近日,南方 科技 大学电子与电气工程系教授陈锐研究团队针对深能级缺陷对钙钛矿结构的稳定性,通过原子层沉积技术(ALD)将钙钛矿微晶包裹在致密的Al2O3膜中,发现钙钛矿微晶在高温下分解的可挥发性气体能被保留在这密封的微环境中。有趣的是,在样品的温度冷却过程中,分解的挥发性气体在应力和氢键引力的作用下重新合成,结构发生了重结晶的现象。通过激光光谱学的手段进行表征,发现大部分深能级缺陷(Deep level trap states,DLTS)被有效消除,晶体结构得到修复,发光性质与其激射稳定性得到较大的增强。相关研究成果以“Self-Structural Healing of Encapsulated Perovskite Microcrystals for Improved Optical and Thermal Stability”为题,以封面论文形式在国际著名学术期刊 Advanced Materials 发表。 钙钛矿材料具有优异的电学和光学性能,在光电器件领域中具有广泛的应用前景。近十几年来,钙钛矿材料与器件的研究迅速开展,器件的性能也得到了很大的提高。随着研究的深入,人们意识到钙钛矿结构稳定性较差,对其光电器件性能的进一步提高及实际应用上造成了一定的影响。因此,提升钙钛矿基光电器件的性能,先要解决钙钛矿结构稳定性差的问题,其中包覆是最为有效且简单的方式。团队最新的研究发现,钙钛矿结构中深能级缺陷的种类和密度对其结构的稳定性影响较大。团队人员利用致密的Al2O3膜层包裹MAPbBr3微晶,形成一个类真空的微环境。当样品温度高于其升华温度(150 ),材料结构会发生分解形成可挥发的CH3NH2和HBr气体。 由于Al2O3膜层的致密性,分解的气体被有效限制,而当样品温度恢复到室温后,发生了晶体结构的自修复,钙钛矿结构中的大部分深能级缺陷被消除,发光性能得到了增强。实验中研究了样品在强光照射下的稳定性和环境稳定性,并对以此微晶为原型的微型激光器的稳定性做出了研究。发现强光照10h后,经过处理的样品发光强度最大增强了14倍,激光性能稳定性可以维持长达2年。这项研究的开展为提升钙钛矿稳定性和器件性能提供了思路,可以拓展到其他的钙钛矿材料体系中,为推进钙钛矿基光电器件的实际应用做出了贡献。 论文第一作者为课题组博士后李如雪(已出站,现为广西 科技 大学电气与信息工程学院副教授),共同第一作者是深圳技术大学新材料与新能源学院副研究员李波波和长春理工大学副研究员方铉。课题组内的研究生时月晴、刘秀也参与了这项工作。这项研究的共同通讯作者为长春理工大学高功率半导体激光国家重点实验室教授魏志鹏。南科大为论文第一单位。 文章链接: 封面链接:
全无机钙钛矿(CsPbX3,X=Cl,Br,I)纳米棒(NRs)不仅保留了其固有的优点,如高的光致发光量子产率和宽波长可调性,而且还具有优异的光物理性质,包括其极强的多光子吸收(MPA)。然而,CsPbX3-NRs的光谱动力学和MPA特性还没有得到充分的研究。
近期,来自深圳大学的研究者报道了CsPb()3,CsPbr3和CsPb()3NRs的飞秒光谱动力学特性,包括它们对热载流子冷却、双激子寿命和双激子结合能的影响。有趣的是,虽然这三种钙钛矿型NRs的直径和长度相似,但它们的非线性光学性质却有显著差异,其中CsPb()3的MPA截面最大。此外,还研究了CsPb()3和CsPbBr3-NRs的多光子激发受激发射。 这项工作表明CsPbX3(X=Cl,Br,I)NRs是 探索 其在不同光电器件中应用的理想候选材料 。相关论文题目以“Spectral Dynamics and Multiphoton Absorption Properties of All-Inorganic Perovskite Nanorods”发表在The Journal of Physical Chemistry Letters 期刊上。
论文链接:
此外,据报道,与立方晶体相比半导体可以强的一维量子限制作用,可以更有效地放大其多光子吸收(MPA)。据报道,使用CsPbBr3 NRs作为激发介质的激发,没有针对多光子激发的工作,与单光子激发相比,它在生物成像应用中可以提供更大的穿透深度和更高的空间分辨率。在研究多光子激发之前,必须先考虑钙钛矿的形状或/和组成对其MPA的影响。尽管以前的文献已经证明了具有立方和二维几何形状的不同钙钛矿型的MPA特性取得了显着进步,但仍缺乏对一维NR对应物的相关研究,必须加以解决。深入了解半导体中典型载流子动力学过程的起源,影响因素和寿命,包括辐射跃迁和非辐射跃迁,对于拓宽它们的相关应用至关重要。
图1。描述(a)CsPb()3NRs,(b)CsPbr3 NRs和(c)CsPb()3NRs原子分辨率的TEM图像。(d)CsPb()3NRs,(e)CsPbr3 NRs和(f)CsPb()3NRs的HR-TEM图像。
图2。(a)CsPb()3,(b)CsPbr3和(c)CsPb()3NRs在350 nm激发下的早期延时二维fs-TA光谱。(d)CsPb()3、(e)CsPbr3和(f) CsPb()3NRs的载体冷却工艺。通过对早期ps时间尺度上光谱演化数据提取的GSB进行拟合,得到了相应的冷却时间值。
图3。(a)CsPb()3,(b)CsPbr3和(c)CsPb()3NRs固体薄膜在400 nm激发下的泵浦强度依赖的PL光谱。插图显示了光致发光强度与泵浦强度和发射图像的关系图。(d)CsPb()3,(e)CsPbr3和(f)CsPb()3NRs固体薄膜在800nm激发下的光致发光谱。插图显示PL强度图与泵浦光强度和发射图像的对比。
(文:爱新觉罗星)
物理学作为研究其他自然科学不可缺少的基础,其长期发展形成的科学研究 方法 已广泛应用到各学科当中。下面是我为大家整理的物理学博士论文,供大家参考。
《 物理学在科技创新中的效用 》
摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.
关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理
1引言
物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照 教育 部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程 报告 论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.
2物理学是科技创新的源泉
且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=×10-31kg,电子荷电e=×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.
1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现 笔记本 电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.
20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.
1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.
2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].
2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.
3结语
论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.
参考文献:
〔1〕祝之光.物理学[M].北京:高等教育出版社,.
〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,.
〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.
〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)
〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.
〔6〕姚启钧,光学教程[M].北京;高等教育出版社,.
〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,.
〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,.
《 应用物理学专业光伏技术培养方案研究 》
一、开设半导体材料及光伏技术方向的必要性
由于我校已经有材料与化学工程学院,开设了高分子、化工类材料、金属材料等专业,应用物理、物理学专业的方向就只有往半导体材料及光伏技术方向靠,而半导体材料及光伏技术与物理联系十分紧密。因此,我们物理系开设半导体材料及光伏技术有得天独厚的优势。首先,半导体材料的形成原理、制备、检测手段都与物理有关;其次,光伏技术中的光伏现象本身就是一种物理现象,所以只有懂物理的人,才能将物理知识与这些材料的产生、运行机制完美地联系起来,进而有利于新材料以及新的太阳能电池的研发。从半导体材料与光伏产业的产业链条来看,硅原料的生产、硅棒和硅片生产、太阳能电池制造、组件封装、光伏发电系统的运行等,这些过程都包含物理现象和知识。如果从事这个职业的人懂得这些现象,就能够清晰地把握这些知识,将对行业的发展起到很大的推动作用。综上所述,不仅可以在我校的应用物理学专业开设半导体材料及光伏技术方向,而且应该把它发展为我校应用物理专业的特色方向。
二、专业培养方案的改革与实施
(一)应用物理学专业培养方案改革过程
我校从2004年开始招收应用物理学专业学生,当时只是粗略地分为光电子方向和传感器方向,而课程的设置大都和一般高校应用物理学专业的设置一样,只是增设了一些光电子、传感器以及控制方面的课程,完全没有自己的特色。随着对学科的深入研究,周边高校的互访调研以及自贡和乐山相继成为国家级新材料基地,我们逐步意识到半导体材料及光伏技术应该是一个应用物理学专业的可持续发展的方向。结合我校的实际情况,我们从2008年开始修订专业培养方案,用半导体材料及光伏技术方向取代传感器方向,成为应用物理学专业方向之一。在此基础上不断修改,逐步形成了我校现有的应用物理专业的培养方案。我们的培养目标:学生具有较扎实的物理学基础和相关应用领域的专业知识;并得到相关领域应用研究和技术开发的初步训练;具备较强的知识更新能力和较广泛的科学技术适应能力,使其成为具有能在应用物理学科、交叉学科以及相关科学技术领域从事应用研究、教学、新技术开发及管理工作的能力,具有时代精神及实践能力、创新意识和适应能力的高素质复合型应用人才。为了实现这一培养目标,我们在通识教育平台、学科基础教育平台、专业教育平台都分别设有这方面的课程,另外还在实践教育平台也逐步安排这方面的课程。
(二)专业培养方案的实施
为了实施新的培养方案,我们从几个方面来入手。首先,在师资队伍建设上。一方面,我们引入学过材料或凝聚态物理的博士,他们在半导体材料及光伏技术方面都有自己独到的见解;另一方面,从已有的教师队伍中选出部分教师去高校或相关的工厂、公司进行短期的进修培训,使大家对半导体材料及光伏技术有较深的认识,为这方面的教学打下基础。其次,在教学改革方面。一方面,在课程设置上,我们准备把物理类的课程进行重新整合,将关系紧密的课程合成一门。另一方面,我们将应用物理学专业的两个方向有机地结合起来,在光电子技术方向的专业课程设置中,我们有意识地开设了一些课程,让半导体材料及光伏技术方向的学生能够去选修这些课程,让他们能够对光伏产业的生产、检测、装备有更全面的认识。最后,在实践方面。依据学校资源共享的原则,在材料与化学工程学院开设材料科学实验和材料专业实验课程,使学生对材料的生产、检测手段有比较全面的认识,并开设材料科学课程设计,让学生能够把理论知识与实践联系起来,为以后在工作岗位上更好地工作打下坚实的基础。
三、 总结
半导体材料及光伏行业是我国大力发展的新兴行业,受到国家和各省市的大力扶持,符合国家节能环保的主旋律,发展前景十分看好。由于我们国家缺乏这方面的高端人才和行业指挥人,在这个行业还没有话语权。我们的产品大都是初级产品或者是行业的上游产品,没有进行深加工。目前行业正处在发展的困难时期,但也正好为行业的后续发展提供调整。只要我们能够提高技术水平和产品质量,并积极拓展国内市场,这个行业一定会有美好的前景。要提高技术水平和产品质量,就需要有这方面的技术人才,而高校作为人才培养的主要基地,有责任肩负起这个重任。由于相关人才培养还没有形成系统模式,这就更需要高校和企业紧密联系,共同努力,为半导体材料及光伏产业的人才培养探索出一条可持续发展的光明大道,也为我国的新能源产业发展做出自己的贡献。
有关物理学博士论文推荐:
1. 有关物理学论文
2. 物理学论文范文
3. 物理学论文
4. 物理学教学专业毕业论文
5. 物理学实验本科毕业论文
6. 物理学本科毕业论文
全无机钙钛矿(CsPbX3,X=Cl,Br,I)纳米棒(NRs)不仅保留了其固有的优点,如高的光致发光量子产率和宽波长可调性,而且还具有优异的光物理性质,包括其极强的多光子吸收(MPA)。然而,CsPbX3-NRs的光谱动力学和MPA特性还没有得到充分的研究。
近期,来自深圳大学的研究者报道了CsPb()3,CsPbr3和CsPb()3NRs的飞秒光谱动力学特性,包括它们对热载流子冷却、双激子寿命和双激子结合能的影响。有趣的是,虽然这三种钙钛矿型NRs的直径和长度相似,但它们的非线性光学性质却有显著差异,其中CsPb()3的MPA截面最大。此外,还研究了CsPb()3和CsPbBr3-NRs的多光子激发受激发射。 这项工作表明CsPbX3(X=Cl,Br,I)NRs是 探索 其在不同光电器件中应用的理想候选材料 。相关论文题目以“Spectral Dynamics and Multiphoton Absorption Properties of All-Inorganic Perovskite Nanorods”发表在The Journal of Physical Chemistry Letters 期刊上。
论文链接:
此外,据报道,与立方晶体相比半导体可以强的一维量子限制作用,可以更有效地放大其多光子吸收(MPA)。据报道,使用CsPbBr3 NRs作为激发介质的激发,没有针对多光子激发的工作,与单光子激发相比,它在生物成像应用中可以提供更大的穿透深度和更高的空间分辨率。在研究多光子激发之前,必须先考虑钙钛矿的形状或/和组成对其MPA的影响。尽管以前的文献已经证明了具有立方和二维几何形状的不同钙钛矿型的MPA特性取得了显着进步,但仍缺乏对一维NR对应物的相关研究,必须加以解决。深入了解半导体中典型载流子动力学过程的起源,影响因素和寿命,包括辐射跃迁和非辐射跃迁,对于拓宽它们的相关应用至关重要。
图1。描述(a)CsPb()3NRs,(b)CsPbr3 NRs和(c)CsPb()3NRs原子分辨率的TEM图像。(d)CsPb()3NRs,(e)CsPbr3 NRs和(f)CsPb()3NRs的HR-TEM图像。
图2。(a)CsPb()3,(b)CsPbr3和(c)CsPb()3NRs在350 nm激发下的早期延时二维fs-TA光谱。(d)CsPb()3、(e)CsPbr3和(f) CsPb()3NRs的载体冷却工艺。通过对早期ps时间尺度上光谱演化数据提取的GSB进行拟合,得到了相应的冷却时间值。
图3。(a)CsPb()3,(b)CsPbr3和(c)CsPb()3NRs固体薄膜在400 nm激发下的泵浦强度依赖的PL光谱。插图显示了光致发光强度与泵浦强度和发射图像的关系图。(d)CsPb()3,(e)CsPbr3和(f)CsPb()3NRs固体薄膜在800nm激发下的光致发光谱。插图显示PL强度图与泵浦光强度和发射图像的对比。
(文:爱新觉罗星)
导读
背景
1839年,德国矿物学家古斯塔夫·罗斯(Gustav Rose)站在俄罗斯中部的乌拉尔山脉上,拾起一块以前从未被发现的矿物。
那时,他并没有听说过“晶体管”或“二极管”,也没想到电子器件会成为我们日常生活的一部分。更出乎他意料的是,他手中的这块被他以俄罗斯地质学家 Lev Perovski 的名字命名为“钙钛矿(perovskite)”的这块矿石,会成为彻底变革电子器件的关键因素之一。
钙钛矿如此重要的地位,离不开它特殊的结构。钙钛矿材料结构式一般为ABX3,其中A为有机阳离子, B为金属离子, X为卤素基团。该结构中, 金属B原子位于立方晶胞体心处, 卤素X原子位于立方体面心, 有机阳离子A位于立方体顶点位置。
钙钛矿结构稳定,有利于缺陷的扩散迁移,具备许多特殊的物理化学特性,例如电催化性、吸光性等。
过去十年,钙钛矿因为制造起来更便宜、更绿色,效率可与硅太阳能电池相媲美,逐渐成为硅太阳能电池的替代品。
然而,钙钛矿仍会表现出明显的性能损耗以及不稳定性。迄今为止,大多数的研究集中在消除这些损耗的方法,然而真正的物理原因仍然是未知的。
创新
近日,在一篇发表在《自然(Nature)》期刊上的论文中,来自剑桥大学化学工程与生物技术系以及卡文迪许实验室 Sam Stranks 博士的研究小组,以及日本冲绳科学技术大学院大学 Keshav Dani 教授的飞秒光谱学单位的研究人员们,找到了问题的根源。他们的发现,将使得提升钙钛矿的效率变得更容易,从而使它们离大规模量产更近。
技术
当光线照射钙钛矿太阳能电池时,或者当电流通过钙钛矿LED时,电子被激发,跳跃到更高的能态。带负电荷的电子留下了空白,也称为“空穴”,它带正电荷。受激发的电子与空穴都可以通过钙钛矿材料,因此可成为载流子。
但是,在钙钛矿中会产生一种称为“深阱”的特定类型缺陷,带电的载流子会陷入其中。这些被困的电子与空穴重新结合,它们的能量以热量形式丧失,而不是转化为有用电力或者光线,这样就会显著降低太阳能面板和LED的效率以及稳定性。
迄今为止,我们对于这些陷阱知道得很少,部分原因是,它们似乎与传统太阳能电池材料中的陷阱表现得大相径庭。
2015年,Stranks 博士的研究小组发表了一篇研究钙钛矿发光的《科学(Science)》期刊论文,这篇论文揭示了钙钛矿在吸收光线或者发射光线方面有多擅长。Stranks 博士表示:“我们发现,这种材料非常不均匀;相当大的区域是明亮且发光的,而其他的区域则非常黑暗。这些黑暗区域与太阳能电池或者LED中的能量损耗相关。但是,引起这种能量损耗的原因一直是个谜,特别是由于钙钛矿在其他方面非常耐缺陷。”
由于标准成像技术的限制,研究小组无法说明黑暗区域是由一个大的陷阱位引起的,还是由众多小的陷阱位引起的,从而难以确定它们为什么只是在特定区域形成。
后来在2017年,Dani 教授在 OIST 的研究小组在《自然纳米技术(Nature Nanotechnology)》期刊上发表了一篇论文,在论文中他们制作了一个有关电子吸收光线后在半导体中如何表现的影片。Dani 教授表示:“在材料或者器件被照射光线之后,如果你可以观察到电荷是如何在其中移动的,那么你将从中学会很多。例如,你可以观察到电荷会落入陷阱。然而,因为电荷移动得非常快,以一千万亿分之一秒的时间尺度来衡量;并且穿越非常短的距离,以十亿分之一米的长度尺度来衡量;所以这些电荷难以进行可视化观测。”
在了解到 Dani 教授的工作之后,Stranks 博士伸出援手,看看他们是否可以一起合作应对这个问题,对钙钛矿中的黑暗区域进行可视化观测。
OIST 的团队首次对钙钛矿使用了一项称为“光激发电子显微镜(PEEM)”的技术。他们用紫外光探测材料,并用发射的电子形成一幅图像。
观察材料时,他们发现含有陷阱的黑暗区域,长度大约是10到100纳米,由较小的原子尺寸陷阱位聚集而成。这些陷阱簇在钙钛矿材料中分布不均,从而解释了 Stranks 较早的研究中观察到的非均匀发光。
有趣的是,当研究人员将陷阱位的图像覆盖到显示钙钛矿材料晶粒的图像上时,他们发现陷阱簇仅在特定的地方形成,即某些晶粒之间的边界上。
为了理解这种现象为什么只发生在特定晶粒的边界上,研究人员小组与剑桥大学材料科学与冶金系教授 Paul Midgley 的团队合作,他采用了一项称为“扫描电子衍射”的技术,创造出了钙钛矿晶体结构的详细图像。Midgley 教授的团队利用了位于金刚石光源同步加速器 ePSIC 设施中的电子显微镜装置,该设施拥有用于成像像钙钛矿这样的光束敏感材料的专用设备。
Stranks 研究小组的博士生、这项研究的共同领导作者 Tiarnan Doherty 表示:“因为这些材料是超级光束敏感的,你在这些长度尺度上用来探测局部晶体结构的一般技术,实际上会相当快地改变你正在观察的材料。取而代之的是,我们可以用非常低的照射剂量,从而防止损伤。”
“我们从 OIST 的工作中知道了陷阱簇的位置,并且我们在 ePSIC 围绕着同一块区域扫描,以观察局部结构。我们能够快速地查明晶体结构中陷阱位附近的意外变化。”
研究小组发现,陷阱簇只在材料中具有轻微扭曲结构的区域与具有原始结构的区域的结合处形成。
Stranks 博士表示:“在钙钛矿中,我们拥有这些规则的马赛克晶粒材料,这些晶粒大多数都是又好又崭新的,这是我们所希望的结构。但是,每隔一段时间,你就会得到一个稍微形变的晶粒,这个晶粒的化学成分是不均匀的。真正有意思的,也是一开始让我们困惑的,就是形变的晶粒并没有成为陷阱,而是这个晶粒遇到原始晶粒的地方;陷阱是在那个结合处形成的。”
通过对于陷阱本性的理解,OIST 的团队也采用了定制的 PEEM 仪器来可视化观测钙钛矿材料中载流子落入陷阱的动态过程。Dani 研究小组的博士生、这项研究的共同领导作者 Andrew Winchester 解释道:“这是可能的,因为 PEEM 的特征之一就是,可对超高速的过程进行成像,短至飞秒。我们发现,陷落的过程受到扩散到陷阱簇的载流子的控制。”
价值
这些发现代表了为了把钙钛矿带向太阳能市场所取得的一项重要突破。
Stranks 博士表示:“我们仍然无法准确地知道,为什么陷阱聚集在那里,但是我们现在知道它们确实在那里形成,并且只有那里。这非常令人振奋,因为这意味着我们现在可以知道如何有针对性地提升钙钛矿的性能。我们需要针对这些非均匀相,或者以某种方式去除这些结合处。”
Dani 教授表示:“载流子必须首先扩散到陷阱,这一事实也为改善这些器件提出了其他方案。也许,我们可以改变或者控制这些陷阱簇的排列,而无需改变它们的平均数,这样一来,载流子就不太可能到达这些缺陷部位。”
团队的研究集中在一种特殊的钙钛矿结构。科学家们也将研究这些陷阱簇是否在所有的钙钛矿材料中都是普遍存在的。
Stranks 博士表示:“器件性能的大部分进展都是经过反复试错的,然而目前为止,这一直是一个低效率的过程。迄今为止,这个过程还没有真正被‘理解特定原因以及系统性针对该原因’所驱动。它是这方面最重要的突破之一,将帮助我们采用基础科学来设计更高效的器件。”
关键字
参考资料
【1】Liu, ., Johnston, . and Snaith, . (2013) Efficient Planar Heterojunction Perovskite Solar Cells by vaPour Deposition. Nature, 501, 395-398.
【2】Tiarnan A. S. Doherty, Andrew J. Winchester, Stuart Macpherson, Duncan N. Johnstone, Vivek Pareek, Elizabeth M. Tennyson, Sofiia Kosar, Felix U. Kosasih, Miguel Anaya, Mojtaba Abdi-Jalebi, Zahra Andaji-Garmaroudi, E Laine Wong, Julien Madéo, Yu-Hsien Chiang, Ji-Sang Park, Young-Kwang Jung, Christopher E. Petoukhoff, Giorgio Divitini, Michael K. L. Man, Caterina Ducati, Aron Walsh, Paul A. Midgley, Keshav M. Dani, Samuel D. Stranks. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites . Nature, 2020; 580 (7803): 360 DOI:
【3】
若是提到新一代神奇材料,或许大家一开始都会想到石墨烯,但除此之外,也有不少材料正在暗中发光发热。最近澳洲科学家便通过结构与石墨烯类似的磷烯(phosphorene),成功将钙钛矿太阳能转换效率提升2到3%。
石墨烯有诸多优良的性能,像是无比坚硬、导电速度快等都是备受科学家关注的原因,但它并不是个天然的半导体,通常半导体材料可利用能隙来控制电流,但石墨烯却没有能隙,虽然电流传导速度较快,但难以控制电流。
而磷烯是实实在在的半导体材料,能通过能隙来控制电流开关,导电性则跟石墨烯一样,比现在使用的硅材料要快上数十甚至数百倍,因此澳洲福林德斯大学与昆士兰大学等团队便看好磷烯特性,认为它可以帮助钙钛矿太阳能一臂之力。
其中磷烯是由层状黑磷块材剥离而成,随着减少层数,发光的范围可从中红外到可见光,因此如何从黑磷单层磷烯是团队首要挑战,福林德斯大学科学与工程学院博士Christopher Gibson表示,团队已经找出全新方法来剥离磷烯,这将有助于生产更高效与便宜的太阳能电池。
(Source:福林德斯大学)
在该实验中,团队通过南澳大学研制的涡流设备(Vortex Fluidic Device,VFD)的快速剪应力(shear stress),成功剥离出纳米厚的磷烯纳米层片。Gibson指出,在钙钛矿太阳能电池添入磷烯后,转换效率也提高2%到3%。
根据团队在《Small Methods》的论文,新型剪应力剥离方法在较短的时间内,就能产生出结晶质高、原子级厚度较薄的磷烯纳米片。之后团队把磷烯纳米片当作电子传输层材料(ETM)后,转换效率也成功从提升到,最高则达到,效率已经可与高温制作法匹敌。
若能进一步提高钙钛矿太阳能的转换效率,将能加速其商业化进展,指导教授Joseph Shapter表示,晶体硅太阳能是目前最常见的太阳光电技术,但我们需要耗费许多电力与能源来制造电池,相较之下钙钛矿电池持久性较高。
也因为钙钛矿太阳能具有材料成本低、建造成本低等优点,大规模商业化后,最终也能降低太阳能整体成本,进而提高再生能源的普及率。
您是想问手性钙钛矿相比于非手性的优点有哪些吗?手性钙钛矿相比于非手性的优点有:根据查询物理网得知,1、材料用量少,因其光吸收能力强,材料的用量非常低。2、对制造工艺要求不高,且工艺简单,产业链缩短。3、光电转化效率高。钙钛矿材料吸收的光子转换成电子后,由于其载流子具有较长的扩散距离,远大于钙钛矿薄膜厚度,很容易被电极收集、损耗较小。而非手性钙钛矿不具备上述优点。所以以上就是手性钙钛矿相比于非手性的优点。
化学化工环境1. 喜树发根培养及培养基中次生代谢产物的研究2. 虾下脚料制备多功能叶面肥的研究3. 缩合型有机硅电子灌封材料交联体系研究4. 棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究5. 酶法双甘酯的制备6. 硅酸锆的提纯毕业论文7. 腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究8. 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究9. 铝合金阳极氧化及封闭处理10. 贝氏体白口耐磨铸铁磨球的研究11. 80KW等离子喷涂设备的调试与工艺试验12. 2800NM3/h高温旋风除尘器开发设计13. 玻纤增强材料注塑成型工艺特点的研究14. 年处理30万吨铜选矿厂设计15. 年处理60万吨铁选厂毕业设计16. 广东省韶关市大宝山铜铁矿井下开采设计17. 日处理1750吨铅锌选矿厂设计18. 6000t/a聚氯乙烯乙炔工段初步工艺设计19. 年产50万吨焦炉鼓冷工段工艺设计20. 年产25万吨合成氨铜洗工段工艺设计21. PX装置异构化单元反应器进行自动控制系统设计22. PX装置异构化单元脱庚烷塔自动控制系统设计23. 金属纳米催化剂的制备及其对环己烷氧化性能的影响24. 高温高压条件下浆态鼓泡床气液传质特性的研究25. 新型纳米电子材料的特性、发展及应用26. 发达国家安全生产监督管理体制的研究27. 工伤保险与事故预防28. 氯气生产与储存过程中危险性分析及其预防29. 无公害农产品的发展与检测30. 环氧乙烷工业设计31. 年产 21000吨 乙醇 水精 馏装置 工艺设计32. 年产26000吨乙醇精馏装置设计33. 高层大厦首层至屋面消防给水工程设计34. 某市航空发动机组试车车间噪声控制设计35. 一株源于厌氧除磷反应器NL菌的鉴定及活性研究36. 一株新的短程反硝化聚磷菌的鉴定及活性研究37. 广州地区酸雨特征及其与气象条件的关系38. 超声协同硝酸提取城市污泥重金属的研究39. 脱氨剂和铁碳法处理稀土废水氨氮的研究40. 稀土 超磁致 伸缩 材料 扬声器 研制41. 纳米氧化铋的发展42. 海泡石TiO2光敏催化剂的制备及其研究43. 超磁致伸缩复合材料的制备44. 钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文45. APCVD法在硅基板上制备硅化钛纳米线46. 浅层地热能在热水系统中的利用初探及其工程设计47. 输配管网的软件开发
[纳米]是英文Nanometer的译名,还有一种说法是[纳米]一词源自于拉丁文[NANO],意思是[微小];由纳米材料组成的物质,是看不到、摸不着的细微物质。纳米是一种长度单位;1纳米为百万分之一公厘,也就是十亿分之一公尺(米),相当于4个原子的直径,是10个氢原子并排起来的长度。我们常常用[细如发丝]来形容纤细的东西。其实人的头发一般直径为20至50微米,而纳米只有1微米的一千分之一!纳米结构同产个是指存在100纳米以下的微小结构。如果用实物来比较:10纳米相当于一根头发丝的百分之一;一个典型的病毒大约有100纳米长。 1公分(厘米:centimeter)= 10公厘(millimeter) 1公厘(毫米:millimeter) = 10000 微米(micrometer) 1微米(micrometer)= 1000纳米(nanometer) 1984年,德国科学家格莱特把细微的肉眼看不见的超细颗粒的金属用一种特殊方法压制成一个小金属块,结果发现这块金属从性质到结构都发生了巨大的变化,使它的应用领域得到巨大的拓展。从此翻开了纳米技术的宏篇巨著,展现了纳米产业的广阔前景
个人简介: Edward H. Sargent,加拿大多伦多大学副校长、加拿大皇家科学院院士、加拿大工程院院士,是多伦多大学电子与计算机工程系教授。他是加拿大纳米技术领域的首席科学家,是胶体量子点光探测领域的开拓者,也是量子点PN结太阳能电池的发明者和光电转换效率的世界纪录的保持者,并通过所领导团队的努力,每年都在刷新纪录。迄今为止,已在Nature和Science等国际顶级期刊发表论文多篇团队已经发表超过300篇论文,论文被引用超过20000次,H因子72。
团队合照
接下来,我列举了Edward H. Sargent教授近期发表在Nature/Science系列期刊的工作!希望借此机会向大佬学习一下!
通过将二氧化碳电化学还原为化学原料,如乙烯,可同时达到二氧化碳减排和生产可再生能源的目的,目前,Cu是CO2RR的主要电催化剂。然而,迄今为止所达到的能源效率和生产率(目前的密度)仍然低于以工业生产乙烯所需的值。
鉴于此,卡内基梅隆大学的Zachary Ulissi、多伦多大学的Edward H. Sargent等人通过密度泛函理论计算结合主动机器学习来识别,描述了Cu-Al电催化剂能有效地将二氧化碳还原为乙烯,具有迄今为止所报道的最高的法拉第效率。与纯铜相比,在电流密度为400mA/cm2下Cu-Al电催化剂的法拉第效率超过了80%,以及在150mA/cm2下,在其阴极乙烯的能量转换效率则达到了~55%。理论计算表明,铜铝合金具有多个活性位点、表面定向和最佳CO结合能,有利于高效的、高选择性地还原CO2。
此外,原位X射线吸收光谱表明,铜和铝能够形成良好的铜配位环境,从而增强C-C二聚作用。这些发现说明了计算和机器学习在指导多金属系统的实验 探索 方面的价值,这些系统超越了传统的单金属电催化剂的局限性。
Accelerated discovery of CO2 electrocatalysts using active machine learning,
电解二氧化碳电还原反应(CO2RR)可用于绿色生产乙醇,然而,该反应的法拉第效率目前仍然不高,特别是在总电流密度超过10mA cm−2下。
鉴于此,多伦多大学的Edward H. Sargent团队报道了一类催化剂,其产乙醇的法拉第效率高达,阴极能量转化效率为31%。作者发现通过抑制中间体HOCCH*的脱氧作用,可以降低乙烯的选择性,促进乙醇生产。密度泛函理论(DFT)计算表明,由于封闭的N-C层具有很强的供电子能力,在Cu表面涂覆一层氮掺杂碳(N-C)可以促进C-C耦合,抑制HOCCH*中碳氧键的断裂,从而提高CO2RR中乙醇的选择性。
Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation,
堆叠具有较小带隙的太阳能电池形成双结膜,为克服单结光伏电池的Shockley-Queisser极限提供了可能。随着溶液处理钙钛矿的快速发展,有望将钙钛矿的单结效率提高>20%。然而,这一工艺仍未实现与行业相关的纹理晶体硅太阳能电池进行整体集成。
来自多伦多大学的Edward H. Sargent 和阿卜杜拉国王 科技 大学的Stefaan De Wolf团队,报道了将溶液处理的微米级钙钛矿顶部电池与完全纹理化的硅异质结底部电池相结合,进行集成双叠层电池的方法。为解决微米级钙钛矿中电荷收集的难点,作者将硅锥体底部的耗尽宽度提高了三倍。此外,通过在钙钛矿表面固定一种自限型钝化剂(1-丁硫醇),增加了扩散长度且进一步抑制了相偏析。这些多方位的结构改善,使钙钛矿—硅串联太阳能电池的整体效率达到了%。在85°C下进行400小时的热稳定性测试,以及在40°C、在最大功率点下工作400小时后,发现其性能衰减可忽略不计。
Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon,
在这里,作者首先讨论了四类分子强化策略:①分子加成修饰的多相催化剂、②有机金属络合物催化剂、③网状催化剂和④无金属聚合物催化剂。作者介绍了目前在分子策略方面的挑战,并描述了电催化CO2RR产多碳产品的前景。这些策略为电催化CO2RR提供了潜在的途径,以解决催化剂活性、选择性和稳定性的挑战,进一步发展CO2RR。
Molecular enhancement of heterogeneous CO2 reduction,
目前通过优化钙钛矿的组成经过组合优化,在最先进的钙钛矿太阳能电池中通常含有六种成分(AxByC1−x−yPbXzY3−z)。关于每个组成部分的精确作用仍然存在许多不清晰,如何正确理解和掌握钙钛矿材料中不同组分对晶体结构、性能的影响关系,对于制备新型的高性能钙钛矿材料而言具有重要的指导意义。
鉴于此,多伦多大学的Edward H. Sargent与麻省理工学院的William A. Tisdale等人利用瞬态光致发光显微镜(TPLM),并结合理论计算,探究了钙钛矿材料中组分—结构—性能之间的关系。研究表明,单晶钙钛矿材料内部载流子的扩散率与结构组成无关;而对于多晶钙钛矿,不同的成分对载体扩散起着至关重要的作用。与CsMAFA型钙钛矿相比,不含MA的CsFA型钙钛矿载流子扩散率要低一个数量级。
元素组成研究表明,CsFA颗粒呈级配组成。在垂直载流子输运和表面电位研究中可以看到,CsFA型钙钛矿由于其非均匀结晶,从而引起晶粒的元素分布不一致,形成了不利于载流子扩散的“壳核结构”。而掺入MA可以有效改善颗粒成分的均匀性,在CsMAFA薄膜中产生了高的扩散系数。
Multi-cation perovskites prevent carrier reflection from grain surfaces, /
电解二氧化碳还原(CO2RR)转化为有价值的燃料和原料,为这类温室气体的利用提供了一条有吸引力的途径。然而,在这类电解装置内,往往是由有限的气体通过液体电解质扩散到催化剂的表面,电解效率仍然不高。
鉴于此,多伦多大学的David Sinton和Edward H. Sargent等人提出了一种催化剂:离聚物本体异质结结构(CIBH),可用于分离气体、以及离子和电子的传输。CIBH由金属和具有疏水和亲水功能的超细离子层组成,可将气体和离子的输运范围从数十纳米扩展到微米级。采用这种设计策略,作者实现了在7 M KOH电解液中,以铜为催化剂进行电还原CO2,在阴极法拉第效率为45%下,产乙烯的偏电流密度高达 cm-2。
CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2,
手性材料在推动生物标记、手性分析和检测、对映异构体选择性分离、偏振相关光子学和光电子学应用等领域的发展具有重要意义。一维半导体的区域选择性磁化可以实现室温下的各向异性磁性,以及自旋极化——这是自旋电子学和量子计算技术所必需的特性。
鉴于此,中国科学技术大学俞书宏院士团队与国家纳米科学中心唐智勇研究员课题组、多伦多大学Edward Sargent教授团队等人利用局域磁场调控电偶极矩与磁偶极矩之间的相互作用,成功合成了一类新型手性无机纳米材料。
利用这一策略,作者将具有不同晶格、化学成分和磁性能的材料,即一个磁性成分(Fe3O4)和一系列半导体纳米棒结合在一起,在特定的位置吸收紫外线和可见光谱。由此产生的异质纳米棒表现出由特定位置磁场诱导的光学活性。本文提出的区域选择性磁化策略为设计手性和自旋电子学的光学活性纳米材料提供了一条途径。
Regioselective magnetization in semiconducting nanorods,
电催化CO2还原反应(CO2RR)为温室气体的利用、化学燃料的生产提供了一种可持续的、碳中性的方法。然而,从CO2RR高选择性地生产C2产品(例如乙烯)仍然是一个挑战。
鉴于此,多伦多大学Edward H. Sargent教授、加州理工学院Theodor Agapie教授、Jonas C. Peters教授等人提出了一种分子调控策略,用有机分子使电催化剂表面功能化,用于稳定反应中间产物,使CO2RR高选择性地产乙烯。
通过电化学、操作/原位光谱和计算研究,研究了通过芳基吡啶的电二聚作用衍生的分子库对Cu的影响。结果发现,粘附分子提高了CO中间体的稳定性,有利于进一步还原成乙烯。在中性介质的液流电池中,在偏电流密度为230 mA cm-2下,电催化CO2RR产乙烯的法拉第效率高达72%。
Molecular tuning of CO2-to-ethylene conversion,
你真的想知道内部吗??娃哈哈AD 钙奶是娃哈哈集团成本最低的品种之一。 娃哈哈AD钙奶线,现在已经不全线生产了,因为市场需求量不是很大。现在改200ml的营养快线了,和AD 钙奶用的模具是一样的。它渐渐为爽歪歪所取代。
搞那么多出来在百度上 乱吹牛 作假 垃圾公司
在广告日益作为企业参与市场竞争武器的今天,广告令公众眼花缭乱,目不暇接。但是据统计,在被收看的广告中,只有1/3的广告能给观众留下—些影响,而这1/3中只有1/2的能被正确理解,仅仅5%能在24小时内被记住。那么,如何使你的广告能给观众留下深刻的印象,赢得他们的好感而为企业带来较高的收益呢?显然,只有那些较高企业水准,富有心理感染力和震撼力的广告作品,才可以做到这一点。这正如美国广告巨子奥格威所说:“吸引消费者的注意力,同时来让他们来买你的产品,除非你的广告有好的点子,不然,就象被黑夜吞噬的船只”。由此可见广告创意的重要所在。然而,一个优秀的广告创意,除了要考虑产品特性等因素之外,关键在于适合公众的心理,使公众在一种美好的意境与氛围中,以一种轻松与愉快的心情接受广告信息。这也是一个成功广告创意的绝妙之处。而要达到这一目的,我们要做到下面两点。 一、切合公众心理的必要性 要使广告达到影响公众心理以及导致最终购买目的,广告创意人员必须要捕捉到公众的心理,切合公众的心理需求,创作真正具有心理感染力和震撼力的广告作品,只有这样才能触动公众的心灵,激励公众心理互动与行为互动,使其产生“引起注意—— 提起兴趣——激取欲望——加深印象——引起行动” (AlDl模式1925年)的一系列心理的效果,从而达到广告本身是为厂促销的目的。 而一般说来,公众心理可以分为共性心理和个性心理、所谓共性心理是所有公众所共有的心理特征;而个性心理是某一阶层或某一类公众所特有的心地特征。因此,在进行广告创意时必须分析和把握公众心理,切中公众的关心焦点,投其所好,以获得 良好的广告宣传效果。具体说来,在现代广告创意中,我们可以从以下几个方面来分析和把握公众心理: 1.追求新颖奇持的心理 对新奇事物的追求是人们从事活动的一种内在动力,是人们的一种共性心理。对于公众来说即是表现出一种摆脱生活平淡,追求新奇刺激的心理。所以,如果我们在广告创意中能够充分利用公众的这种心理而创作出的广告,必将对公众产生巨大的吸引力、例如一则皮蒂亚麻制衣公司的广告,两幅画面非常简单,一幅仅仅是用布遮住了商标,神秘感便油然而一,引发了人们的好奇心;而第二幅画面是使本来平淡的东西,在人们急切的期盼中变得真相大白, 在这故意制造的紧张情绪的积累与真相大白的过程中,无论结局如何,都给人们留下了深刻的影响。还有一则鞋的广告,为了突出鞋的柔软,它是这样创意的:把一只鞋压在一只鸡蛋上,鸡蛋没有被压破.但是鞋的两边弯了下去。这种新颖奇特的创意比以往那种把鞋拿在手上使劲拉扯而鞋不断,以突出鞋的柔软更能打动受众的心,达到了吸引消费者购买的目的,这两则广告都是利用消费者追求新颖奇特的心理,使其集中注意力,接受了广告信息,产生购买欲望,达到广告目的。但是,我们也应该注意到利用公众的这种心理时要注意适度,如果过分追求新奇,不仅难以达到效果,甚至会弄巧成拙,损害企业在公众心目中的形象。 2.追求健康安全心理 在广告创意中,如果能够结合公众追求健康安全的心理,就会触动公众,达到广告宣传的目的。例如“康而瘦”减肥药的广告,其广告创意便抓住了人们想减肥但又怕减肥危害健康的心理而制作出了“更健康,更苗条”的广告词,使其大受公众欢迎。现代广告受众接触广告的时间很短,若想给人留下十分深刻的印象,那么就必须构思新颖,切中公众追求健康安全的心理。又如一则交通公益广告:一群年轻男女在飞驰的车内嬉戏,驾车的青年虽然努力想集中精力开车,无奈同伙大喊大叫,正当他回头大叫安静来时,不幸的事故发生了,一辆汽车飞速撞来, 一阵天旋地转之后,便是真正的车祸现场:车在燃烧,地上的尸体残缺不全,一名侥幸逃生但受伤的男青年趴在地上向同车的朋友大声哭喊着。他同车朋友的尸体正被警察运走。刹时荧光屏全黑了.只出现几大字:“你刚取得驾照五个月,眼睛才离开地一秒,就这么简单,你的好朋友都没有了。” 3.从众心理 从众心理是一种带有普遍性的心理现象、既包括思想意识上的从众,也包括行为上的从众。它是人们自觉或不自觉地以某种组织规模或多数人意见为准则,而作出正确的判断,改变态度的心理现象。 如“大宝”化妆品,便是利用京剧演员,小学教师、职工,摄影记者来说明、宣传它的好处,使公众产生一种“大家都在用,我也去用用”的感觉,达到了广告宣传的目的。又如“娃哈哈”AD钙奶的广告词用了一句“今天你喝了没有?”便使小朋友争先恐后的购买。这便是利用公众的从众心理达至目的。所以,如果在广告中我们能够巧妙地借助人们的从众心理进行广告创意,便会收到好的效果。 4.情感心理 随着人们生活水平的提高和生活节奏的加快,人们在生活中情感的付出,情感享受和情感幻想方面有着特殊的需求,所以在广告创意中,如果我们利用亲情,友情和爱情而创作广告,也可以打动相当一部分人的心。如荣获第五届全国优秀广告作品的“100年润发,重庆奥妮(周润发)”就是通过一系列悲欢离合的情节,讲述了一段感人至深的爱情故事。其成功之处就再于以情感人,并在“相爱永不渝”的爱情意境中,升华了百年润发的品位。而今年推出的“今世缘”酒,更是把“亲情,友情,爱情”三者融合在一起,深深地打动了公众的心。 可见,在广告创意中,如果能够根据产品的特征,并切合公众对亲情,友情,爱情等心理,创作出相应的广告作品,也可以使公众产生购买心理,形成消费动机。 5.民族文化心理 所谓民族文化心理是一个民族在一定的历史阶段,受宗教,伦理,哲学,道德等方面地影响,而形成的心理特征。而这种民族文化特征又制约着中国人的行为,影响着中国人对事物的评价与认识,同样也影响公众对广告注意。“孔府家酒”的成功,就证明了这一点,它用一句“孔府家酒,让你想家”便深深打动了观众的心。还有以“龙”作为创意主体的广告也一直深受观众的喜爱。这些都是因为广告创意符合中国公众的民族文化心理。 因此,在广告创意中,如果能够把民族文化心理与产品特征有机地结合起来,就可以唤起公众对国家的热爱之情或民族美德,诱发其产生购买动机。 除上面的几种之外,追求时尚心理,品牌心理,求实求廉心理以 及炫耀心理等也是广告创意中可以把握之点,也同样具有重要要义。 二、值得注意的几个问题在广告创意过程中,必须把握公众心理,切中公众的关心焦点, 投其所好,但也应该注意以下几个问题。 1.准确进行目标 公众定位广告创意要做到切合公众心理,就必须对公众的有关资料进行科学调查分析,并根据产品的特性,准确的进行目标公众定位。定位理论认为,不要希翼一种商品或品牌可以征服所有观众,只有正确地定位在目标公众上,才能有的放矢,创作出相应的广告作品。如上面提到的“大宝”化妆品广告,它请来的小学教师,工人,摄影记者便是把产品定位于中等收入消费者身上,结果大获成功。还有美国的“七喜”饮料,把自己定位于“清新的味道”上,从而脱离了硝烟弥漫的“可乐圈”,赢得了很多的受众。而中国1998年推出的“非常可乐”系列却依然把自己定位于美国人的“可口可乐”味道上,自然失去了中国人的喜爱。所以广告要切合公众的心理,使其发挥更大的功能,就必须解决公众目标定位问题。2.必须考虑地域特点 中国是一个地域辽阔的国家,人们的生活习惯,风俗民情,人物构成,宗教信仰等,由于地区的不同而不同。不同的经济环境,风俗习惯,民族心理使同一信息内容产生不同的主观感受。尤其是少数民族的民族性格,宗教信仰等民族文化传统因素会对该地区公众心理产生影响。假如你在新疆回族地区做一则猪肉制品的广告,那么可以想象一下你的结果了。因此,在选择公众关心点时,应该充分了解目标市场的地域情况,选择符合他们的心理需求,易于他们接受的广告创意主题,以获得最佳的广告效果。 3.要准确而清晰地传达商品信息 现代广告是商业竞争的手段, 而广告创意作为一种商业促销活动,必须自始至终地贯穿整个营销观念,在有限的时间里,传达商品信息及利益点。因此广告创意必须在切合并满足公众心理需求的同时,准确而清晰地传达商品信息, 使二者有机的结合在一起,只有这样才能真正激发公众的消费动机,而我国的广告在这方面做的还远远不够,所以有时我国广告给人一种泛滥成灾的感觉,但一提起有影响的广告,往往又说不出儿个。例 如,我们的牙膏广告,国产的牙膏有很多,而且几乎每一种都在做广告,可是我们用的还是美国“宝洁”公司的产品。这便是因为“宝洁”公司的广告准确而清晰的传达了各种牙膏的性能,给人很深的印象, 而我国的牙膏广告只是传达了使人“牙白”这一类简单而普通的信息,很难给人留下深的印象。 总之,广告创意是一项艰苦而且具有创新精神的工作,是广告人智慧的结品,是创造性思维的结果。而要进行有效创意就必须切合公众心理,并根据产品特性,利用艺术手段,创作出真正富有感染力的作品,使公众在艺术享受中,在经意与不经意间,诱发其产生消费动机,进而达到广告宣传的最终目的!
杭州娃哈哈集团有限公司创建于1987年,目前为中国最大的食品饮料生产企业,大家知道哇哈哈企业的 市场营销 策略是什么吗?下面是我给大家推荐的娃哈哈关于市场营销策略论文,希望大家喜欢!娃哈哈关于市场营销策略论文篇一 《娃哈哈饮品市场营销调查研究》 摘要:我国饮品市场近年来发展势头正劲,而国外的饮料品牌占据中国相当大的市场份额,也一度威胁我国民族饮品的生存。本文以民族品牌娃哈哈为例,分析当前饮品市场现状,调查娃哈哈的营销策略,发现其暴露的问题和提出相应对策。 关键词:娃哈哈;市场;定价;品牌包装;促销 1.娃哈哈品牌及饮料市场情况分析 杭州娃哈哈集团有限公司创建于1987年,目前为中国最大的食品饮料生产企业,全球第四大饮料生产企业,仅次于可口可乐、百事可乐、吉百利这3家跨国公司。 中国饮料市场的发展呈现以下特征:(1)碳酸饮料、瓶装水市场趋于成熟,增速放缓;(2)茶饮料、果蔬汁饮料市场蓬勃发展;(3)功能性饮料市场方兴未艾。从饮料消费水平看,中国城乡居民人均饮料消费量还很低,饮料市场消费潜力还远远没有挖掘出来。除白酒以外,大多数饮料行业在我国仍然是发展潜力巨大的朝阳产业。我国饮料产品向多样化发展,果蔬饮料尤其果粒饮料会更受欢迎。消费者对饮料的要求更细化,不仅需要对应消费人群的年龄,还要满足各种人的不同口味。这也造就了现在饮料行业“百花齐放”的局面,未来的饮料行业仍会有新的饮品出世,因为饮料市场的发展潜力还很大,还有更广阔的平台让现在的和未来出现的品牌们竞逐。 2.娃哈哈品牌定点调查及分析 资料整理 娃哈哈集团产品可分为四大类,其产品组合宽度为4;根据产品组合的深度,包装饮用水、医药保健品、酒水为2,饮料为10;产品组合长度为16。饮料和医药保健品的关联程度最高。在幸福超市主要有娃哈哈的五种饮品,包括AD钙奶、爽歪歪、营养快线和八宝粥。 表1-2幸福超市娃哈哈产品 一扎的包装统一为四小罐。 调查分析 市场细分及选择 娃哈哈根据人口细分变数的年龄变量,为 儿童 推出蛋白饮料,如爽歪歪、乳酸菌,根据行为细分变数的追求者的利益,推出茶饮料、罐头食品(八宝粥)、果蔬汁饮料、医药保健饮品等。此外还有包装饮用水、奶茶、碳酸饮料等满足消费者不同需要。最知名的是娃哈哈的营养快线,在市场上反应良好,以幸福超市为例,营养快线摆满饮料架的三四五层的十分之一,占据面积很大。 娃哈哈首先采用差异化的市场营销战略,据此,娃哈哈品牌下共有十余种产品,在幸福超市的调查过程中发现有其中五种,AD钙奶、爽歪歪、营养快线、矿泉水和八宝粥;其次在特定细分市场中采取集中的市场营销战略,对于儿童年龄段的消费者主打爽歪歪这一产品,深得广大儿童们的喜爱,获得巨大成功。对于营养快线,开发不同口味,有牛奶加果汁、核桃牛奶、水果酸奶、酸奶果汁,满足了不同消费者的需求,也让营养快线进入市场后迅速打开局面,成为娃哈哈的招牌产品。 市场定位 娃哈哈产品在竞争定位上采用的是并存和补缺定位,如娃哈哈矿泉水、茶饮料的卡曼橘绿茶以及八宝粥等,都是与其他几个品牌共存,彼此占据一定市场份额。而营养快线、爽歪歪和AD钙奶就是典型的补缺定位,当所有饮料品牌关注碳酸饮料、茶饮料等子市场时,娃哈哈发掘出年幼儿童的潜在市场,做出适宜儿童的饮品,并从奶饮品、果味饮品的交集中开发出营养快线,从而奠定娃哈哈在饮料行业的地位。 品牌和包装 娃哈哈集团采用的是统一的品牌策略。作为饮料行业的知名的制造商品牌,娃哈哈是中国最有价值品牌500强之一,品牌价值已达亿。 以幸福超市所拥有的五种娃哈哈产品为例,AD钙奶有两种包装,220g*4和330ml一瓶;爽歪歪也是两种包装,125g*4和200g*4;营养快线是统一的500g一瓶;而矿泉水只有596ml一瓶的;八宝粥也是统一360g一罐。超市发的娃哈哈产品包装与幸福超市的总体差异不大,启力饮料是250ml一罐,苏打水是350ml一瓶,蜂蜜柚子茶则是大多数茶饮料的统一包装容量,为每瓶500g。 AD钙奶和爽歪歪的包装就非常适合儿童,一扎四小罐既不会让儿童一次喝太多,也不会让每次喝完都剩余;营养快线、茶饮料的包装就很适合青年人,启力饮品的包装与其他碳酸饮料的包装比是单一化明显,只有罐装;矿泉水以及苏打水的包装也是单一,应该增加集中不同容量的包装。 定价策略 娃哈哈采用了产品形式差别定价策略,AD钙奶是早先进入儿童饮品市场的,爽歪歪略晚,故整体上爽歪歪的价位略高于AD钙奶;同时也采用心理定价策略中的尾数定价,因为大部分饮品皆是零售,所以多为元/瓶,元/瓶这样的价格,给人以买卖公平的感觉。 促销决策 促销包括人员推销、 广告 和公共关系三个主要方面。基本上只看到过爽歪歪和营养快线的广告促销,其他产品的广告投入略显薄弱。人员推销在超市发和幸福超市这两个地点是没有发现的。而公共关系层面可能个人了解的更少一些。娃哈哈对爽歪歪和营养快线的广告投入获得很好的效果,使产品在市场上获得一定地位。人员推销方面需要间歇性地投入,以便更好地实现促销的预期效果。 3.问题及对策 发现的部分问题 首先,市场可以更细化,只推出了儿童的适用饮品,其他年龄段的人群也有相应的子市场存在; 其次,娃哈哈饮品的包装也存在缺陷,尤其是矿泉水。其他品牌的饮用矿泉水利用容量大小做了不同包装,而娃哈哈只有596ml一瓶这一种,启力饮料也只发现罐装品,蜂蜜柚子茶和苏打水同时也没大容量的包装; 此外,娃哈哈的饮品极少做促销活动。在超市可以看到诸多品牌饮料的特价、优惠以及买一赠一等促销活动,而娃哈哈的饮品促销的频率极低。 问题对策 一、根据人口细分变数年龄变量推出适合青年、中年、老年的饮品,尤其是老年市场部分仍有很大空缺;根据行为细分变数的追求利益变量,果蔬汁饮料市场发展潜力很大,果汁饮品市场上很多,但蔬菜汁的相关饮料并不多,可以透过当前追求健康的消费偏好开发蔬菜饮品; 二、娃哈哈可以采取分档包装和附赠包装的策略,对其饮品进行包装区分,既可以满足不同用途的消费者需求的差异性,还可以诱发顾客重复购买,增加销量,并且利于推出新产品; 三、产品的促销,采用密集分销决策,让产品在市场上拥有更多的出手机会。如启力功能饮料,蜂蜜柚子茶都需要采取促销的方式增加销量。(作者单位:中国地质大学(北京)人文经管学院) 参考文献: [1]《市场营销决策与管理》孔锐.北京:清华大学出版社,2013 [2]《2011饮料营销六大趋势》于娜,刊名:市场观察出版.期号:2011,第1期 [3]《市场 营销策划 》王方.人民大学出版社,2006年07月
化工工艺我也写的这个,开始也不懂,还是同学介绍的莫’文网,没几天就发我了,速度啊羟基乙氧基化改性磷脂的合成工艺与性能研究基于AVR的实时控制器设计及其在发酵过程中的应用NGF诱导的PC-12细胞脑内移植治疗大鼠帕金森病的研究用不对称双羟化(AD)反应合成紫杉醇C13侧链论我国自由刑轻缓化的实现研究AD和AA反应中可回收和重复使用的小分子手性配体的设计、合成及其应用掺杂过渡金属、稀土元素杂多化合物的合成、结构和性质以缪斯之轻承受生命之重研究天津FDI空间集聚的新经济地理学分析纤维素酶产生菌的选育鉴定及产酶性能研究人性化设计在自行车设计中的应用研究柴油机噪声辐射关键结构改进设计研究广西产业结构分析及优化研究青枯菌培养特性及广藿香抗病性鉴定方法的研究腈水合酶固定化细胞的载体选择及复合固定化的研究含杯芳烃衍生物的稀土配合物的合成及其应用基础研究企业对外宣传材料汉英翻译探索车载钻机车架优化设计研究新生大鼠神经干细胞体外培养与诱导分化的研究中国英语学习者道歉策略语用迁移的DCT研究清毒栓治疗宫颈人乳头瘤病毒感染的实验研究中西医结合治疗突发性耳聋30例的临床研究大张坨地下储气库数值模拟研究Nolatrexed在动物体内的处置规律与研究
天然橡胶纳米复合材料的研究进展,分别介绍了天然橡胶与纳米级二氧化硅、有机蒙脱土、碳酸钙、氧化锌以及碳纳米管等物质组成的复合材料的研究现状。
死考虑考虑趣味DIY
化工工艺残渣固形燃料是把化工过程产生的残渣通过一定的预处理工艺,即把残渣与固硫、固氯剂(钙吸收剂)和助燃剂(木屑)等配料混合,再通过挤压成型等生产工艺,制成一定形状(如粒状,柱状等)的废弃物衍生燃料(Refuse Derived Fuel,简称RDF)。该燃料具有良好的燃烧特性且燃烧稳定,在焚烧过程中能有效地抑制氯化氢和二氧化硫气体的产生,降低二恶英和其他有害物的排放,同时大大提高焚烧炉的燃烧效率,减少炉膛和管道的腐蚀,可以有效回收热能。本文的主要研究内容有:一、研究了物料的燃烧和热解特性,结果表明:热解过程中,快加热方式在产气速度、产气量等方面,均优于慢加热方式,热解终温的提高有利于热解气体的析出;燃烧过程中,木屑的加入改善了物料的着火温度和燃尽率,具有良好的助燃效果。二、研究了燃烧过程中HCl的排放特性。结果表明,氧化钙和碳酸钙的加入可以有效地抑制氯化氢气体的排放,CaO和CaCO3固氯的最佳温度区间为550-650℃,与残渣中Cl的最佳摩尔配比分别为和2。同时发现添加一定量的木屑在助燃的同时有助于提高固氯效果。三、设计一套日处理量2~3t的废弃物衍生燃料中试装置。其主要工序有混合搅拌,挤压成型和干燥。