电缆连接是否正确等。过压保护:当变频器的输入电压超过额定值时,会出现过压保护,此时需要检查电源电压是否符合要求。缺相保护:当输入电源缺相时,变频器无法正常工作,此时需要检查输入电源是否正常。软件故障:当变频器的控制程序出现故障时,会影响变频器的正常工作,此时需要重新设置控制程序或更换控制板。处理方法通常包括以下几种:检查电源及电缆连接是否正确,并检查电源电压是否符合要求。检查风扇、散热器等散热部件是否正常工作,并清洁相应部件。检查负载是否过载,并减少负载或增加变频器容量。检查控制程序是否正常,重新设置或更换控制板。总之,对于变频器故障的处理,需要根据具体情况综合分析,并及时采取相应的处理措施。在日常使用中,要注意变频器的维护保养,及时清洁散热器、检查电缆连接等,以确保变频器的正常运行。我们可以帮您解决变频器、电气控制柜、软起动等问题, 。
随着科学技术向生产力逐步转化,机电一体化产品的设计已经涉及到机械、电气和控制等众多领域。单领域、分散建模的设计方法已经很难满足产品综合设计的要求。以下是学术堂整理的机电一体化毕业论文题目,希望对你有所帮助。1、基于虚拟原型的机电一体化建模与仿真技术研究2、基于实验教学的机电一体化系统探析3、MEMS加速度计与读出电路的研究4、基于LM628的运动控制器的研制5、机电一体化的物流培训模型-机械手搬运系统模块的设计6、国家骨干高职院校兼职教师现状与对策研究7、立体仓库实训系统信息管理的研究设计8、机电一体化精确定位装置及其控制系统的研究9、空间机械臂机电一体化关节的设计与控制10、基于SolidWorks&LabVIEW的虚拟原型机电一体化设计技术研究11、机电一体化新型旋转式海流计设计与开发12、橡塑工业循环温控技术机电一体化的设计与研究13、人民币防伪鉴真机电一体化设计实验研究14、高职机电一体化专业项目驱动课程体系研究15、基于UGNX的机械臂式三维扫描仪概念设计的研究
机电一体化的毕业设计可以选择哪些题目?
机电一体化的毕业设计可以选择哪些题目?
其中这些有开题报告 1. 用单片机进行温度的控制及LCD显示系统的设计 2. 基于MultiSim 8的高频电路仿真技术 3. 简易数字电压表的设计 4. 虚拟信号发生器设计及远程实现 5. 智能物业管理器的设计 6. 信号高精度测频方法设计 7. 三相电机的保护控制系统的分析与研究 8. 温度监控系统设计 9. 数字式温度计的设计 10. 全自动节水灌溉系统--硬件部分 11. 电子时钟的设计 12. 全自动电压表的设计 13. 脉冲调宽型伺服放大器的设计 14. 基于虚拟仪器技术的数字滤波及频率测试 15. 基于无线传输技术的室温控制系统设计——温度控制器硬件设计 16. 温度箱模拟控制系统 17. 基于无线传输技术的室温控制系统设计——温度控制器软件设计 18. 基于微控制器的电容器储能放电系统设计 19. 基于机器视觉的构件表面缺陷特征提取 20. 基于单片机的语音提示测温系统的研究 21. 基于单片机的步进电机的控制 22. 单片机的数字钟设计 23. 基于单片机的数字电压表的设计 24. 基于单片机的交流调功器设计 25. 基于SPI通信方式的多通道信号采集器设计 26. 基于LabVIEW虚拟频谱分析仪的设计 27. 功率因数校正器的设计 28. 高精度电容电感测量系统设计 29. 电表智能管理装置的设计 30. 基于Labview的虚拟数字钟设计 31. 超声波测距语音提示系统的研究 32. 斩控式交流电子调压器设计 33. 基于单片机的脉象信号采集系统设计 34. 基于单片机的简易智能小车设计 35. 基于FPGA的18路智力竞赛电子抢答器设计 36. 基于EDA技术的智力竞赛抢答器的设计 37. 基于EDA技术的数字电子钟设计 38. 基于EDA的计算器的设计 39. 基于DDS的频率特性测试仪设计 40. 基于CPLD直流电机控制系统的设计 41. 单色显示屏的设计 42. 扩音电话机的设计 43. 基于单片机的低频信号发生器设计 44. 35KV变电所及配电线路的设计 45. 10kV变电所及低压配电系统的设计 46. 6Kv变电所及低压配电系统的设计 47. 多功能充电器的硬件开发 48. 镍镉电池智能充电器的设计 49. 基于MCS-51单片机的变色灯控制系统设计与实现 50. 智能住宅的功能设计与实现原理研究 51. 用IC卡实现门禁管理系统 52. 变电站综合自动化系统研究 53. 单片机步进电机转速控制器的设计 54. 无刷直流电机数字控制系统的研究与设计 55. 液位控制系统研究与设计 56. 智能红外遥控暖风机设计 57. 基于单片机的多点无线温度监控系统 58. 蔬菜公司恒温库微机监控系统 59. 数字触发提升机控制系统 60. 仓储用多点温湿度测量系统 61. 矿井提升机装置的设计 62. 中频电源的设计 63. 数字PWM直流调速系统的设计 64. 基于ARM的嵌入式温度控制系统的设计 65. 锅炉控制系统的研究与设计 66. 动力电池充电系统设计 67. 多电量采集系统的设计与实现 68. PWM及单片机在按摩机中的应用 69. IC卡预付费煤气表的设计 70. 基于单片机的电子音乐门铃的设计 71. 新型出租车计价器控制电路的设计 72. 单片机太阳能热水器测控仪的设计 73. LED点阵显示屏-软件设计 74. 双容液位串级控制系统的设计与研究 75. 三电平Buck直流变换器主电路的研究 76. 基于PROTEUS软件的实验板仿真 77. 基于16位单片机的串口数据采集 78. 电机学课程CAI课件开发 79. 单片机教学实验板——软件设计 80. 63A三极交流接触器设计 81. 总线式智能PID控制仪 82. 自动售报机的设计 83. 断路器的设计 84. 基于MATLAB的水轮发电机调速系统仿真 85. 数控缠绕机树脂含量自控系统的设计 86. 软胶囊的单片机温度控制(硬件设计) 87. 空调温度控制单元的设计 88. 基于人工神经网络对谐波鉴幅 89. 基于单片机的鱼用投饵机自动控制系统的设计 90. 锅炉汽包水位控制系统 91. 基于单片机的玻璃管加热控制系统设计 92. 基于AT89C51单片机的号音自动播放器设计 93. 基于单片机的普通铣床数控化设计 94. 基于AT89C51单片机的电源切换控制器的设计 95. 基于51单片机的液晶显示器设计 96. 超声波测距仪的设计及其在倒车技术上的应用 97. 智能多路数据采集系统设计 98. 公交车报站系统的设计 99. 基于RS485总线的远程双向数据通信系统的设计 100. 宾馆客房环境检测系统 101. 智能充电器的设计与制作 102. 基于单片机的户式中央空调器温度测控系统设计 103. 基于单片机的乳粉包装称重控制系统设计 104. 基于单片机的定量物料自动配比系统 105. 基于单片机的液位检测 106. 基于单片机的水位控制系统设计 107. 基于VDMOS调速实验系统主电路模板的设计与开发 108. 基于IGBT-IPM的调速实验系统驱动模板的设计与开发 109. HEF4752为核心的交流调速系统控制电路模板的设计与开发 110. 基于87C196MC交流调速实验系统软件的设计与开发 111. 87C196MC单片机最小系统单板电路模板的设计与开发 112. 电子密码锁控制电路设计 113. 基于单片机的数字式温度计设计 114. 列车测速报警系统 115. 基于单片机的步进电机控制系统 116. 语音控制小汽车控制系统设计 117. 智能型客车超载检测系统的设计 118. 直流机组电动机设计 119. 单片机控制交通灯设计 120. 中型电弧炉单片机控制系统设计 121. 中频淬火电气控制系统设计 122. 新型洗浴器设计 123. 新型电磁开水炉设计 124. 基于电流型逆变器的中频冶炼电气设计 125. 6KW电磁采暖炉电气设计 126. 基于CD4017电平显示器 127. 多路智力抢答器设计 128. 智能型充电器的电源和显示的设计 129. 基于单片机的温度测量系统的设计 130. 龙门刨床的可逆直流调速系统的设计 131. 音频信号分析仪 132. 基于单片机的机械通风控制器设计 133. 论电气设计中低压交流接触器的使用 134. 论人工智能的现状与发展方向 135. 浅论配电系统的保护与选择 136. 浅论扬州帝一电器的供电系统 137. 浅谈光纤光缆和通信电缆 138. 浅谈数据通信及其应用前景 139. 浅谈塑料光纤传光原理 140. 浅析数字信号的载波传输 141. 浅析通信原理中的增量控制 142. 太阳能热水器水温水位测控仪分析 143. 电气设备的漏电保护及接地 144. 论“人工智能”中的知识获取技术 145. 论PLC应用及使用中应注意的问题 146. 论传感器使用中的抗干扰技术 147. 论电测技术中的抗干扰问题 148. 论高频电路的频谱线性搬移 149. 论高频反馈控制电路 150. 论工厂导线和电缆截面的选择 151. 论工厂供电系统的运行及管理 152. 论供电系统的防雷、接地保护及电气安全 153. 论交流变频调速系统 154. 论人工智能中的知识表示技术 155. 论双闭环无静差调速系统 156. 论特殊应用类型的传感器 157. 论无损探伤的特点 158. 论在线检测 159. 论专家系统 160. 论自动测试系统设计的几个问题 161. 浅析时分复用的基本原理 162. 试论配电系统设计方案的比较 163. 试论特殊条件下交流接触器的选用 164. 自动选台立体声调频收音机 165. 基于立体声调频收音机的研究 166. 基于环绕立体声转接器的设计 167. 基于红外线报警系统的研究 168. 多种变化彩灯 169. 单片机音乐演奏控制器设计 170. 单目视觉车道偏离报警系统 171. 基于单片机的波形发生器设计 172. 智能毫伏表的设计 173. 微机型高压电网继电保护系统的设计 174. 基于单片机mega16L的煤气报警器的设计 175. 串行显示的步进电机单片机控制系统 176. 编码发射与接收报警系统设计:看护机 177. 编码发射接收报警设计:爱情鸟 178. 红外快速检测人体温度装置的设计与研制 179. 用单片机控制的多功能门铃 180. 电气控制线路的设计原则 181. 电气设备的选择与校验 182. 浅论10KV供电系统的继电保护的设计方案 183. 智能编码电控锁设计 184. 自行车里程,速度计的设计 185. 等精度频率计的设计 186. 基于嵌入式系统的原油含水分析仪的硬件与人机界面设计 187. 数字电子钟的设计与制作 188. 温度报警器的电路设计与制作 189. 数字电子钟的电路设计 190. 鸡舍电子智能补光器的设计 191. 电子密码锁的电路设计与制作 192. 单片机控制电梯系统的设计 193. 常用电器维修方法综述 194. 控制式智能计热表的设计 195. 无线射频识别系统发射接收硬件电路的设计 196. 基于单片机PIC16F877的环境监测系统的设计 197. 基于ADE7758的电能监测系统的设计 198. 基于单片机的水温控制系统 199. 基于单片机的鸡雏恒温孵化器的设计 200. 自动存包柜的设计 201. 空调器微电脑控制系统 202. 全自动洗衣机控制器 203. 小功率不间断电源(UPS)中变换器的原理与设计 204. 智能温度巡检仪的研制 205. 保险箱遥控密码锁 206. 基于蓝牙技术的心电动态监护系统的研究 207. 低成本智能住宅监控系统的设计 208. 大型发电厂的继电保护配置 209. 直流操作电源监控系统的研究 210. 悬挂运动控制系统 211. 气体泄漏超声检测系统的设计 212. FC-TCR型无功补偿装置控制器的设计 213. 150MHz频段窄带调频无线接收机 214. 数字显示式电子体温计 215. 基于单片机的病床呼叫控制系统 216. 基于单片微型计算机的多路室内火灾报警器 217. 基于单片微型计算机的语音播出的作息时间控制器 218. 交通信号灯控制电路的设计 219. 单片机控制的全自动洗衣机毕业设计论文 220. 单片机脉搏测量仪 221. 红外报警器设计与实现
:MCS51系列的单片机没有那么强大的功能(主要是可扩展的存储器有限), 如果真要使用的话,可能要用好几片. 2:现在的电梯都是PLC(可编程逻辑控制器)控制,或者是专用微机板控制,就我了解到的,已经有用4片64位CPU控制的电梯专用微机板. 3:电梯是一个机/电一体话的大型设备,使用51系列单片机,不好控制. 4:你还要了解变频器的使用以及与控制系统的配合. 5:现在电梯有很多附加功能,如:短电再平层,消防员服务,远程监控等. 总之,用51单片机做的话,很难. 建议你放弃这个毕业设计. 你想要的话,我可以给你一份许继富士电梯几年前的控制程序,大的可能要2M左右. 拿8051为例,达到2M的存储器,你要扩展到8块单片机. I/O扩展就可能要求更多了:基于CAN总线技术,以AT89C51为核心,采用Intel82526及PCA82C250构成的电梯监控系统,通过主控制器与轿厢、门厅控制器间的通信,完成了对电梯的控制,并可进行远程监控。对通讯中出现的冲突采用非破坏性仲裁的方法解决。 关键词:CAN总线;串行通信;电梯 现代社会中,电梯已经成为不可缺少的运输设备。电梯的存在使得每幢高层建筑的交通更为便利。电梯控制技术的发展主要经历了三个阶段:继电器控制阶段,微机控制阶段,现场总线控制阶段。 与其它几种现场总线比较而言,CAN总线是最易实现,价格最为低廉的一种,这也是目前CAN总线在众多领域被广泛采用的原因。CAN总线协议是建立在国际标准组织开放系统互联模型基础上的。作为工业控制的底层网络,CAN总线通波特率可高达1Mbps,最远距离可达l0km;通讯采用短帧结构,使得数据传输的时间短,受干扰的几率低,并且CAN总线协议有良好的检错措施,因此CAN总线通讯的可靠性较高。由于CAN总线的安全性,实时性,简单易操作性和价格低廉,使其十分适合在电梯通讯中应用。目前电梯井道系统中,主要采用并行通讯,上行、下行电缆比较多,现场安装调试比较麻烦。采用CAN总线后,通过串行通信方式,构成控制器局域网,仅用四根线,其中两根为电源线,一根信号发送线,一根信号接收线,实现呼梯、内选及显示信号的通信,并为进一步实现多台电梯群控、远程监控、楼宇自动化提供便利接口。 1系统组成及硬件设计 系统的总体结构 系统基于CAN总线多主结构,以CAN总线控制器82526和总线收发器PCA82C250为主体组成通信控制模块,设计了主控制器、轿厢控制器、门厅控制器。通过串行通信方式构成控制器局域网,实现呼梯、内选及显示信号的通信。但是随着高层建筑的出现和建筑面积的扩大,需要并排设置几台电梯,以完成大楼内的垂直运输任务。为了实现群控,便存在着电梯相互联接的问题,这样就需要有监控微机统一监控调度。这里我们采用485总线实现单台电梯主控制器之间以及与监控微机间的通信。电梯的群控系统结构如图1所示。 图1电梯控群控系统结构图 系统硬件设计 在单台电梯控制系统中,主控制器要完成其它控制器信号的采集,显示信号的输出,电梯运行控制等一系列的功能。而轿厢及门厅控制器只需要将呼叫信号采集,经CAN总线送往主控制器,并接收来自主控制器的显示信号将它输出即可。因此,轿厢、门厅控制器结构大体与主控制器类似且相对简单。 下面以主控制器(如图2所示)为例介绍硬件设计。电梯主控制器CPU采用了AT89C51单片机。AT89C51单片机是与8X51系列单片机兼容的增强型微控制器,其内部集成了4K字节的Flashrom。由于主控制器是电梯控制系统的核心,担负着控制电梯运行的重要任务,所编出的程序较大,因此,它的外部还要扩展外部程序数据存储器,按常规采用2764和6264。 在单台电梯控制系统中,主控制器与轿厢及门厅控制器之间采用CAN总线实现通讯。CAN总线控制器采用INTEL公司82526芯片。PCA82C250作为CAN总线的接口。82526内部采用硬件实现了数据链路层的全部功能,因而这部分的程序只需将82526中的数据读出和将数据写入82526。图3为CPU与CAN、485接口电路部分的外围电路接线原理图。 图3通讯接口电路原理图 在主控制器中,因为需要输入的点数较多,这里我们采用常用的8255作为输入输出接口芯片。考虑到实际调试、修改程序的方便,主控制器中设计了键盘显示电路,这一部分电路的核心采用专供键盘及显示器接口用的可编程接口芯片8279,以扫描方式工作。扫瞄线SL0~SL2经过3-8译码器产生8路扫描信号。另外为了解决外部的干扰引起的问题,在主控制器中要加入Watchdog电路,保证系统发生故障时能及时让系统回到正常工作状态。 2通讯协议 本系统采用标准,该协议最大的优点是废除了传统的站地址编码,因此CAN没有节点地址的概念,代之以对通讯数据块进行编码,支持以数据为中心的通信模式。当电梯层站数不同时,只需要在总线上进行增减控制器的节点数,并对相应的数据帧进行适当的修改。 数据帧 数据帧(如图4所示)包括七个部分:帧起始,仲裁场,控制场,数据场,CRC序列,ACK场,帧结束。仲裁场包括有报文标识符(11位)和远程发送申请位(RTR);控制场由六位组成,后四位为数据长度码,代表数据字节数,这里设为 2;传输信号每帧数据含两个字节,高字节表示具体层楼数,低字节设为控制字。 图4数据帧组成 仲裁 总线空闲时,任意节点都可以发送数据,其它节点都可以接收数据,只需要通过报文滤波即可实现点对点,一点对多点及全局广播等通讯方式,无需专门调度。这里用接收码寄存器,接收码屏蔽寄存器实现报文滤波。 当多个总线控制器同时发送报文时,为避免冲突需进行仲裁,这里采用非破坏性仲裁的方法解决冲突。所谓非破坏性是指这种仲裁方式可以使信息和时间都没有损失,它是借助逐位仲裁帧中的ID号码来实现的。CAN数据帧如前所述仲裁场ID号码唯一的标识一个节点地址,RTR位为0表示该帧为数据帧,为1时表示远程帧,而后者优先权要高于前者。这12位ID号代表报文的优先权高低,数越小优先权越高。 非破坏性仲裁的过程可以用一个例子来说明,如图5,某时刻网络上有三个节点a、b、c同时发送信息,ID标识符的发送顺序为从高位到低位,即由到,每发送1字符网络做一次与运算。比如发送后,网络做运算:0∩1∩0=0,则网络上各节点收到的信息为0。为1的字节发现接收到的与发送的不同,停止发送。这样就使优先级低(ID大)的节点退出发送。如此比较下去,直到全部ID及RTR发送完毕,网络上仅剩节点c继续发送信息,并且无需重发。 3程序设计 图5 CAN的冲突仲裁过程 主控制器程序流程图如图6所示。根据电梯实际运行的要求,主控制器须通过与轿厢及门厅控制期间的通讯,来实现对轿厢和门厅呼梯信号的采集,完成对电梯运行方向、当前层楼数的判断、显示和中途停车等的控制。同时电梯在运行过程中,主控制器还要对井道中各种开关量限位信号进行采集分析,以实现对电梯的准确控制。在系统调试时,主控制器还应能与PC机实现通讯以方便系统的实时控制。因此,主控制器的程序设计应当充分考虑到上述功能的有机结合。 图6主控制器程序流程图 轿厢、门厅控制器的程序流程框图如图7所示。它们所要完成的功能比较简单即采集呼梯信号发送到主控制器,接收来自主控制器的显示信号并将它们输出。 图7轿厢、门厅控制器程序流程框图 停车控制子程序主要负责电梯停车及轿厢开关门控制。首先,程序输出停车控制字。然后,使电梯开门。接着判断光幕信号是否被截断。若是,则等待,没有被截断的话,再判断此时电梯是否超重,若超重则报警等待,没有则继续判断是否有关门信号,有则电梯关门。没有则延时一段时间后,自动关门,返回主程序。程序流程框图如图8所示。 图8停车子程序流程框图 4结束语 基于CAN总线技术,以AT89C51为核心,采用82526结合PCA820250芯片构成的电梯监控系统在实际应用中,主控制器通过CAN总线收发器借助CAN总线完成与其他主控制器的数据通讯。经在两台8层电梯上实地使用,与代用PLC控制系统相比,故障停梯时间大大缩短,可靠性明显提高,调试和增减内容均比较方便,达到了预期效果。
电梯向下滑梯有两种情况:一种是电梯的一种保护功能。当电梯在运行中检测到某处电流有异常(电梯突然断电,某处接触不良,电网电压不稳定等)时,电梯会在一个突然的停顿后开始以一个均匀的速度进行初始化校正运行,一直运行到最底层,即-1层。此时电梯的运行速度是匀速的,可控的,没有任何的危险;一种是电梯的失控下滑,会在电梯下滑几个楼层后被检测装置检测到,然后强制停止。此时电梯的速度较高,但是不会超过电梯的最大速度,停止时是瞬时停止,所以感觉震动较大,但由于速度检测装置的原因,其速度不会过高,所以也不会有安全事故的发生。我大厦前期曾发生过一次下滑的现象,经检查是由于工程施工方私自在钢丝绳上涂抹黄油,导致电梯钢丝绳摩擦力不够,电梯打滑造成;还有几次电梯“下滑”到-1层的现象,属于电梯的保护功能,经检查是由于电梯底坑进水,导致底坑电器元件短路造成。以上问题均已处理
电梯常见故障,门关不紧的原因之一
一、机械系统的故障 (一)机械系统常见故障现象和原因有下列几类 1、由于润滑不良或润滑系统故障,造成部件的转动部位严重发热磨损或抱轴,导致滚动或滑动部位的零部件毁坏。 2、由于电梯频繁使用,某些零部件发生磨损、老化,保养不到位,未能及时更换或修复已磨损的部件,造成损坏进一步的扩大,迫使电梯停机。 3、电梯运行过程中由于震动引起某些紧固螺丝松动或松脱,使某些部件尤其运动部件工作不正常造成电梯损坏。 4、由于电梯平衡系数失调,或严重超载造成轿厢大的抖动或平层准确度差,电梯速度失控,甚至冲顶或礅底、引起限速器--安全钳联动,电梯停机。 (二)电梯机械系统发生故障时,维修工应向电梯司机、管理员或乘客了解出现故障时的情况和现象。如果电梯仍可运行,可让司机/管理员采用点动方式让电梯上、下运行,维修工通过耳听、手摸、测量等方式分析判断故障点。 (三)故障发生点确定后,按有关技术规范的要求,仔细进行拆卸、清洗、检查测量,通过检查确定造成故障的原因,并根据机件的磨损和损坏程度进行修复或更换。 (四)电梯机件经修复或更换后,投入运行前需经认真检查和调试后,才可交付使用。 二、电气控制系统的故障和修理 (一)电气控制系统常见故障 1、从电梯电气故障发生的范围看,最常见的是门机系统故障和电器组件接触不良引起的。造成门机系统和电器组件故障多的原因,主要有元器件的质量、安装调试的质量、维护保养质量等。 2、从电气故障的性质看,主要是短路和断路两类。 短路就是由于某种原因,是不该接通的回路连通或接通后线路内电阻很小。电梯常见短路故障原因有方向接触器或继电器的机械和电子连锁失效,可能产生接触器或 继电器抢动作而造成短路;接触器的主接点接通或断开时,产生的电弧使周围的介质电器组件的介质被击穿而短路;电器组件的绝缘材料老化、失效、受潮造成短 路;由于外界原因造成电器组件的绝缘破坏以及外材料入侵造成短路。 断路就是由于某种原因,造成应连通的回路不通。引起断路的原因主要有电器组件引入引出线松动;回路中作为连接点的焊接虚焊或接触不良;继电器或接触器的接 点被电弧烧毁;接点表面由氧化层;接点的簧片被接通或断开时产生的电弧加热,冷却后失去弹力,造成接点的接触压力不够;继电器或接触器吸合或断开时由于抖 动使触点接触不良等 (二)电气控制系统故障的判断和排除 判断电气控制系统故障的根据就是电梯控制原理。因此要迅速排除故障必须掌握地区控制系统的电路原理图,搞清楚电梯从定向、起动、加速、满速运行、到站预 报、换速、平层、开关门等全过程各环节的工作原理,各电器组件之间相互控制关系、各电器组件、继电器/接触器及其触点的作用等。 再判断电梯电气控制故障之前,必须彻底了解故障现象,才能根据电路图合故障现象,迅速准确地分析判断故障的原因并找到故障点。
电梯的常见故障及其分析 电梯使用一段时期以后,常会出现一些故障。出现的故障并不一定就是机器零件有磨损或电气元件型号较老所引起的,故障的原因是多种多样的,作为维护保养人员应根据电梯出现的故障准确判别属于哪一种类别,然后着手解决。 一、电梯故障的类别: 1.设计、制造、安装故障 一般来说,新产品的设计、制造和安装都有一个逐步完善的过程。当电梯发生故障以后,维护人员应找出故障所在部位然后分析故障产生的原因。如果是由于设计、制造、安装等方面所引起的缺陷,此时维护保养人员不要妄动盲目拆卸修理,必须尽快与制造厂家或安装维修单位取得联系如实反应故障原因,由其制造厂家技术人员和安装单位技术人员共同解决 。 2.操作故障 操作故障一般是由于使用者野蛮操作引起的,在正常运行情况下随意开启层、轿门,这种不文明的行为必然造成电梯发生故障,还有如维修工违章操作随意短接门联锁或安全回路,制动器调整不当使电梯带故障运行,随时都可能危及生命安全或财产安全。 3.零部件损坏故障 这一类故障现象是电梯运行中较常见的也是最多的,如机械部分传动装置相互受力或摩擦造成间隙过大或位移引起的故障。电气部分的接触器、继电器触点烧灼引起粘连或氧化造成接触不良引起的故障,电器元件老化等。我们必须尽量避免由于电梯故障而引起的对人的伤害,除此之外,还必须避免由此而引起电梯经常停止运行降低输送能力等。因此,严格遵守电梯安全操作规程,维护保养人员平时仔细地做好检查工作,维护保养三个要素就是清洁、调整、润滑是保证电梯安全、高效运行的重要措施。 二、电梯常见故障及分析 以上我们讲了电梯故障的三种类型,下面就典型常见的故障加以分析,供参考。 1-1电梯机械部分常见故障分析