首页 > 毕业论文 > 毕业论文copula函数

毕业论文copula函数

发布时间:

毕业论文copula函数

学术堂整理了十个经济金融类的论文题目,供大家进行选择:1、我国开放式证券投资基金业绩评价实证研究2、基于行为金融理论下的市场有效性研究与证券价值分析3、我国证券市场股权结构的制度安排与改革4、汽车金融中的信贷资产证券化研究5、金融中介理论和我国全能银行的发展6、重构我国农村金融体系研究7、关于建立我国中小企业政策性金融体系的思考8、金融衍生工具监管制度研究9、我国商业银行房地产金融风险及其防范10、世界金融监管模式的发展及我国之借鉴

金融类毕业论文常用题目1. 金融不良资产价值影响因素的实证研究2. 我国农村经济增长中的农村金融抑制研究3. 发展中国家的金融自由化与中国金融开放4. 衍生金融工具会计问题研究5. 我国房地产金融风险及防范研究6. 房地产金融风险管理及对策研究7. 我国金融衍生市场创建若干法律问题初探8. 现代银行业金融机构市场退出法律问题刍议9. 论我国进出口政策性金融机构的立法完善10. 上海国际金融中心建设的制约因素分析11. 我国商业银行金融创新研究12. 我国商业银行金融衍生品的风险管理研究13. 金融危机后韩国银行业重组机制对中国的启示14. 金融自由化所必须的法律规则及其实施15. 我国金融发展对经济增长影响的理论分析与实证研究16. 制度、制度变迁与我国金融制度变迁研究17. 离岸金融法律监管问题研究18. 连接函数(Copula)理论及其在金融中的应用19. 我国金融控股公司的风险管理研究20. 构建中国金融条件指数21. 中国金融发展水平:比较与分析22. 论国际金融衍生交易中的法律问题23. 金融投资风险评价BP神经网络模型研究及应用24. 现代金融危机的理论与实践25. 欧元对国际金融市场的影响26. 试论金融债权资产的定价理论与实务27. 中国宏观金融风险的统计度量与分析28. 无线金融交易模型(WFTM)技术研究 29. 中国渐进改革中以租金为基础的政府金融支持行为30. 对我国金融控股公司发展问题的探讨31. 我国农村金融抑制问题研究32. 论金融控股公司的监管33. 金融监管有效性研究34. 区域金融中心与区域经济发展研究35. 非正规金融在我国金融生态中的地位和作用分析36. 商业银行金融服务创新及应用研究37. 西部地区县域金融发展问题38. 房地产金融风险的评价及防范对策研究39. 房地产市场泡沫及其金融风险研究40. 中国发展金融控股公司的研究与设想41. 金融开放条件下的货币政策传导机制42. 金融创新的扩散机理研究43. 关于我国金融资产管理公司商业化转型的研究44. 基于行为金融理论下的市场有效性研究与证券价值分析45. 亚洲金融危机以来我国外贸出口政策的协调性研究46. 我国农村金融生态问题研究47. 金融中介的发展与金融稳定问题研究48. 中外汽车金融比较研究49. 金融资源优化配置解析及对江苏的实际考察50. 金融衍生工具在利率风险管理中的应用51. 沪港金融中心发展的比较研究52. 养老保险制度基础与金融工具创新53. 区域金融发展与区域经济增长关系的实证研究54. 中国资本项目开放与金融深化关系的实证分析55. 金融反腐败与金融安全56. 我国金融中介作用于经济增长的路径分析57. 中国金融领域反洗钱制度分析58. 金融服务业消费者的安全保障问题研究59. 基于资本市场的国防工业整合中的金融支撑研究60. 汽车金融中的信贷资产证券化研究61. “新经济”后美国财政货币政策及对金融市场的影响研究62. 和谐金融生态体系的构建及区域金融生态的改善63. 金融控股公司风险与监管研究64. 中国金融资产管理公司发展策略研究65. 我国农村信用社金融风险研究66. 论我国农村金融市场的构建67. 论我国商业银行个人金融业务的发展68. 我国中小企业的金融机构融资之路研究69. 中国汽车金融风险管理70. 金融危机与民主化71. 构建金融网格的若干技术研究72. 金融深化、资本深化与地方财政分权73. 金融创新环境中的银行审慎监管机制研究74. 重庆近代金融建筑研究75. 网络金融风险及其监管探析76. 金融中介理论和我国全能银行的发展77. 重构我国农村金融体系研究78. 非洲货币联盟的发展79. 关于建立我国中小企业政策性金融体系的思考80. 金融衍生工具监管制度研究81. 我国金融制度变迁路径的不对称研究82. 我国的非正规金融83. 安徽县域经济发展中的金融支持研究84. 银行国际化与金融发展关系的实证分析85. 基于VaR技术的中国金融市场风险管理及实证研究86. 世界金融监管模式的发展及我国之借鉴87. 我国商业银行金融品牌理论与实践探讨88. 山东省金融资源的配置和经济分析89. 我国商业银行对中小企业金融支持的路径研究90. 农村金融资源的逆向配置与政策研究91. 中国金融资产管理公司的商业化转型问题研究92. 山东省农村金融发展对农村经济增长的作用机制:理论与实证研究93. 金融创新视角下的金融管制研究94. 中国金融业务综合经营收益和风险模拟分析95. 电子金融的风险发生机理与防范策略研究96. 金融集团监管的法律问题研究97. 衍生金融工具会计对我国银行业的影响研究98. 我国商业银行房地产金融风险及其防范99. FDI与经济发展:金融市场的作用100. 国内金融控股公司业务协同与创新研究101. 新光证券交易系统的设计与实现102. 论我国住房抵押贷款证券化的实践与完善103. 资产证券化的定价探讨和实证分析104. 资产证券化理论及我国的应用探索105. 从行为金融学的角度透析我国证券市场的效率106. 证券翻译理论与实践107. 我国住房抵押贷款证券化运作模式及定价方法研究108. 住房抵押贷款证券的定价方法及其在中国的应用分析109. 中国早期证券公司衰亡原因分析110. 股权分置改革的法律问题研究111. 证券服务机构虚假陈述民事责任问题研究112. 对我国资产证券化法制环境的分析和立法构想113. 我国证券投资者权益保护法律问题研究114. 互联网对我国证券经纪业的影响115. 我国证券投资基金投资风格的经验分析116. 中国开放式证券投资基金的风险管理117. 中国证券市场有效性研究118. 我国证券市场有效性研究119. 证券市场中的会计事务所变更研究120. 中国证券市场最小报价单位调整的效应分析121. 证券公司网络改造技术研究122. 数据挖掘技术在证券领域的应用123. 上市公司证券法监管研究124. 证券欺诈犯罪若干问题研究125. 中美证券市场比较分析126. 资产证券化127. 住房抵押贷款证券化模式研究128. 基于与证券投资基金比较的我国社会保障基金管理研究129. 我国证券公司竞争力研究130. 我国证券市场机构投资者价值投资行为研究131. 中国证券市场投资风险与收益研究132. 住房抵押贷款证券化产品在我国的应用研究133. 中国证券投资基金业绩与规模关系的实证研究134. 我国开放式证券投资基金业绩评价实证研究135. 基于行为金融理论下的市场有效性研究与证券价值分析136. 我国证券市场股权结构的制度安排与改革137. 我国证券经纪业务研究138. 我国证券经纪人发展问题研究139. 构建和提升证券公司核心竞争力探析140. 资产证券化相关会计问题研究141. 住房抵押贷款证券化过程的风险控制研究142. 汽车金融中的信贷资产证券化研究143. 佣金自由化下的证券公司盈利模式分析144. 我国证券投资基金系统性与非系统性风险研究145. 我国证券市场中小投资者权益保护机制研究146. 我国住房抵押贷款证券化研究与实证分析147. 我国证券投资基金和股票价格波动性的实证研究148. 证券投资中股票选择理论分析与案例研究149. 中国证券投资基金羊群行为及内部博弈研究150. 我国证券市场内幕交易管制的实证检验151. 我国证券信息内幕操纵与证券监管研究152. 中国证券投资基金业绩评价实证研究153. 证券公司风险的法律监管154. 证券投资基金监管法律制度研究155. 世界主要国家和地区与我国证券稽查执法模式比较156. 资产证券化—我国的立法模式选择157. 证券市场操纵行为法律规制研究158. 资产证券化中特殊目的载体法律问题研究159. 一类部分信息下证券投资最优化问题160. 我国工商企业资产证券化融资方式研究161. 信贷资产证券化法律问题研究162. 我国证券市场的风险研究163. 证券交易所上市费的经济分析164. 中国证券公司治理结构与发展环境分析165. 银行信贷资产证券化的信用风险分析166. 淄博市农村合作银行证券委托业务处理系统167. 我国住房抵押贷款证券化的障碍及对策研究168. 证券业网上交易系统设计与实现169. TT证券经纪业务营销策略研究170. 证券公司数据采集与数据可视化171. 证券投资基金风险管理研究172. 利率期限结构的混沌模型及其在利率衍生证券定价中的应用173. 资产证券化财务效应研究174. 证券市场政府监管的适度性分析175. 证券民事责任制度研究176. 证券管制的立法目标及其实现177. 中国证券市场审计失败问题研究178. 中国证券市场投资者有限理性行为研究179. 我国商业银行不良贷款证券化研究180. 我国证券市场国际化的风险问题研究181. 抵押权证券化法律问题研究182. 我国开放式证券投资基金市场营销分析183. 中国的A股上市公司是否成功地购买了审计意见184. 人寿保险证券化及其在化解我国寿险业利差损问题中的应用185. 证券市场委托理财合同纠纷案件处理的思考186. 中国证券公司盈利模式转变研究187. 人民币升值对中国银行业、证券业及外商直接投资的影响分析188. 中国证券市场信用问题研究189. 我国证券投资基金评价体系研究190. 保险风险证券化研究191. QDⅡ制度与我国证券市场的渐进开放192. 证券投资基金产品创新设计研究193. 我国证券监管法制现状及其完善194. 中国证券投资基金业绩绩效评价体系的研究195. 证券投资者保护基金法律问题研究196. 资产证券化SPV法律问题研究197. 我国住房抵押贷款证券化发展问题研究198. 中国证券投资基金治理结构研究199. 证券投资基金监管法律问题研究200. 我国证券公司融资模式研究

1. Catastrophe Bond: As a Financial Innovation in Management of Catastrophe Risk,2007 IEEE International Conference on Engineering,Services and Knowledge Management(EI检索)。2. The Pricing of Catastrophe Bond by Monte Carlo Simulation, 2008 International Conference on Risk Management and Engineering Management(EI检索)。3. The Optimal structure of incentive in catastrophe risk securitization,2008 IEEE International Conference on Engineering,Services and Knowledge Management(EI检索)。4. The Management of Optimal Size of China Insurance Firms,2007 International conference on Enterprise Engineering and Management Innovation(ISTP检索)。5. The Analysis of the Sensitive Degree of the Factors Influencing the Price of Cat Bond,China-Canada Industry Workshop on Enterprise Risk Management2008(ISTP检索)。6. Pricing of Earthquake Bond:using Loss Data of China,China-Canada Industry Workshop on Enterprise Risk Management2008(ISTP检索)。7. The Study of the Integrated Risk Measurement of Insurance Enterprises by Copula Model, 2011 International Conference on Management and Service Science(EI检索)。8. The Empirical Analysis on the Economic Capital of The Investment Risks in the Chinese Insurance Company, CICIRM2011(ISTP检索)。9. Application of Least Squares Support Vector Machine in Futures Price Forecasting, ICECT 2011(EI检索)。10. 《论中国融资租赁业发展的障碍与对策》,第一作者,《经济评论》1998年5期。11. 《信用风险管理的新视角——信用衍生产品》,独著,《武汉大学学报》社会科学版2002年1期。12. 《商业银行风险管理体系的建设》,第一作者,《学习与实践》2002年第7期。13. 《健全商业银行风险管理制度从何入手》,独著,《光明日报》理论版2002年9月3日。14. 《德国银行业的流动性风险管理及启示》,第一作者,《科技进步与对策》2002年10期。15. 《构建商业银行风险管理体系》,独著,《人民日报》理论版2002年10月20日。16. 《中国商业银行操作风险度量模型的选择与应用》,第一作者,《中国软科学》2003年第8期。17. 《巨灾风险债券的经济学分析》,第一作者,《数量经济技术经济研究》2003年11期。18. 《保险在商业银行操作风险管理中的应用》,第一作者,《科技进步与对策》2003年11期。19. 《论混业经营趋势下金融监管理念的转变》,第一作者,《科技进步与对策》,2004年11期。20. 《保险公司的关系营销》,第一作者,《经济管理》2004年17期。21. 《基于风险定价框架的巨灾债券定价模型研究》,第一作者,《武汉大学学报(社会科学版)》2006年2期。22. 《巨灾风险债券的利率敏感性研究》,第一作者,《科技进步与对策》2007年8期。23. 《巨灾风险债券溢价之谜的行为金融学解释》,第一作者,《金融理论与实践》2007年10月。24. 《巨灾风险债券契约条款设计机制分析》,第一作者,《武汉大学学报社科版》2007年11期。25. 《巨灾风险债券SPV相关问题探讨》,第一作者,《金融与保险(人大复印资料)》2008年第3期 。26. 《巨灾风险债券定价研究进展述评》,第一作者,《武汉大学学报(社科版)》2008年第5期。27. 《加快发展电子商务》,第一作者,经济日报理论版2008年7月30日。28. 《保险监管对巨灾风险债券供给的影响途径及计量模型》,第一作者,《统计与决策》2008年第8期。29. 《中国财产保险业巨灾损失赔付能力实证研究》,第一作者,《保险研究》2009年第8期。30. 《基于GARCH模型的我国保险公司经济资本测度》,第一作者,《保险研究》2010年第3期。31. 《“助推器”还是“稳定器”:保险业对经济产出作用的经验证据》,第一作者,《保险研究》2011年第3期。32. 《基于Copula函数的保险公司经济资本配置研究》,第一作者,《保险研究》2011年第6期。33. 《基于经济资本的我国保险公司投资风险限额配置研究》,第一作者,《保险研究》2011年第11期。34. 《灾害风险、福利损失与政府最优救助计划》,第一作者,《经济管理》2012年第1期。

有问题可以请教我的!

毕业论文函数取对数

它是对两边同时取了以e为底的对数,lny=loge(Y),e是底数。

论文中相对数指标变量要取对数的原因:平时在一些数据处理中,经常会把原始数据取对数后进一步处理。之所以这样做是基于对数函数在其定义域内是单调增函数,取对数后不会改变数据的相对关系。

缩小数据的绝对数值,方便计算。例如,每个数据项的值都很大,许多这样的值进行计算可能对超过常用数据类型的取值范围,这时取对数,就把数值缩小了,例如TF-IDF计算时,由于在大规模语料库中,很多词的频率是非常大的数字。

适用性

是乘积形式、商的形式、根式、幂的形式、指数形式或幂指函数形式的情况,求导时比较适用对数求导法,这是因为:取对数可将乘法运算或除法运算降格为加法或减法运算,取对数的运算可将根式、幂函数、指数函数及幂指函数运算降格成为乘除运算。

对,两边都取了以e为底的对数,而lnX^n可以把n次方提到lnX前头,变成n乘以lnX两边取对是个性质

常用对数是以10为底的,写成:log10x自然对数是以e为底的,e=...,写成:lnx,底数e省略。对冥函数y=x^a取对数,有时是很方便,,函数的意义没有变化。

高中数学指数函数毕业论文

去CNKI中搜索去

一、函数内容处理方式的分析在整个中学阶段,函数的学习始于义务教育阶段,而系统的学习则集中在高中的起始年级。与以往相比,课程标准关于函数内容的要求发生了比较大的变化。 1. 强调函数背景及对其本质的理解无论是引入函数概念,还是学习三类函数模型,课程标准都要求充分展现函数的背景,从具体实例进入知识的学习。以往教材中,将函数作为一种特殊的映射,学生对于函数概念的理解建立在对映射概念理解的基础上。学生既要面对同时出现的几个抽象概念:对应、映射、函数,还要理清它们之间的关系。实践表明,在高中学生的认知发展水平上,理解这些抽象概念及其相互之间的关系存在很大困难。而从函数的现实背景实例出发,加强概念的概括过程,更有利于学生建立函数概念。一方面,丰富的实例既是概念的背景又是理解抽象概念的具体例证;另一方面,在实例营造的问题情境下,学生能充分经历抽象概括的过程,理解概念内涵。2.加强函数思想方法的应用函数是刻画现实世界变化规律的重要数学模型。因此,函数在现实世界中有着广泛的应用。加强函数的应用,既突出函数模型的思想,又提供了更多的应用载体,使抽象的函数概念有更多的具体内容支撑。比如,新增加的内容“不同函数模型的增长”和“二分法”,前者通过比较函数模型的增长差异,使学生能够更深刻地把握不同函数模型的特点,在面对简单实际问题时,能根据它们的特点选择或建立恰当的函数模型反映实际问题中变量间的依赖关系;后者充分体现了函数与方程之间的联系,它是运用函数观点解决方程近似解问题的方法之一,通过二分法的学习,能使学生加深对函数概念本质的理解,学会用函数的观点看待和解决问题,逐渐形成在不同知识间建立联系的意识。二、函数内容编写的基本想法函数的内容包括:函数概念及其性质,基本初等函数(Ⅰ),函数与方程,函数模型及其应用。以理解函数概念本质为线索,既可以将这些内容有机地组织为一个整体,又可以让学生以它们为载体,逐步深入地理解函数概念1.内容组织的线索:函数概念本质的理解函数概念并非直接给出,而是从背景实例出发采用归纳式的教材组织形式引入。由于函数概念的高度抽象性,学生真正理解函数概念需要一个漫长的过程,需要在不同层次上、从不同角度给学生提供理解和巩固函数概念的机会。首先,在分析典型实例的共同特征的基础上概括出函数定义后,通过讨论函数的表示、基本性质初步理解函数。它们分别是从函数的表现形式和变化规律两个方面丰富对函数概念的认识。然后,以三类基本初等函数为载体巩固函数概念,在学习了函数定义、基本性质之后,从一般概念的讨论进入到具体函数的学习。指数函数、对数函数和幂函数的概念及其性质都是一般函数概念及性质的具体化。以一类具体函数为载体,在一般函数概念的指导下对其性质进行研究,体现了“具体──抽象──具体”的过程,是函数概念理解的深化。最后,从应用的角度再一次巩固并提升对函数的理解。对一个概念真正理解的一个判断标准就是看看是否可以运用概念解决问题。教材最后安排函数的应用,包括二分法、不同函数模型的增长差异以及建立函数模型解决实际问题,就是期望学生能在“用”的过程中提高对函数概念的理解。2.突破难点的主要方法:显化过程,加强联系函数概念的理解贯穿了函数内容学习的始终,同时它也是教与学的一个难点,在教材编写中应采用什么方法突破这个难点,帮助学生更好地理解函数概念?对于形成函数这样抽象的概念,应该让学生充分经历概括的过程。概括就是把对象或关系的某些共同属性区分和固定下来。这就要求我们在编写教材时充分展示概括过程,并要充分调动学生的理性思维,引导他们积极主动地观察、分析和概括。教材选择了三个有一定代表性的实例,先运用集合与对应的语言详细地分析前两个实例中变量间的依赖关系,给学生以如何分析函数关系的示范,然后要求学生仿照着自己给出第三个实例的分析,最后通过“思考”提出问题,引导学生概括三个实例的共同属性,建立函数的概念。在这样一个从具体(背景实例)到抽象(函数定义)的过程中,学生通过自己的思考从分析单个实例上升到概括一类实例具有的共同特征,更能理解概念内涵。作为中学数学的核心概念,函数与中学数学的许多概念都有内在联系,这种联系性为理解函数概念提供了众多的角度和机会,因此加强函数与其他数学知识的联系是函数概念教学的内在要求。例如,函数有多种表示方法,加强不同表示法之间的联系和转换,使学生学会在面临一个具体问题时能根据问题的特点灵活选择表示的方法,就是促进理解的一个手段。教材通过例题给出高一某班三位同学在六次测试中的成绩及相应的班平均分的数据,要求分析三位同学的学习情况。解决这个问题的关键就是根据函数的表格表示法与图象表示法的特点,将表格表示转化为图象表示。又如,函数与现实生活有着密切的联系,所以在编写教材时注重加强函数与现实生活的联系,像由背景实例引入概念,在例题和习题中安排一定量的应用问题(碳14的衰减,地震震级,溶液的酸度等)都体现了函数与实际生活的外部联系。再如,从运用函数观点解决方程问题的角度介绍二分法,体现出函数与方程间的联系等等。三、函数内容编写中的几个关键问题1.实例如何选择无论是加强概念背景,还是突出知识的联系与应用,能达到很好效果的重要因素就是要选择合适的实例。那么,如何选择实例才能有助于学生的学习呢?对于起到不同作用的背景实例和应用实例,标准并不完全相同。但总的来说,一是实例的背景知识应该尽量简单,这样可以避免因背景的复杂性而影响对数学知识本身的理解;二是实例应丰富,这样有利于全面、准确地理解知识,不会产生偏差;三是实例应贴近学生生活、具有一定的时代性,这样才会引起学生的共鸣,激发学习的兴趣。比如,介绍函数概念时,教材选择了用解析式表示炮弹飞行的问题、用图象表示南极臭氧空洞的问题、用表格表示恩格尔系数的问题,第一个问题是学生在物理中就很熟悉的,后两个问题是日常生活中经常提及的,背景相对来说比较简单,学生就不会因为需要了解过多的背景知识而冲淡对函数概念的学习。而且重要的是,这样的三个问题包括了不同的函数表现形式,利用它们概括函数概念,就可以消除初中学习中可能存在的一些认识偏差,使学生认识到无论表示形式如何,只要对于每一个x,都有一个y与之对应,就是函数,而这正是函数的本质特征。再如,根据汽车票价制定规则写出票价和里程间的解析式,并利用解析式为售票员制作出我们在汽车上经常看到的“阶梯形票价表”这类问题,贴近学生生活并具有现实的应用价值,能引发学生的兴趣和学习的积极性。2.概念如何展开对于突破函数概念这个难点,可以在整段函数内容的学习中采用显化过程、加强联系的方法。那么具体地,在从三个方向巩固函数概念理解时,如何展开像函数的单调性、二分法这些概念,才能让学生掌握它们,从而达到巩固理解函数概念的目的呢?函数的性质就是研究函数的变化规律,这种规律最直观的获得来自于图象,图象的上升、下降就是单调性。问题在于如何帮助学生从几何直观上升到严格的数学定义。同样地,二分法也需要经历一个由直观认识到数学定义的过程。为此,就需要将直观到严格数学定义的过程划分成几个层次,为学生搭建认识的台阶,使他们逐步地获得概念。比如,介绍函数单调性时,首先给出一次函数和二次函数的图象,观察它们的图象特征,即上升或下降;然后用问题“如何描述函数图象的‘上升’‘下降’呢”引导学生用自然语言描述出图象特征;最后思考“如何利用解析式f(x)=x2描述‘随着x的增大,相应的f(x)随着减小’……”,将自然语言的描述转化成数学符号语言的描述,并一般化得到单调性的数学定义。通过这样的三步,利用数形结合的方法展开单调性的概念,既有助于学生通过自己的努力获得概念,而且也从数和形两个方面理解了概念。3.函数内容中使用信息技术的点及方式在数学课程中使用信息技术已经毋庸置疑,同样地,信息技术的使用也是教材编写中最为关注的问题之一。那么,在函数中有哪些适合使用信息技术的内容,如何使用,以及在教材中使用的方式是怎样的?信息技术具有强大的图象功能、数据处理功能和良好的交互环境,利用这些优势,在函数这部分内容中可以使用信息技术的点主要有:求函数值、做函数图象、研究函数性质、拟和函数等。运用常见的一些软件,如excel、几何画板等就可以轻松地作出函数图象,这在讨论不同函数模型增长差异时发挥很大作用,从几幅图就能直观发现增长的差异;运用计算器可以解决二分法中计算量大的问题,从而将更多精力关注到二分法的思想上,认识到函数和方程间的联系;而计算机的交互环境则为学生的自主探究提供了强有力的平台,丰富了学习方式,如讨论指数、对数函数性质时,可以充分演示出图象的动态变化过程,这样就能在变化中寻求“不变性”,发现函数具有的性质。教材编写时一方面在适合使用信息技术的地方给予提示,如“可以用计算机……”等;另一方面通过拓展栏目详细地介绍一些信息技术应用的专题,如“用计算机绘制函数图象”重点介绍使用常用软件做函数图象的方法,“借助信息技术探究指数函数的性质”给出探究的情境,要求学生亲自利用信息技术发现规律,“收集数据并建立函数模型”介绍了如何用信息技术拟合函数,等等。通过这些方式,可以为教师和学生提供使用信息技术的机会和空间。

数学论文范文参考

数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

( 一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

( 二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

( 一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

( 二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

( 三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:

〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.

〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.

〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.

浅谈高中数学文化的传播途径

一、结合数学史,举办文化讲座

数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、

二、结合教学内容,穿插数学故事

数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、

三、结合生活实际,例解数学问题

作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、

四、结合其他学科,共享文化精华

科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、

五、结合课外活动,小组合作探究

由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、

六、结合教学评价,纳入数学考试

虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。

数学毕业论文函数方向

2017大学数学论文范文

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。

几类特殊函数的性质及应用

【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。

【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分

1.引言

特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。

特殊函数定义及性质证明

特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。

特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。

2.伽马函数的性质及应用

伽马函数的定义:

伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。

Г函数在区间连续。

事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。

,伽马函数的递推公式

此关系可由原定义式换部积分法证明如下:

这说明在z为正整数n时,就是阶乘。

由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....

用Г函数求积分

贝塔函数的性质及应用

贝塔函数的定义:

函数称为B函数(贝塔函数)。

已知的定义域是区域,下面讨论的三个性质:

贝塔函数的性质

对称性:=。事实上,设有

递推公式:,有事实上,由分部积分公式,,有

由对称性,

特别地,逐次应用递推公式,有

而,即

当时,有

此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为

由上式得以下几个简单公式:

用贝塔函数求积分

解:设有

(因是偶函数)

例贝塔函数在重积分中的应用

计算,其中是由及这三条直线所围成的闭区域,

解:作变换且这个变换将区域映照成正方形:。于是

通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。

贝塞尔函数的性质及应用

贝塞尔函数的定义

贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。

贝塞尔函数的'递推公式

在式(5)、(6)中消去则得式3,消去则得式4

特别,当n为整数时,由式(3)和(4)得:

以此类推,可知当n为正整数时,可由和表示。

又因为

以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。

为半奇数贝塞尔函数是初等函数

证:由Г函数的性质知

由递推公式知

一般,有

其中表示n个算符的连续作用,例如

由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。

贝塞尔函数在物理学科的应用:

频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令

称为的Fourier变换。它的逆变换是

若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,

这就是Shannon取样定理。Shannon取样定理中的母函数是

由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:

以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。

首先建立取样定理

设:

其中是零阶贝塞尔函数。构造函数:

经计算:

利用分部积分法,并考虑到所以的Fourier变换。

通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:

类似地

经计算:

经计算得:

则有:设是的Fourier变换,

记则由离散取样值

因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。

例,利用

引理:当

因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式

首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:

(1)

其中

函数的幂级数展开式为:

则关于幂级数展开式为: (2)

由引理及(2)可得

(3)

由阶修正贝塞尔函数

其中函数,且当为正整数时,取,则(3)可化为

(4)

通过(1)(4)比较系数得

又由被积函数为偶函数,所以

公式得证。

3.结束语

本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。

参考文献:

[1] 王竹溪.特殊函数概论[M].北京大学出版社,,90-91.

[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)

[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.

[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.

[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.

[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.

[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,.

[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.

[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.

[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.

写数学函数论文还是比较简单的。首先你看看你对哪一块的函数最熟悉,简单的一次二次,超越函数,复变函数,幂函数等等都是可以拿来写的,其实真正函数在生活中用到的极为有限,都是搞科研做课题才会用到,而且用起来也都是套套公式之流,算不得复杂。要是有能力的话,尝试写论文讨论下函数的建模问题,各类函数分别对应哪种建模,优势在哪里,不行在哪里,这个比较有营养,写的好了会特别出彩哦。

数学毕业论文周期函数

比如说f(x+1)=-f(3+x),求f(x)的周期。

1、做变量替换令y=x+1 ,得到 f(y)= -f(y+2);

2、再一次套用这个式子,得到f(y+2)=-f(y+4);

3、两个式子结合,得到f(y)=f(y+4),所以,周期是4。关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑。

扩展资料:

若f(x)是在数集M上以T*为最小正周期的周期函数,则K f(x)+C(K≠0)和1/ f(x)分别是集M和集{X/ f(x) ≠0,X ∈M}上的以T*为最小正周期的周期函数。

证:

∵T*是f(x)的周期,∴对 有X±T* 且f(x+T*)= f(x),∴K f(x)+C=K f(x+T*)+C,

∴K f(x)+C也是M上以T*为周期的周期函数。

若f(x)是集M上以T*为最小正周期的周期函数,则f(ax+b)是集{x|ax+b∈M}上的以T*/ a为最小正周期的周期函数,(其中a、b为常数)。

一、周期定义一般地,如果存在一个非零常数T,使得对于函数f(x)的定义域中的任意一个x和x+T,都有f(x+T)=f(x)。那么,函数f(x)就叫做周期函数,并且把非零常数T叫作这个函数的一个周期。【注】一般情况下,如果一个周期函数有最小正周期的话,“周期”通常指的都是这个周期函数的“最小正周期”。二、中学数学常用到的周期函数的公式1、设周期函数y=f(x)的周期(最小正周期)为T,则f(x+nT)=f(x),f(x-nT)=f(x)。这里的n可以是任意整数。2、设周期函数y=f(x)的周期(最小正周期)为T,则y=f(x)+b、y=Af(x)、y=Af(x)+b,(注:A不等于0),都是最小正周期为T的周期函数。3、设周期函数y=f(x)的周期(最小正周期)为T,则y=f(wx)+b、y=Af(wx)、y=Af(wx)+b都是周期函数,并且最小正周期为“T/|w|”。(注:A、w都不为0)三、高中数学常见的周期函数的周期1、(1)y=sinx ,最小正周期T=2π;(2)y=|sinx|,最小正周期T= π。2、(1)y=cosx,最小正周期T=2π;(2)y=|cosx|,最小正周期T= π。3、(1)y=tanx,最小正周期T=π;(2)y=cotx,最小正周期T=π。4、y=Asin(wx+φ)+b,最小正周期T=2π/|w|。(注:“A”、“w”为非0常数,下同。)5、y=Acos(wx+φ)+b,最小正周期T=2π/|w|。6、y=Atan(wx+φ)+b,最小正周期T=π/|w|。7、常函数“y=c(c为常数)”,是以任意非零常数为周期的周期函数。【注】常函数没有最小正周期。

定义通俗定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。 严格定义设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质; (1)对 有(X±T) ; (2)对 有f(X+T)=f(X) 则称f(X)是数集M上的周期函数,常数T称为f(X)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(X)的最小正周期。 由定义可得:周期函数f(X)的周期T是与X无关的非零常数,且周期函数不一定有最小正周期。 [编辑本段]周期函数性质(1)若T(≠0)是f(X)的周期,则-T也是f(X)的周期。 (2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。 (3)若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。 (4)若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。 (5)T*是f(X)的最小正周期,且T1、T2分别是f(X)的两个周期,则 (Q是有理数集) (6)若T1、T2是f(X)的两个周期,且T1/T2是无理数,则f(X)不存在最小正周期。 (7)周期函数f(X)的定义域M必定是双方无界的集合。 [编辑本段]周期函数的判定 定理1 若f(X)是在集M上以T*为最小正周期的周期函数则K f(X)+C(K≠0)和1/ f(X)分别是集M和集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。 [1] 证: ∵T*是f(X)的周期,∴对 有X±T* 且f(X+T*)= f(X),∴K f(X)+C=K f(X+T*)+C, ∴K f(X)+C也是M上以T*为周期的周期函数。 假设T* 不是Kf(X)+C的最小正周期,则必存在T’( 0<T’<T*)是K f(X)+C的周期,则对 , 有K f(X+T’)+C=K f(X) +C K[f(X+T’)- f(X)]=0,∵K≠0,∴f(X+T’)- f(X)=0,∴f(X+T’)= f(X), ∴T’是f(X)的周期,与T*是f(X)的最小正周期矛盾,∴T*也是K f(X)+C的最小正周期。 同理可证1/ f(X)是集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。 定理2若f(X)是集M上以T*为最小正周期的周期函数,则f(aX+n)是集{X/aX+ b }上的以T*/ 为最小正周期的周期函数,(其中a、b为常数)。 证: 先证 是f(ax+b)的周期 ∵T*是f(X)的周期,∴ ,有X±T*∈M,∴a(X± )+b=ax+b±T*∈M,且f[a(X+ )+b]=f(ax+b±T*)=f(ax+b)∴ 是f(ax+b)的周期。 再证 是f(ax+b)的最小正周期 假设存在T’(0<T’< )是f(ax+b)的周期, 则f(a(x+T’)+b)=f(ax+b),即f(ax+b+aT’)=f(ax+b), 因当X取遍{X/X∈M,ax+b∈M}的各数时,ax+b就取遍M所有的各数, ∴aT’是f(X)的周期,但 <=T*这与T*是f(X)的最小正周期矛盾。 定理3设f(u)是定义在集M上的函数u=g(x)是集M1上的周期函数,且当X∈M1时,g(x)∈M,则复合函数f(g(x))是M1上的周期函数。 证: 设T是u=g(x)的周期,则 1有(x±T)∈M1且g(x+T)=g(x) ∴f(g(x+T))=f(g(x)) ∴=f(g(x))是M1上的周期函数。 例1 设=f(u)=u2是非周期函数,u= g(X)=cosx是实数集R上的周期函数,则f(g(x))=cos2x是R上的周期函数。 同理可得:(1)f(X)=Sin(cosx),(2)f(X)=Sin(tgx),(3)f(X)=Sin2x,(4)f(n)=Log2Sinx(sinx>0)也都是周期函数。 例2 f(n)=Sinn是周期函数,n=g(x)=ax+b(a≠0)是非周期函数,f(g(x))=Sin(ax+b)是周期函数(中学数学中已证)。 例3 f(n)=cosn是周期函数,n=g(x)= (非周期函数)而f(g(x))=cos 是非周期函数。 证:假设cos 是周期函数,则存在T>0使cos (k∈Z) 与定义中T是与X无关的常数矛盾, ∴cos 不是周期函数。 由例2、例3说明,若f(u)是周期函数,u= g(X)是非周期函数,这时f(g(x))可能是,也可能不是周期函数。 定理4设f1(X)、f2(X)都是集合M上的周期函数,T1、T2分别是它们的周期,若T1/T2∈Q则它们的和差与积也是M上的周期函数,T1与T2的公倍 数为它们的周期。 证: 设 ((p·q)=1)设T=T1q=T2p则有: 有(x±T)=(x±T1q)=(x±T2p)∈M,且f1(x+T) ±f2(x+T)= f1(x+T1q) ±f2(x+T2p)= f1(X)±f2(X) ∴f1(X) ±f2(X)是以T1和T2的公倍数T为周期的周期函数。同理可证:f1(X) 、f2(X)是以T为周期的周期函数。 定理4推论 设f1(X) 、f2(X)……fn(X) 是集M上的有限个周期函数T1、T2……Tn分别是它们的周期,若, … (或T1,T2……Tn中任意两个之比)都是有理数,则此n个函数之和、差、积也是M上的周期函数。 例4 f(X)=Sinx-2cos2x+sin4x是以2π、π、π/2的最小公倍 数2π为周期的周期函数。 例5 讨论f(X)= 的周期性 解:2tg3 是以T1= 为最小正周期的周期函数。 5tg 是以T2 为最小正周期的周期函数。 tg2 是以T3= 为最小正周期的周期函数。 又 都是有理数 ∴f(X)是以T1、T2、T3最小公倍数(T1、T2、T3)= 为最小正周期的周期函数。 同理可证: (1)f(X)=cos ; (2)f(x)=sin2xcos2x+cos2xcos3x+cos3xsin3x。是周期函数。 定理5设f1(x)=sin a1x,f2(x)=cosa2x,则f1(x)与f2(x)之和、差、积是周期函数的充要条件是a1/a2∈Q。 证 先证充分性: 若a1/a2∈Q,设T1、T2分别为f1(x)与f2(x)的最小正周期,则T1= 、T2= ,又 ∈Q 由定理4可得f1(x)与f2(x)之和、差、积是周期函数。 再证必要性(仅就f1(x)与f2(x)的差和积加以证明)。 (1)设sina1x-cosa2x为周期函数,则必存在常数T>0, 使sina1(x+T)-sina1x=cosa2(x+T)-cosa2x 2cos(a1x+ )sin = -2sin s(a2x+ ) sin (1)。 令x= 得2cos(a1x+ ),则 (K∈Z)。(2) 或 C∈Z(3) 又在(1)中令 2sin(a2x+ )sin =-2sin =0 由(4) 由sin (5) 由上述(2)与(3),(4)与(5)都分别至少有一个成立。 由(3)、(5得 )(6) ∴无论(2)、(4)、(6)中那一式成立都有a1/a2 。 (2)设sinaxcosa2x为周期函数,则 是周期函数。 [编辑本段]非周期函数的判定[1](1)若f(X)的定义域有界 例:f(X)=cosx( ≤10)不是周期函数。 (2)根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。 例:f(X)=cos 是非周期函数。 (3)一般用反证法证明。(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。 例:证f(X)=ax+b(a≠0)是非周期函数。 证:假设f(X)=ax+b是周期函数,则存在T(≠0),使对 ,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。 例:证f(X)= 是非周期函数。 证:假设f(X)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0, ∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。 例:证f(X)=sinx2是非周期函数 证:若f(X)= sinx2是周期函数,则存在T(>0),使对 ,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T有sin( T+T)2=sin( T)2=sin2kπ=0,∴( +1)2 T2=Lπ(L∈Z+),∴ 与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。

  • 索引序列
  • 毕业论文copula函数
  • 毕业论文函数取对数
  • 高中数学指数函数毕业论文
  • 数学毕业论文函数方向
  • 数学毕业论文周期函数
  • 返回顶部