首页 > 毕业论文 > 粒子物理毕业论文题目

粒子物理毕业论文题目

发布时间:

粒子物理毕业论文题目

从物理学专业本科毕业论文所涉及的研究领域来看,又可以将其分为物理学理论、电子技术、计算机和应用物理四大类。A、物理学理论方向的毕业论文内容:力学、声学、数学物理、物理学与交叉学科、引力与天体物理、原子与分子和团簇物理、凝聚态物理、量子物理、场论与粒子物理、等离子体物理、光学、核物理、化学物理、统计物理、物理学史、综合等。B、电子技术:物理实验、电路的设计、传感器、C、计算机技术:多媒体技术、数据库等。D、应用物理:①材料科学:纳米材料技术、生物医学材料、薄膜材料以及新型高性能结构材料等;材料的先进合成、制造、加工的理论与新方法,材料组分、结构与性能的设计理论;结构、性能控制、材料的环境效应和寿命的评价理论;分子、纳米及微观尺度下的材料科学理论。②信息科学:高速信息网络体系结构与安全性的基础理论;微(纳)米电子学与分子电子学基础与半导体集成系统;光子、光电子集成与光子学基础;以感觉系统、神经系统、免疫系统以及系统生物学仿生和建模的生物信息系统。从分子层次着手设计的具有半导体、超导、吸氢、吸波、非线性光学等特殊功能的光、电、磁和力学纳米功能材料。③传感器技术。④测量与仪器。

1976年诺贝尔物理学奖授予美国加利福尼亚州斯坦福直线加速器中心的里克特(Burton Richter,1931—)和美国马萨诸塞州坎伯利基麻省理工学院的丁肇中(,1936—),以表彰他们在发现一种新型的重的基本粒子中所作的先驱性工作。粒子物理学的发端可以从1932年正电子的发现说起,到了50年代,陆续发现了反质子、π介子、反Λ粒子等等三十多种新粒子,其中稳定的有七种。寿命大多长于10-16秒。后来又发现了许多寿命更短的粒子,这些粒子也叫做强子共振态,是通过强相互作用衰变的。盖尔曼的夸克模型理论,解释了这些强子共振态,其预言的Ω-粒子又被实验证实。这时粒子物理学似乎已经达到了顶峰,没有什么事情可做了。然而,正是在这一短暂的沉静时期,1974年同时有两个实验小组,宣布发现了一种寿命特别长,质量特别大的粒子。这项发现的宣布,打破了沉闷的空气,使物理学家大为惊讶,推动粒子物理学迈向新的台阶。这项新的发现就是由里克特领导的SLAC-LBL合作组所发现的ψ粒子和由丁肇中领导的MIT小组所发现的J粒子。人们统称之为J/ψ粒子。SLAC是斯坦福直线加速器中心的简称,LBL是劳伦斯伯克利实验室的简称。两家共同组成一个合作组,为SLAC正负电子对撞机(SPEAR)配制了一台取名为MarkI的磁探测器,目的是探测4GeV的正负电子束对撞后生成的新粒子,探测范围可从直到。这是当时能量最高的电子对撞机。1974年初,里克特小组发现在处截面比反常,比邻近约高30%,当时并未引起注意。同年10月,又发现在处有一反常。后来还陆续有高出3~5倍的截面。这促使他们下决心把机器调回到附近进行精确测量,11月9日终于取得了在处存在狭共振的确切证据,并命名为ψ粒子。接着,又在处发现了ψ粒子的姐妹态,ψ'粒子。里克特1931年3月22日出生于纽约。1948年进入麻省理工学院,大三时曾参加正电子素实验,开始接触到电子-正电子系统。大学的毕业论文题为“氢的二次塞曼效应”,成绩优异。研究生期间,里克特测量了水银同位素位移及其超精细结构。他在工作中要用到回旋加速器,让短寿命的Hg197同位素和氚核束轰击金。因此更加激发了对核物理和粒子物理以及所使用的加速器的兴趣。他的博士论文题目是“由氢光生π介子”。然后他在斯坦福高能物理实验室找到工作。他在这里和同事们合作,建造了一台碰撞束机器,并于1965年开始实验,结果使量子电动力学的适用性延展至小于10~11cm。在这之前,里克特就在考虑高能电子-正电子碰撞束机器能用来做些什么。他特别想研究强相互作用粒子的结构。1963年里克特来到SLAC,在SLAC主任潘诺夫斯基的鼓励下,里克特组织了一个小组制定高能电子-正电子机器的最后设计。1964年完成了初步设计,1965年向美国原子能委员会提交了一份经费申请报告,当然这只是申请经费的漫长过程的第一步,以后还为之作过多次奋斗,直到1970年才得到经费。在这期间,他和小组成员又做了其它实验,设计并制造了大型磁谱仪的整套装置的一部分,并利用它进行了一系列π介子和K介子的光生实验。里克特为了以后制作存储环作准备,下了很大力气以求保住已经成立的小组。有了经费之后,工程立即上马,着手制作大型磁探测器。1973年开始做实验,终于得到了满意的成果。如果说里克特和他的小组是以他们的执著追求精神取得了引人注目的成绩,那么,丁肇中和他的小组更是以其严谨踏实、一丝不苟的作风得到了科学上的回报。丁肇中是华裔美籍科学家,1936年1月27日出生于美国密执安州安亚柏市,父亲丁观海是工程学教授,母亲王隽英是心理学教授,他们在访美期间,生下了丁肇中,于是丁肇中从小就成了美国公民。出生后两个月,与母亲一起回到中国。由于战争的原因,直到十二岁才受到传统的教育。1956年丁肇中得奖学金入美国密执安大学,三年后获得了数学和物理学位,1962年获得物理博士学位。关于丁肇中的经历,请读他的自述:“当我20岁时,我决定到美国去接受较好的教育,我父母的朋友、密执安大学工程学院的院长.布朗,告诉我父母他很欢迎我去那儿,并到他家住宿。当时我只懂一点儿英语,而且对在美国的生活费用毫不了解,在中国,我通过看书了解到美国许多学生是通过自己劳动挣钱进入大学的,于是,我对父母说我也要这么做。1956年9月6日,我到达了美国底特律机场,身边带了100美元,当时好像已很富裕了。我感到有些害怕,因我不认识任何人,而且通信也很困难。”“由于我是靠得奖学金入学的,故我不得不努力学习以继续取得奖学金。我在三年内使自己在密执安大学获得了数学和物理学位,在1962年,在琼斯和泊尔博士指导下获得物理学博士学位。”“我作为一个福特基金会的研究员到了欧洲核子研究中心(CERN)。在那儿我很荣幸能跟柯可尼教授一起搞质子同步加速器,从他那儿学到许多物理知识。他能以简单的方法对待一个复杂的问题,做实验相当仔细,这些都给我留下了深刻的印象。”“1965年春天,我回到美国,在哥伦比亚大学任教。在那些年月里,哥伦比亚大学的物理系是一个很有刺激性的地方,我有机会观察到如:莱德曼、李政道、拉比、施瓦茨、斯坦博格、吴健雄以及其他教授的工作。他们在物理学上都具有各自的风格和相当突出的鉴别力。我在哥伦比亚短暂的几年,收益很大。”“在我到达哥伦比亚大学的第二年,在坎伯利基电子加速器上进行一项由光子同核靶碰撞产生电子正电子对的实验。看来好像有点违反量子电动力学。于是我仔细地研究了该项实验,决定重做一次。我与搞西德电子同步加速器的韦伯教授和杰茨凯商量是否可在汉堡进行正负电子对产生的实验。他们都很热情地鼓励我马上就开始实验,1966年3月,我离开了哥伦比亚大学到汉堡去进行这个实验。自那时起,我以全部精力投入到电子对及μ介子对物理、研究量子电动力学和类光粒子的产生和衰变、寻找能衰变成电子对或μ介子对的新粒子。这类实验的特点是需要高强度入射通量,需要绝对排除大量不需要的背景条件,同时又需要质量分辨率高的探测器。”“为了寻找较大质量的新粒子,我于1972年带了实验小组回到了美国,在布鲁克海文国立实验室进行实验。1974年秋,我们发现了一种新的、完全出乎意料的重粒子——J粒子的证据。自那以后,找到了整族新粒子。”关于电子-正电子实验的缘起,丁肇中在领诺贝尔奖的演说词中作了如下说明:“1957年夏天,我是纽约暑期班的学生,偶然得到了赫兹堡的经典著作《原子光谱和原子结构》(1937年),从书中我第一次了解到光量子的概念和它在原子物理学中的作用,大学毕业前夕,我收到父亲送给我的圣诞礼物:阿希耶泽和贝律茨基合著的《量子电动力学》(1957年)一书的英译本。在密执安大学学习期间,我仔细读了这本书,并自己推导了书中的某些公式,后来我在哥伦比亚大学任教的年代,很有兴趣地读了特雷尔1958年的一篇论文。他指出用高能电子加速器在短距离上对量子电动力学(QED)所做的各种检验的含义。对于怎样把某一类费因曼图从3μ介子的μ介子产生中分离出来,我同布洛茨基合作进行了理论计算。”为此丁肇中和布洛茨基联名于1966年发表了一篇论文。1965年10月,丁肇中受德国汉堡德意志电子同步加速器研究中心(DESY)主任詹希克的邀请,做了e+e-对产生的第一个实验。他和他的小组使用的探测器具有如下特性:1.能利用负载循环2%~3%的10-11/s的入射光子流;2.接受度很大,不被磁铁的边缘或屏蔽物所限制,仅受闪烁计数器决定;3.所有的计数器并不直接面对靶体;4.为了排除强子对,切连科夫计数器为磁铁所分隔,使π介子与第一对计数器中的气体辐射源相互作用而放出的电子被磁铁排除,不进入第二对计数器。从第二对计数器放出的低能电子则被簇射计数器排除。这个实验的结果表示出量子电动力学正确地描述了粒子对产生过程直到10-14cm。然后,丁肇中小组转动谱仪的磁铁,使最大的粒子对质量接受区的中心在750MeV附近,他们观察到e+e-对的数量有很大的上升,明显地破坏QED。这种对QED的偏离,事实上是由强作用对e+e-产生的贡献增加而引起的。这时入射的光子产生重的类光粒子ρ介子,它再衰变为e+e-。它的衰变几率为α2的量级,为了证明情况确实是这样,他们做了另外一个实验,增加e+e-的张角,发现与QED的偏离更大。这是可以预计到的,因为当增加e+e-的张角时,QED过程比强作用过程减少得更快。约为5MeV,因此丁肇中小组研制了一个质量分辨率约为5MeV的探测器。丁肇中小组的成员们面对的是极其单调的测量工作,可是这不是一般的测量,请继续听丁肇中教授的回忆:“在有些测量中,事件率低,特别在研究大于ρ和ω介子质量范围的e+e-质谱的实验里,当加速器全负载时,e+e-对的产额约为每天一个事件。这就是说,整个实验室大约有半年光景一直专门只做这个实验,每天一个事件的事件率还意味着,往往2、3天没有事件,而在另外的日子里我们却得到2、3个事件。正是在这个实验的过程中,我们形成了每30分钟把全部电压检查一遍和每24小时通过测量QED产额来校准一次谱仪的传统。为了确保探测器工作稳定,我们还建立了物理学家跟班的惯例,甚至当加速器关机维修时也跟班,我们还从不切断电源。这样做的最终效果是,我们的计数室多年来有着与实验室的其它部分不同的基础体制。”“我们经过多年的工作后,学会了怎样操纵具有负载循环2%~3%,每秒约1011γ的高强度粒子束。同时采用具有大的质量接受度和好的质量分辨率△M≈5MeV的探测器,它能以>>108的倍数将ππ从e+e-中辨别出来。”“我们现在可以提出一个简单的问题:有多少重光子存在?它们的性质怎样?对我来说,不能想像只有三种重光子,而且它们的质量都是1GeV左右,为了解答这些问题,我同小组成员反复讨论了怎样进行实验。最后我决定1971年在布洛克海文国立实验室的30GeV质子加速器上首先做一个大型实验,把探测质量提高到5GeV,探测重光子的e+e-衰变来寻找更多的重光子。”在诺贝尔奖演说词中,丁肇中这样形容准备阶段的工作:“在建造我们的谱仪过程,及整个实验过程中,我受到很多的批评。问题在于为了达到良好的分辨率,必须要造一个非常昂贵的谱仪。一位有名望的物理学家批评说:这种谱仪只适用于寻找窄共振——但并不存在窄共振。尽管这样,我还是决定按我们原来的设计创造,因为我一般不太相信理论论证。”“1974年4月我们完成了实验的布置工作,并开始引入强大的质子束流到实验区。我们立刻发现,我们计数室里的辐射强度达每小时伦琴。这就是说,我们的物理学家24小时内将要受到最大允许的辐射年剂量。我们花了二、三个星期艰苦地寻找原因,大家为能否继续进行这项实验而担忧。”“一天,自1966年以来一直同我共事的贝克尔博士带着盖革计数器在踱步时,突然发现,辐射的大部分来自屏蔽区的一个特定的地方。经过仔细研究后,发现即使我们已经用了10000吨混凝土屏蔽块,但最重要的区域——束流制动器的顶部——却仍然根本没有被屏蔽!经此纠正之后,辐射强度降到了一个安全值,这样我们就可以进行实验了。“从4月到8月,我们做了例行的调节工作,探测器工作性能符合设计要求。我们能够利用每秒1012个质子,小型电子对谱仪也工作正常,这使我们能用纯电子束来校正探测器。”经过严格认真的反复核对,奇迹终于出现了。丁肇中回忆说:“1974年初夏,我们在4Gev~5GeV的大质量区域里测定了一些数据。然而,对这些数据所做的分析表明,只存在极少的电子-正电子对。”“在8月底,我们调整了磁铁使它能接受~4GeV的有效质量。我们立即看到了干净的、真正的电子对。”“最令人惊奇的是,大部分e+e-对在处形成一个狭峰。更详细的分析表明,它的宽度小于5MeV。”经过多方核对后,丁肇中小组确认他们发现了一个当时质量最大的新粒子。后来得知,里克特小组也发现了这一粒子。他们的实验各有特点。里克特小组是让e+e-对湮没以形成矢量介子,是一种形成实验,而丁肇中小组是利用质子束轰击铍靶,产生矢量介子,然后测量矢量介子的衰变产物,则是一种产生实验。里克特小组和丁肇中小组用不同的设备、经不同的反应过程几乎同时地发现了同一粒子,使物理学界大为惊喜。他们的发现把高能物理学带到了新的境界,因此,两年后里克特和丁肇中就分获诺贝尔物理学奖。

随着理论和实验的不断发展,物理学家逐步建立了粒子物理的“ 标准模型 ”。

在这个模型下,整个宇宙的基本粒子分为4类,分别是 夸克 、 轻子 、 矢量玻色子 和 标量希格斯粒子 。

其中,矢量玻色子是相互作用的 媒介子 ,通过规范作用传递着基本粒子之间的强相互作用、弱相互作用和电磁相互作用。

所有的基本粒子通过和希格斯子发生 相互作用 而获得质量。随着2012年希格斯粒子 在实验中发现 ,粒子物理标准模型完成最后一块“拼图”,证明了标准模型的巨大成功。

但是目前宇宙中仍然有许多标准模型解释不了的问题,表明 粒子物理标准模型并不是“终极”理论 ,而是电弱能标下的“有效”理论,仍然有超出标准模型的新物理亟待去发掘,这也是当前粒子物理学界的主要研究内容。

暗物质研究

暗物质超出了粒子物理标准模型,是当今物理学和天文学亟待解决的重大问题,在 实验中探测到暗物质并研究其物理属性 ,将是物理学的重大突破。

暗物质实验探测有3个主要方向—— 直接探测 、 间接探测 和 对撞机探测 。

国际新一代暗物质直接探测实验 PandaX-4T 4t级液氙实验 率先投入运行,取得大质量暗物质世界最强的限制。

间接探测包括暗物质粒子探测( DAMPE )和 AMS-02空间实验 积累了更多数据,给出更加精确的测量。

欧洲核子研究中心大型强子对撞机 LHC 上的暗物质寻找不断深入更加复杂的参数空间,并为即将开始的Run-3阶段取数做准备。

中国锦屏地下实验室(CJPL) 是世界上最深的实验室,有效屏蔽了来自宇宙线的干扰,提供了极其优越的实验环境,中国开展了 PandaX液氙实验 和 CDEX高纯锗实验 直接探测暗物质。

>>>

近20年来,位于意大利的 DAMA/LIBRA实验 一直宣称观测到暗物质在NaI(Tl)晶体中产生的 年调制信号 ,然而相应的暗物质信号参数被各种类型的直接探测实验所排除。

为了更加确切地检验这个疑似信号,国际上试图用同样的低本底NaI(Tl)晶体开展实验。

2021年5月,西班牙 Canfrac地下实验室 采用 kg的低本底NaI(Tl)晶体探测器的ANAIS实验公布了3年曝光量的探测结果,并 没有发现显著年调制现象 。预计到2022年底,该实验将有超过3倍标准偏差灵敏的曝光量,可以给出更加确切的结论。

另一个采用106 kg低本底NaI(Tl)晶体的 COSINE-100实验 ,在韩国Yangyang地下实验室 a曝光量的数据,也 没有发现显著的年调制现象 。

>>>

2020年,位于意大利Gran Sasso地下实验室的 XENON1T液氙实验 在 t·a曝光量的低能量电子反冲数据中,观测到了 大于3倍标准偏差的疑似信号 ,引起了暗物质理论和实验研究领域的广泛关注,亟需 同类型实验的进一步检验 。

中国 PandaX-II二期580 kg级液氙实验 积累了100 t·d的曝光量数据,直接从刻度数据中获取了 氙中主要的放射性杂质本底的特征谱 ,进而根据这些高可靠性的本底特征谱对电子反冲数据进行分析。

PandaX-II的结果显示,XENON1T观测的疑似信号 和当前数据并不矛盾 ,还需要提高数据统计量和探测灵敏度以给出确定性结论。

PandaX-II实验对轴子暗物质耦合常数(a)和中微子反常磁矩(b)的排除限,和XENON1T的疑似信号并不矛盾

国际上开展了多种类型暗物质探测的实验升级和研发,3个以液氙作为靶物质的实验,位于中国的PandaX-4T、欧洲的XENONnT和美国的LZ实验,将探测体量提升到了多吨级,预期能够 将探测灵敏度比之前提升1个数量级以上 。

其中, PandaX-4T液氙实验 在2020年底完成安装和调试,成为国际上首个投入运行的 多吨级液氙探测实验 ,在2021年上半年试运行的曝光量达到 t·a。

PandaX-4T探测器中应用了一系列新技术:研制了 新一代超大尺寸高透光的时间投影室探测器 ,大幅提高了探测器电场的均匀性和电子信号放大率,实现高分辨率的信号重建;采用了 无触发数据读出方式 ,有效降低了微弱信号的探测阈值;研制了 新型低温精馏氙系统 ,成功提纯6 t原料氙,将放射性杂质氪85的含量降低到PandaX-II时的1/20;有效利用液氙自屏蔽并结合多种放射性测量方法和表面清洗工艺,将单位探测靶中放射性本底降低到1/20,放射性杂质氡222的含量降低到1/6。

PandaX-4T首批数据的探测灵敏度较PandaX-II 提升了倍 ,给出了大质量暗物质和原子核自旋无关散射截面世界最强的限制。

PandaX-4T首批数据

对暗物质自旋无关散射截面的排除限

黄色区域为“中微子地板”,即探测灵敏度可以探测到太阳或大气中微子在探测器中的信号贡献

这批数据也显示,在暗物质质量10 GeV/ c 2附近区域,PandaX-4T实验开始触碰到所谓的“ 中微子地板 ”,即有可能探测到太阳中核聚变产生的硼8中微子同氙原子核的 相干散射信号 ,这种散射将是未来探测中微子的一个重要途径。

与此同时,国际上开始计划 几十吨级“终极”液氙探测实验 ,其中一个目标是将暗物质探测灵敏度推进到“中微子地板”。PandaX实验团队已经开展了相应的关键技术研发。

以液氩为靶物质 的探测器对大质量暗物质也有独特的探测灵敏度,几十吨级的低本底氩探测器的研发也在持续推进中。

>>>

中国CDEX实验利用 点电极高纯锗探测器 ,可实现 低能量阈值的探测 ,对轻质量暗物质具有高灵敏度。

2021年CDEX实验公布了利用 kg·d曝光量的数据寻找有效场暗物质信号的结果。

直接探测实验中,暗物质和靶物质相互作用转移动量小,可以 用有效场算符的形式系统地研究 ,从而实现较为全面的覆盖多种可能的暗物质理论模型。

在分析中,CDEX实验将探测阈值降低到160 eV,针对小质量暗物质,系统性地给出了 非相对论下 多种类型有效场模型的耦合常数上限。

同时,利用 手征有效场理论 ,获得了6 GeV/ c 2质量以下世界最强的WIMP与pion介子散射截面的排除限。

目前CDEX实验正在开展50 kg级高纯锗探测阵列实验的研发,预期将探测灵敏度 提高2个数量级以上 。

>>>

针对 小质量暗物质 ,直接探测实验也尝试不同探测方案来突破探测阈值的限制。

液氙探测实验 通过独立电离电子信号(S2-only)、Migdal或韧致辐射等次级效应来寻找小质量暗物质。

如 PandaX实验 在2021年初发表的S2-only数据分析结果,寻找暗物质和电子散射信号,在15~30 MeV/ c 2暗物质质量区间给出世界最强的 散射截面限制 。

SENSEI实验 采用了约2 g的高阻抗Skipper-CCD,在2020年底发表了24 d运行数据的结果,给出 MeV/ c 2质量的暗物质和电子散射信号世界最强的限制,以及 eV/ c 2质量的暗光子世界最强的限制。

SENSEI实验正在组装测试100 g探测模块,将 大幅度提升该质量范围的暗物质探测灵敏度 。

>>>

在 暗物质间接探测 方面,中国暗物质探测卫星 DAMPE实验 和位于国际空间站的 AMS-02实验 继续积累数据。

2021年发表了AMS-02实验运行7 a以来的物理数据,给出 更加精确 的反电子、反质子等测量结果。

>>>

在 对撞机探测 方面, 大型强子对撞机LHC 上的 ATLAS 和 CMS 实验不断深入分析Run-2运行时期的全部数据,寻找 暗物质产生过程 以及 中间传播子信号 。

对撞机探测不受原子核自旋大小的压制,通过寻找夸克或者胶子湮灭产生暗物质的过程,以及通过双喷注共振峰直接寻找轴矢量中间传播子,在一定的耦合常数下,可以 有效补充直接探测实验的结果 。

对撞机实验同时在寻找一些 复杂过程的暗物质模型 ,其中, 暗希格斯子模型 认为暗物质的质量起源有可能也存在类似希格斯子的破缺机制——暗希格斯子,暗希格斯子可以有和希格斯子类似的衰变过程。

ATLAS实验在2021年发表了 首个暗希格斯子衰变到2个矢量玻色子最终态的寻找结果 ,对中间传播子和暗希格斯子质量给出了限制。

LHC第三期取数Run-3即将开始,将累计更多的数据量进一步扫描多种暗物质产生模型。

中微子和粒子天体物理研究

粒子天体物理和粒子物理研究紧密联系, 宇宙线 具有地球上人造加速器无法达到的高能量,为我们认识极端高能物理过程、寻找新物理提供了宝贵的物质样本。

>>>

2021年粒子天体物理领域最显著的成果来自中国国家重大 科技 基础设施—— 高海拔宇宙线观测站LHAASO 。

LHAASO于2021年完成建设并顺利通过工艺验收,正式进入科学运行阶段,以前所未有的灵敏度开展 伽马射线、宇宙线巡天观测 。

在建设期间,基于1/2阵列数据,LHAASO合作组发布了首批观测结果:发现 银河系中大量超高能宇宙加速器 ,为寻找河内宇宙线起源做出了重要推进;记录到 能量达 PeV的伽马射线光子 ,这是人类迄今为止观测到的最高能量光子,开创了超高能伽马射线这一崭新的天文窗口。

蟹状星云 是首批发现的12个超高能伽马射线源之一,一直作为伽马射线天文学的“标准烛光”,LHAASO的最新结果为此“标准烛光” 在超高能波段设定了亮度标准 。

LHAASO观测到来自蟹状星云方向的 PeV伽马射线光子

这些超高能伽马射线辐射产生PeV以上能段的电子,接近经典电动力学和理想磁流体力学理论所允许的加速极限, 对现有的粒子加速理论提出了严峻挑战 。

未来几年,LHAASO将持续对北天区开展巡天观测,扫描伽马射线源并精确测量“膝”区宇宙线能谱, 冲击宇宙线起源的世纪之谜 。

>>>

另一种来自宇宙深处的重要物质样本是 高能中微子 。

2021年,位于南极冰层中的冰立方中微子天文台公布了首个 格拉肖共振事件 ——格拉肖预言,反电子中微子可与电子相互作用生成W-玻色子。产生格拉肖共振的中微子峰值能量为 PeV,可 从极端天体环境中得到 。

冰立方在此次簇射事例中测得 PeV的能量,考虑到簇射中的不可见能量,中微子能量被修正为约 PeV;事例中测到次级缪子的信号预示着 W-玻色子的强子衰变过程 ,为格拉肖共振提供了进一步证据。

冰立方的格拉肖共振事件再次验证了粒子物理标准模型, 揭示了天体反电子中微子的存在 。

对格拉肖共振事件的观测有望对天体中微子的产生机制做出限制。

未来几年是中微子天文学发展的关键时刻,国内外多个实验组提出了冰层、海洋、湖泊中的多种 下一代中微子望远镜方案 ,结合伽马射线、宇宙线、引力波的观测数据开展多信使天文学研究。

>>>

在 超出标准三味中微子模型的新物理寻找 方面,位于美国费米国家加速实验室的MicroBooNE实验发布了新的测量结果,没有找到惰性中微子存在的迹象。

此前,LSND、MiniBooNE等 短基线实验 相继发现中微子的数量异常,引入第四种中微子—— 惰性中微子 。

MicroBooNE实验没有找到惰性中微子,表明其中的差异还需要进一步研究,中微子数量异常仍然是未解之谜。

>>>

2021年,国际 无中微子双贝塔衰变实验 方向发展势头迅猛。

大型实验 中,CUORE和Kam⁃LAND-ZEN实验分别继续取数,GERDA的继任实验LEGEND-200即将开始运行。

国内无中微子双贝塔衰变实验在最近几年蓬勃发展,多个实验组提出了多种不同的实验方案,再次彰显了 马约拉纳中微子 这一问题的重要性和显著度。

>>>

2021年, 中国江门中微子实验 的建设进展顺利,预期2023年开始取数,剑指中微子质量顺序、中微子混合参数的精确测量,有望率先获得具有国际竞争力的实验成果。

明天将介绍缪子反常磁矩研究、重味与强子物理研究、高能量前沿希格斯物理、电弱物理与新物理寻找这3个领域的进展,敬请关注!

论文全文发表于《 科技 导报》2022年第1期,原标题为《2021年粒子物理学热点回眸》,本文有删减,欢迎订阅查看。

物理学研究宇宙间物质存在的各种主要的基本形式,它们的性质、运动和转化以及内部结构;从而认识这些结构的组元及其相互作用、运动和转化的基本规律。地学和生命科学都是自然科学的重要方面,有重要的社会作用,但是像地球这样有生物的行星在宇宙中却是少见的,所以地学和生命科学不属于物理学范围。当然,物理学所发现的基本规律,即使在地球现象和生命现象中,也起着重要作用。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来源于实践,而实践的广度和深度有着历史的局限性。随着实践的扩展和深入,物理学的内容也不断扩展和深入。新的分支学科陆续形成;已有的分支学科日趋成熟,应用也日益广泛。早在古代就形成的天文学和起源于古代炼金术的化学,始终保持着独立的地位,没有被纳入物理学的范围。在天文学和物理学之间、化学和物理学之间存在着密切的联系,物理学所发现的基本规律在天文现象和化学现象中也起着日益深刻的作用。 客观世界是一个内部存在着普遍联系的统一体。随着物理学各分支科学的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而去统一地理解一切物理现象。这种努力虽然逐步有所进展,使得这一目标有时显得很接近;但与此同时,新的物理现象又不断出现,使这一目标又变得更遥远。看来人们对客观世界的探索、研究是无穷无尽的。以下大体按照物理学的历史发展过程来叙述物理学的发展及其内容。物理学是研究自然界基本规律的科学.它的英文词physics来源于希腊文,原义是自然,而中文的含义是“物”(物质的结构、性质)和“理”(物质的运动、变化规律).中文含义与现代观点颇为吻合.现代观点认为物理学主要研究:物质和运动,或物质世界及其各部分之间的相互作用,或物质的基本组成及它们的相互作用.物质可以小至微观粒子——分子、原子以至“基本”粒子(elementaryparticles).所谓基本粒子,顾名思义是物质的基本组成成分,本身没有结构.然而基本与否与人们的认识水平以及科学技术水平有关,因此对“基本”的理解有阶段性.有鉴于此,物理学家简单地称之为“粒子”.有时为了表达认识的层次,我们仍然可以说:“现阶段的基本粒子为……”.当前我们认为基本粒子有轻于(lepton)、夸克(quark)、光子(photon)和胶子(gluon)等等.科学家们正在努力寻找自由夸克.此外,分数电荷、磁单极也在寻找之列.我们周围的物体是物质的聚集状态.人们可以用自己的感官感知大多数聚集状态的物质,并称它们为宏观(macroscopic)物质以区别前面所说的微观(microscopic)粒子.居间的尺度是介观(mesoscopic),而更大的尺度是宇观(cosmological).场(field)传递相互作用,电磁场和引力场就是例子.在物理学的范围内,物质的运动是指机械运动、热运动、微观粒子的运动、原子核和粒子间的反应等等.运动总是发生在一定的时间和空间.时间和空间首先是作为物质运动的舞台,但最后也成了物理学研究的对象.现在知道物质之间的相互作用有四种,即万有引力、弱相互作用、电磁相互作用和强相互作用.爱因斯坦(,1879—1955)生前曾致力于统一场论的工作,试图用统一的理论来描述各种相互作用.在60年代,走向统一有了突破性的进展.格拉肖()、温伯格()和萨拉姆()等人发现弱相互作用和电磁相互作用可以统一,用弱电相互作用(electroweak)来描述.鲁比亚(1983[1],)等提供了实验支持.大统一理论(Grand Unification Theory,GUT)试图将强相互作用也统一进去,而超对称理论更企图将引力也纳入其中.还有人在寻求其他的相互作用.对此,在Physics Teacher期刊上曾有一篇文章题为“存在第五种基本力吗?”专门讨论这一命题[6].在高级的理论中,相互作用只不过是交换物质,如电磁作用交换光子、强作用交换胶子.物理学的一个永恒主题是寻找各种序(orders)、对称性(symmetry)和对称破缺(symmetry-breaking)[10]、守恒律(conservation laws)或不变性(invariance).物质的有序状态比我们想象的要广泛得多.除了排列整齐的位置序以外,还可以有指向序.超导态也是一种有序状态.对称性通常指静止的空间几何对称,如太极图、八卦、晶体中的平移和旋转对称.实际上,对称性还可以是动态的,可以是时间反演对称、物质—反物质对称以及更为抽象的规范对称等等.就物理学和其他科学的关系而言,我们可以说:·物理学是最基本的科学.·物理学是最古老、发展最快的科学.·物理学提供最多、最基本的科学研究手段.最基本的体现是在天文学、地学、化学、生命科学中都包含着物理过程或现象.在这些学科中用到不少物理学概念和术语是很自然的.最基本还意味着任何理论都不能和物理学的定律相抵触.例如,如果某种理论破坏能量守恒定律,那么这一理论就很成问题.当然,某些物理理论本身或一些阶段性的工作本身也是在不断地完善.19世纪中叶之前,物理学曾是完完全全的实验科学.力学中的理论问题被认为是数学家的事.19世纪末,在当时处于世界物理学中心的德国的大学里,开始设置理论物理学教授的席位.此后,随着人类的认识能力逐步深入,逐步深入到不能靠直觉把握的微观、高速、宇观现象,20世纪初建立了狭义和广义相对论,以及量子力学这些深刻的物理理论.到了20世纪中叶,物理学已经成为实验和理论紧密结合的科学.20世纪后半叶由于电子计算机的发展,既改变了理论物理的工作方式,也扩大了实验的涵义.目前物理学已经成为实验物理、理论物理、计算物理三足鼎立的科学.实验提供的条件比自然界出现的更富变化和更灵活可控,而物理理论则给出了对自然界的数学描述.计算物理学是重要的新分支,有自己独特的研究方法.计算机实验可以提供比通常的实验更为变化丰富和灵活控制的条件.不过通常需要用到超级计算机.物理学中最重大的基本理论有下面5个:·牛顿力学或经典力学(Mechanics)研究物体的机械运动;·热力学(Thermodynamics)研究温度、热、能量守恒以及熵原理等等;·电磁学(Electromagnetism)研究电、磁以及电磁辐射等等;·相对论(Relativity)研究高速运动、引力、时间和空间等等;·量子力学(Quantum mechanics)研究微观世界.后两个理论主要是在20世纪发展起来的,通常认为是现代物理学的核心.以上理论中没有一个被完全推翻过,也没有一个是永远正确的.例如,牛顿力学在高速情形下,应该用狭义相对论来代替;而对于强引力,它又偏离于广义相对论,但在它的适用范围内仍然是精确的.科学的理论总是要发展的,需要根据新发现的事实进行修正.在教科书中只介绍一种版本的做法很可能导致“理论是唯一的”这样的观念.事实上,理论决不是唯一的.科学理论往往在美学上令人赏心悦目,在数学上优雅而普适,但是仅仅有这些是决不可能流传下来的.理论和思想必须经受实验的检验和验证.物理学中的理论和实验在相互促进和丰富中得到发展.一个没有思想的实验工作者可以发现无穷无尽的事实,不过毫无用处.理论家如果不受实验检验这一约束也可能产生出极其丰富的思想,不过与大自然毫无关系而已.通常的科学研究方法是:·通过观测、实验、计算机模拟得到事实和数据;·用已知的可用的原理分析这些事实和数据;·形成假说和理论以解释事实;·预言新的事实和结果;·用新的事例修改和更新理论.上述的后3步都是关于理论的.以上所说的科学研究的步骤是常规的.有时候,有的人可能并不遵循这样的过程.常常直觉(intuition)或者预感(premonition)会起相当的作用.有时候,机遇(运气或偶然)对于成功也会起作用,使你获得一则重要的信息或发现一个特别简单的解.要学会在恰当的时机提出恰当的问题,并找到问题的答案.有时还必须忽略一些“事实”,原因是这些并不是真正的事实或者它们无关紧要、自相矛盾;或者是由于它们掩盖了更重要的事实或考虑它们使问题过于复杂化.据说,有一次有人问爱因斯坦:如果迈克耳孙-莫雷(Michelson-Morley)实验并不导致光速不变你怎么办?他说:他将忽略那些实验结果,他已经得到了结论,光速必须被认为是不变的.关于爱因斯坦1905年提出狭义相对论时是否知道迈克耳孙-莫雷实验,曾发生过长时间的争论.有人认为爱因斯坦在他的著作中没有留下他知道迈克耳孙-莫雷实验的丝毫痕迹,他可能纯粹通过理论推理和他们(迈克耳孙与莫雷)得出了相同的结论.爱因斯坦的首席传记作家培斯(Abraham Pais)筛选了许多历史记载,得出结论说,爱因斯坦确实知道这一实验.新近有一篇爱因斯坦在1922年的演说的英文翻译稿刊登在Physics Today上[8].此文是根据原来的德语演讲的日文记录整理、翻译的[见第九章参考文献(13)].译者让爱因斯坦“本人”表示,他知道这一实验.在大学物理的学习中,除了学习事实、定律、方程和解题技巧外,还必须努力从整体上掌握物理学.要了解各分支间的相互联系.现代观点认为,应该从整体上逻辑地、协调地来把握物理学.学习中,对于基本物理定律的优美、简洁、和谐以及辉煌应该有所体会,要学会鉴赏其普适程度,了解其适用范围.还要学会区别理论和应用,物理思想和数学工具,一般规律和特殊事实,主要和次要效应,传统的和现代的推理方式等等.

粒子物理毕业论文方向

应用物理学专业的毕业生主要在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作。科研工作包括物理前沿问题的研究和应用,技术开 发工作包括新特性物理应用材料如半导体等,应用仪器的研制如医学仪器、生物仪器、科研仪器等。应用物理专业的就业范围涵盖了整个物理和工程领域,融物理理 论和实践于一体,并与多门学科相互渗透。 此外,出国和考研的毕业生比例一般也会占到毕业总人数的一半左右。

物理系毕业的本科生直接参加工作的很少,将来可以从事研究工作,在大学或者研究所里,具有物理背景的学生,思维能力很强,可以从事金融经济方面的工作,现在华尔街上有许多北大物理系的校友,你还可以从事生物产业,电子,计算机,数学等许多行业,总之,物理系的毕业生将来就业的前景十分广阔,大大强于工科学生。呵呵我也是物理系的.

物理和数学一样,应用面很广,特别以后从事科研工作

物理学概览 物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,从而认识这些结构的组成元素及其相互作用、运动和转化的基本规律的科学。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来自于实践,随着实践的扩展和深入,物理学的内容也在不断扩展和深入。 随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学也逐步发展成为各分支学科彼此密切联系的统一整体。 物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这—目标还很遥远。看来人们对客观世界的探索、研究是无穷无尽的。经典力学 经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。                                       自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动现象的初步理论。  牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律,为经典力学奠定了基础。亚当斯根据对天王星的详细天文观察,并根据牛顿的理论,预言了海王星的存在,以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。  经典力学中的基本物理量是质点的空间坐标和动量:一个力学系统在某一时刻的状态,由它的某一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。  在经典力学中,力学系统的总能量和总动量有特别重要的意义。物理学的发展表明,任何一个孤立的物理系统,无论怎样变化,其总能量和总动量数值是不变的。这种守恒性质的适用范围已经远远超出了经典力学的范围,现在还没有发现它们的局限性。  早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。经典力学的应用范围,涉及到能源、航空、航天、机械、建筑、水利、矿山建设直到安全防护等各个领域。当然,工程技术问题常常是综合性的问题,还需要许多学科进行综合研究,才能完全解决。                                         机械运动中,很普遍的一种运动形式就是振动和波动。声学就是研究这种运动的产生、传播、转化和吸收的分支学科。人们通过声波传递信息,有许多物体不易为光波和电磁波透过,却能为声波透过;频率非常低的声波能在大气和海洋中传播到遥远的地方,因此能迅速传递地球上任何地方发生的地震、火山爆发或核爆炸的信息;频率很高的声波和声表面波已经用于固体的研究、微波技术、医疗诊断等领域;非常强的声波已经用于工业加工等。热学、热力学和经典统计力学  热学是研究热的产生和传导,研究物质处于热状态下的性质及其变化的学科。人们很早就有冷热的概念。对于热现象的研究逐步澄清了关于热的一些模糊概念(例如区分了温度和热量),并在此基础上开始探索热现象的本质和普遍规律。关于热现象的普遍规律的研究称为热力学。到19世纪,热力学已趋于成熟。  物体有内部运动,因此就有内部能量。19世纪的系统实验研究证明:热是物体内部无序运动的表现,称为内能,以前称作热能。19世纪中期,焦耳等人用实验确定了热量和功之间的定量关系,从而建立了热力学第一定律:宏观机械运动的能量与内能可以互相转化。就一个孤立的物理系统来说,不论能量形式怎样相互转化,总的能量的数值是不变的,因此热力学第一定律就是能量守恒与转换定律的一种表现。  在卡诺研究结果的基础上,克劳修斯等科学家提出了热力学第二定律,表达了宏观非平衡过程的不可逆性。例如:一个孤立的物体,其内部各处的温度不尽相同,那么热就从温度较高的地方流向温度较低的地方,最后达到各处温度都相同的状态,也就是热平衡的状态。相反的过程是不可能的,即这个孤立的、内部各处温度都相等的物体,不可能自动回到各处温度不相同的状态。应用熵的概念,还可以把热力学第二定律表达为:一个孤立的物理系统的熵不会着时间的流逝而减少,只能增加或保持不变。当熵达到最大值时,物理系统就处于热平衡状态。                                       深入研究热现象的本质,就产生了统计力学。统计力学应用数学中统计分析的方法,研究大量粒子的平均行为。统计力学根据物质的微观组成和相互作用,研究由大量粒子组成的宏观物体的性质和行为的统计规律,是理论物理的一个重要分支。  非平衡统计力学所研究的问题复杂,直到20世纪中期以后才取得了比较大的进展。对于一个包含有大量粒子的宏观物理系统来说,系统处于无序状态的几率超过了处于有序状态的几率。孤立物理系统总是从比较有序的状态趋向比较无序的状态,在热力学中,这就相应于熵的增加。  处于平衡状态附近的非平衡系统的主要趋向是向平衡状态过渡。平衡态附近的主要非平衡过程是弛豫、输运和涨落,这方面的理论逐步发展,已趋于成熟。近20~30年来人们对于远离平衡态的物理系统,如耗散结构等进行了广泛的研究,取得了很大的进展,但还有很多问题等待解决。  在一定时期内,人们对客观世界的认识总是有局限性的,认识到的只是相对的真理,经典力学和以经典力学为基础的经典统计力学也是这样。经典力学应用于原子、分子以及宏观物体的微观结构时,其局限性就显示出来,因而发展了量子力学。与之相应,经典统计力学也发展成为以量子力学为基础的量子统计力学。

粒子物理研究生毕业论文

物理学概览 物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,从而认识这些结构的组成元素及其相互作用、运动和转化的基本规律的科学。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来自于实践,随着实践的扩展和深入,物理学的内容也在不断扩展和深入。 随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学也逐步发展成为各分支学科彼此密切联系的统一整体。 物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这—目标还很遥远。看来人们对客观世界的探索、研究是无穷无尽的。经典力学 经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。                                       自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动现象的初步理论。  牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律,为经典力学奠定了基础。亚当斯根据对天王星的详细天文观察,并根据牛顿的理论,预言了海王星的存在,以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。  经典力学中的基本物理量是质点的空间坐标和动量:一个力学系统在某一时刻的状态,由它的某一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。  在经典力学中,力学系统的总能量和总动量有特别重要的意义。物理学的发展表明,任何一个孤立的物理系统,无论怎样变化,其总能量和总动量数值是不变的。这种守恒性质的适用范围已经远远超出了经典力学的范围,现在还没有发现它们的局限性。  早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。经典力学的应用范围,涉及到能源、航空、航天、机械、建筑、水利、矿山建设直到安全防护等各个领域。当然,工程技术问题常常是综合性的问题,还需要许多学科进行综合研究,才能完全解决。                                         机械运动中,很普遍的一种运动形式就是振动和波动。声学就是研究这种运动的产生、传播、转化和吸收的分支学科。人们通过声波传递信息,有许多物体不易为光波和电磁波透过,却能为声波透过;频率非常低的声波能在大气和海洋中传播到遥远的地方,因此能迅速传递地球上任何地方发生的地震、火山爆发或核爆炸的信息;频率很高的声波和声表面波已经用于固体的研究、微波技术、医疗诊断等领域;非常强的声波已经用于工业加工等。热学、热力学和经典统计力学  热学是研究热的产生和传导,研究物质处于热状态下的性质及其变化的学科。人们很早就有冷热的概念。对于热现象的研究逐步澄清了关于热的一些模糊概念(例如区分了温度和热量),并在此基础上开始探索热现象的本质和普遍规律。关于热现象的普遍规律的研究称为热力学。到19世纪,热力学已趋于成熟。  物体有内部运动,因此就有内部能量。19世纪的系统实验研究证明:热是物体内部无序运动的表现,称为内能,以前称作热能。19世纪中期,焦耳等人用实验确定了热量和功之间的定量关系,从而建立了热力学第一定律:宏观机械运动的能量与内能可以互相转化。就一个孤立的物理系统来说,不论能量形式怎样相互转化,总的能量的数值是不变的,因此热力学第一定律就是能量守恒与转换定律的一种表现。  在卡诺研究结果的基础上,克劳修斯等科学家提出了热力学第二定律,表达了宏观非平衡过程的不可逆性。例如:一个孤立的物体,其内部各处的温度不尽相同,那么热就从温度较高的地方流向温度较低的地方,最后达到各处温度都相同的状态,也就是热平衡的状态。相反的过程是不可能的,即这个孤立的、内部各处温度都相等的物体,不可能自动回到各处温度不相同的状态。应用熵的概念,还可以把热力学第二定律表达为:一个孤立的物理系统的熵不会着时间的流逝而减少,只能增加或保持不变。当熵达到最大值时,物理系统就处于热平衡状态。                                       深入研究热现象的本质,就产生了统计力学。统计力学应用数学中统计分析的方法,研究大量粒子的平均行为。统计力学根据物质的微观组成和相互作用,研究由大量粒子组成的宏观物体的性质和行为的统计规律,是理论物理的一个重要分支。  非平衡统计力学所研究的问题复杂,直到20世纪中期以后才取得了比较大的进展。对于一个包含有大量粒子的宏观物理系统来说,系统处于无序状态的几率超过了处于有序状态的几率。孤立物理系统总是从比较有序的状态趋向比较无序的状态,在热力学中,这就相应于熵的增加。  处于平衡状态附近的非平衡系统的主要趋向是向平衡状态过渡。平衡态附近的主要非平衡过程是弛豫、输运和涨落,这方面的理论逐步发展,已趋于成熟。近20~30年来人们对于远离平衡态的物理系统,如耗散结构等进行了广泛的研究,取得了很大的进展,但还有很多问题等待解决。  在一定时期内,人们对客观世界的认识总是有局限性的,认识到的只是相对的真理,经典力学和以经典力学为基础的经典统计力学也是这样。经典力学应用于原子、分子以及宏观物体的微观结构时,其局限性就显示出来,因而发展了量子力学。与之相应,经典统计力学也发展成为以量子力学为基础的量子统计力学。

这段时间开始仔细阅读现代物理基础丛书中第68本,由肖振军和吕才典编写的《粒子物理学导论》。在此写下读书笔记,本人不才,望各位赐教。 粒子物理学 (particle physics)的研究对象就是物质的基本结构和 基本相互作用 (fundamental interaction)。 1897年,J. J. Thomson测定了 电子 (electron)荷质比 ,1907~1913年,R. A. Millikan发现电子 电荷 (electric charge) 的不连续性。 1901年,Max Plank提出能量量子化假说,1905年,A. Einstain提出光量子化假说。 1911年,Ernest Rutherford提出原子的核式结构,1913年,N. Bohr建立氢原子模型。 1919年,Rutherford发现 质子 (proton)。 1932年,James Chadwick发现 中子 (neutron)。 1932年,C. Anderson发现 正电子 (positron)。 1936年,Anderson和S. H. Neddermeyer发现 轻子(muon),之后发现 介子, 介子, 介子, 介子, 反质子 (antiproton)(1955年), 反中子 (antineutron)(1956年), 介子, 介子, 介子, 介子, 介子等。 1974年,Samuel C. C. Ting(丁肇中)和B. Richter发现 粒子。 1974~1977年,发现 轻子。 1977年,Leon Lederman发现 粒子,证实了底夸克的存在。 1983年,CERN的强子对撞机试验发现 和 中间矢量玻色子。 2012年7月,LHC发现 希格斯玻色子 (Higgs boson)。 目前发现的基本粒子: 轻子 (lepton): , , , , , 。 夸克 (quark): , , ; 矢量玻色子 (vector boson): , , , 。 基本标量粒子: 。 1941~1950年发展起来的描写电磁相互作用的 量子电动力学 (QED); 1972~1974年发展起来的描写强相互作用的 量子色动力学 (QCD); 1964~1971年发展起来的 电弱统一理论 (electroweak interaction); 以及现在正在发展的 大统一理论 (GUT), 超对称理论 (SUSY), 超弦理论 (superstring theory). 我们定义 便得到了普遍的自然单位制。 在 广义相对论 (general relativity)和粒子物理学中引入四维度规: 四维时空矢量和四维能量动量定义为: 四维矢量的乘积定义为: 四维动量能量和四维时空坐标的平方就分别是: 正负电子对撞机:LEP,BEPC,CESR,PEP-II,KEKB,DAφNE。 强子对撞机、轻子-强子对撞机:Tevatron , LHC,HERA。 B介子工厂:美国SLAC加速器中心的PEP-II和BaBar探测器,日本KEK的KEKB和Belle探测器 超高能pp对撞机LHC:ATLAS,CMS,ALICE和LHCb。主要目标为:寻找标准模型中非常重要的Higgs粒子;寻找超对称理论或者其他超出标准模型的新物质理论预言的新粒子。 日本的超级B介子工厂:日本的Belle-II和意大利的Super-B(已被终止) 高速运动的粒子的能量和动量为: 它们满足质壳条件: 在能量和动量组成的四维相空间里,这个等式给出了一个四维相空间中的一个三维曲面的方程,以“壳”来形象地表示这个曲面。 非相对论情况下,自由粒子波函数满足 薛定谔方程 (Schrodinger equation),波函数满足归一化条件。 对于不稳定粒子,Schrodinger方程修改为: 本征波函数为: 归一化条件修正为: 即粒子数在衰变,满足衰变规律: 对于不稳定的粒子的质量有分布函数: 衰变方程: 解: 平均寿命: 有关系: 即:不稳定粒子的衰变宽度等于其衰变寿命的倒数。 对于多衰变道有: 衰变道概率(即分支比): 轨迹长度满足: 假设存在磁单极子,则电荷量子化就是一个自然推论;量子电动力学理论中,电荷量子化和电荷守恒是一个U(1)定域规范对称性的自然推论。 自旋量子数s为半整数的粒子,满足Fermi-Dirac统计,称为 费米子 (Fermion) 自旋量子数s为整数的粒子,满足Bose-Einstain统计,称为 玻色子 (Boson) 对于矢量粒子来说可以定义极化矢量 满足归一化条件: 对于光子满足洛伦兹条件: ,在运动表象里有: 电子的自旋角动量s在电子运动方向上的投影称为螺旋度或叫手征性: 自旋角动量为s的带电粒子有磁矩: 量子场论 (quantum field theory)的基本粒子物理图像: 1 每种粒子对应一种场,场没有不可入性,对应各种不同粒子的场在空间中互相重叠地充满全空间。场的激发表现为粒子,场的不同激发状态表现为粒子的数目和运动状态不同。 2 场用复量描写,场的激发也用复量描写,互为复共轭的两种激发状态表现为粒子和反粒子互换的两种状态。如果场用实量描写,场的激发也用实量描写,这时复共轭就是它自身,粒子就是它自身的反粒子。 3 所有场都处于基态时为物理真空。 1 相互作用存在于场之间,无论是处于基态还是激发态的场都同样与其他场相互作用。 2 粒子是场处于激发状态的表现,因此粒子间的相互作用来自场之间的相互作用。场之间的相互作用是粒子转化的原因。 1 强子 ( hadron ):直接参与强相互作用的粒子。 介子 ( meson ):自旋为整数,重子数为0的强子,有 , , , , , , , , , ……; 重子 ( baryon ):自旋为半整数,重子数为1的强子,有 , , , , , , 。 2轻子:不直接参与强相互作用的粒子 3 规范玻色子:传递相互作用的媒介子 4 Higgs玻色子:自旋为0的标量粒子 不能通过强相互作用衰变的粒子称为稳定粒子,可以通过强相互作用衰变的粒子称为共振态 1 规范玻色子 2 费米子:轻子和夸克 轻子分正反粒子,夸克分正反粒子12种 味道 (flavor)有不同的三种 颜色 (color) 3 Higgs粒子:在实现电弱对称性的自发破缺,是规范玻色子和费米子获得质量方面起着非常重要的作用。根据最小超对称原理,至少有5个Higgs粒子: 从轻子—夸克层次粒子的分类来看,自然界已知存在的基本粒子数目为: 补充:不久前,四位物理学家Guillermo Ballesteros、Javier Redondo、Andreas Ringwald和Carlo Tamarit提出一个新理论,论文已经通过同行审议,于2月15日发表在 《物理评论快报》 ( PRL )。这个新理论被称作 SMASH (全称为“Standard Model Axion See-saw Higgs portal inflation”)。 SM为 标准模型 (standard model),包含本文提到的所有基本粒子;A为 轴子 (axion),用于解释 暗物质 (dark matter)和强核力的不寻常对称性;S为跷跷板机制(see-saw mechanism),用于解释宇宙中物质—反物质不对称性;H为预言ρ粒子的存在,用于解释中微子质量,并且和Higgs粒子协作驱使宇宙暴胀。

下面链接之中有好多文章,应该是比较符合你的要求的。

物理学研究宇宙间物质存在的各种主要的基本形式,它们的性质、运动和转化以及内部结构;从而认识这些结构的组元及其相互作用、运动和转化的基本规律。地学和生命科学都是自然科学的重要方面,有重要的社会作用,但是像地球这样有生物的行星在宇宙中却是少见的,所以地学和生命科学不属于物理学范围。当然,物理学所发现的基本规律,即使在地球现象和生命现象中,也起着重要作用。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来源于实践,而实践的广度和深度有着历史的局限性。随着实践的扩展和深入,物理学的内容也不断扩展和深入。新的分支学科陆续形成;已有的分支学科日趋成熟,应用也日益广泛。早在古代就形成的天文学和起源于古代炼金术的化学,始终保持着独立的地位,没有被纳入物理学的范围。在天文学和物理学之间、化学和物理学之间存在着密切的联系,物理学所发现的基本规律在天文现象和化学现象中也起着日益深刻的作用。 客观世界是一个内部存在着普遍联系的统一体。随着物理学各分支科学的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而去统一地理解一切物理现象。这种努力虽然逐步有所进展,使得这一目标有时显得很接近;但与此同时,新的物理现象又不断出现,使这一目标又变得更遥远。看来人们对客观世界的探索、研究是无穷无尽的。以下大体按照物理学的历史发展过程来叙述物理学的发展及其内容。物理学是研究自然界基本规律的科学.它的英文词physics来源于希腊文,原义是自然,而中文的含义是“物”(物质的结构、性质)和“理”(物质的运动、变化规律).中文含义与现代观点颇为吻合.现代观点认为物理学主要研究:物质和运动,或物质世界及其各部分之间的相互作用,或物质的基本组成及它们的相互作用.物质可以小至微观粒子——分子、原子以至“基本”粒子(elementaryparticles).所谓基本粒子,顾名思义是物质的基本组成成分,本身没有结构.然而基本与否与人们的认识水平以及科学技术水平有关,因此对“基本”的理解有阶段性.有鉴于此,物理学家简单地称之为“粒子”.有时为了表达认识的层次,我们仍然可以说:“现阶段的基本粒子为……”.当前我们认为基本粒子有轻于(lepton)、夸克(quark)、光子(photon)和胶子(gluon)等等.科学家们正在努力寻找自由夸克.此外,分数电荷、磁单极也在寻找之列.我们周围的物体是物质的聚集状态.人们可以用自己的感官感知大多数聚集状态的物质,并称它们为宏观(macroscopic)物质以区别前面所说的微观(microscopic)粒子.居间的尺度是介观(mesoscopic),而更大的尺度是宇观(cosmological).场(field)传递相互作用,电磁场和引力场就是例子.在物理学的范围内,物质的运动是指机械运动、热运动、微观粒子的运动、原子核和粒子间的反应等等.运动总是发生在一定的时间和空间.时间和空间首先是作为物质运动的舞台,但最后也成了物理学研究的对象.现在知道物质之间的相互作用有四种,即万有引力、弱相互作用、电磁相互作用和强相互作用.爱因斯坦(,1879—1955)生前曾致力于统一场论的工作,试图用统一的理论来描述各种相互作用.在60年代,走向统一有了突破性的进展.格拉肖()、温伯格()和萨拉姆()等人发现弱相互作用和电磁相互作用可以统一,用弱电相互作用(electroweak)来描述.鲁比亚(1983[1],)等提供了实验支持.大统一理论(Grand Unification Theory,GUT)试图将强相互作用也统一进去,而超对称理论更企图将引力也纳入其中.还有人在寻求其他的相互作用.对此,在Physics Teacher期刊上曾有一篇文章题为“存在第五种基本力吗?”专门讨论这一命题[6].在高级的理论中,相互作用只不过是交换物质,如电磁作用交换光子、强作用交换胶子.物理学的一个永恒主题是寻找各种序(orders)、对称性(symmetry)和对称破缺(symmetry-breaking)[10]、守恒律(conservation laws)或不变性(invariance).物质的有序状态比我们想象的要广泛得多.除了排列整齐的位置序以外,还可以有指向序.超导态也是一种有序状态.对称性通常指静止的空间几何对称,如太极图、八卦、晶体中的平移和旋转对称.实际上,对称性还可以是动态的,可以是时间反演对称、物质—反物质对称以及更为抽象的规范对称等等.就物理学和其他科学的关系而言,我们可以说:·物理学是最基本的科学.·物理学是最古老、发展最快的科学.·物理学提供最多、最基本的科学研究手段.最基本的体现是在天文学、地学、化学、生命科学中都包含着物理过程或现象.在这些学科中用到不少物理学概念和术语是很自然的.最基本还意味着任何理论都不能和物理学的定律相抵触.例如,如果某种理论破坏能量守恒定律,那么这一理论就很成问题.当然,某些物理理论本身或一些阶段性的工作本身也是在不断地完善.19世纪中叶之前,物理学曾是完完全全的实验科学.力学中的理论问题被认为是数学家的事.19世纪末,在当时处于世界物理学中心的德国的大学里,开始设置理论物理学教授的席位.此后,随着人类的认识能力逐步深入,逐步深入到不能靠直觉把握的微观、高速、宇观现象,20世纪初建立了狭义和广义相对论,以及量子力学这些深刻的物理理论.到了20世纪中叶,物理学已经成为实验和理论紧密结合的科学.20世纪后半叶由于电子计算机的发展,既改变了理论物理的工作方式,也扩大了实验的涵义.目前物理学已经成为实验物理、理论物理、计算物理三足鼎立的科学.实验提供的条件比自然界出现的更富变化和更灵活可控,而物理理论则给出了对自然界的数学描述.计算物理学是重要的新分支,有自己独特的研究方法.计算机实验可以提供比通常的实验更为变化丰富和灵活控制的条件.不过通常需要用到超级计算机.物理学中最重大的基本理论有下面5个:·牛顿力学或经典力学(Mechanics)研究物体的机械运动;·热力学(Thermodynamics)研究温度、热、能量守恒以及熵原理等等;·电磁学(Electromagnetism)研究电、磁以及电磁辐射等等;·相对论(Relativity)研究高速运动、引力、时间和空间等等;·量子力学(Quantum mechanics)研究微观世界.后两个理论主要是在20世纪发展起来的,通常认为是现代物理学的核心.以上理论中没有一个被完全推翻过,也没有一个是永远正确的.例如,牛顿力学在高速情形下,应该用狭义相对论来代替;而对于强引力,它又偏离于广义相对论,但在它的适用范围内仍然是精确的.科学的理论总是要发展的,需要根据新发现的事实进行修正.在教科书中只介绍一种版本的做法很可能导致“理论是唯一的”这样的观念.事实上,理论决不是唯一的.科学理论往往在美学上令人赏心悦目,在数学上优雅而普适,但是仅仅有这些是决不可能流传下来的.理论和思想必须经受实验的检验和验证.物理学中的理论和实验在相互促进和丰富中得到发展.一个没有思想的实验工作者可以发现无穷无尽的事实,不过毫无用处.理论家如果不受实验检验这一约束也可能产生出极其丰富的思想,不过与大自然毫无关系而已.通常的科学研究方法是:·通过观测、实验、计算机模拟得到事实和数据;·用已知的可用的原理分析这些事实和数据;·形成假说和理论以解释事实;·预言新的事实和结果;·用新的事例修改和更新理论.上述的后3步都是关于理论的.以上所说的科学研究的步骤是常规的.有时候,有的人可能并不遵循这样的过程.常常直觉(intuition)或者预感(premonition)会起相当的作用.有时候,机遇(运气或偶然)对于成功也会起作用,使你获得一则重要的信息或发现一个特别简单的解.要学会在恰当的时机提出恰当的问题,并找到问题的答案.有时还必须忽略一些“事实”,原因是这些并不是真正的事实或者它们无关紧要、自相矛盾;或者是由于它们掩盖了更重要的事实或考虑它们使问题过于复杂化.据说,有一次有人问爱因斯坦:如果迈克耳孙-莫雷(Michelson-Morley)实验并不导致光速不变你怎么办?他说:他将忽略那些实验结果,他已经得到了结论,光速必须被认为是不变的.关于爱因斯坦1905年提出狭义相对论时是否知道迈克耳孙-莫雷实验,曾发生过长时间的争论.有人认为爱因斯坦在他的著作中没有留下他知道迈克耳孙-莫雷实验的丝毫痕迹,他可能纯粹通过理论推理和他们(迈克耳孙与莫雷)得出了相同的结论.爱因斯坦的首席传记作家培斯(Abraham Pais)筛选了许多历史记载,得出结论说,爱因斯坦确实知道这一实验.新近有一篇爱因斯坦在1922年的演说的英文翻译稿刊登在Physics Today上[8].此文是根据原来的德语演讲的日文记录整理、翻译的[见第九章参考文献(13)].译者让爱因斯坦“本人”表示,他知道这一实验.在大学物理的学习中,除了学习事实、定律、方程和解题技巧外,还必须努力从整体上掌握物理学.要了解各分支间的相互联系.现代观点认为,应该从整体上逻辑地、协调地来把握物理学.学习中,对于基本物理定律的优美、简洁、和谐以及辉煌应该有所体会,要学会鉴赏其普适程度,了解其适用范围.还要学会区别理论和应用,物理思想和数学工具,一般规律和特殊事实,主要和次要效应,传统的和现代的推理方式等等.

物理量子毕业论文题目

我的就是《新技术在物理实验中的应用》

自己看着办!

我大学毕业论文写的是<< 电动助力转向系统中传动机构的运动学和动力学分析与比较>>,如果只是一般性论文,建议写<<生活中的物理 >>,<<世纪之交谈物理学发展的方向>>,<<物理学前沿问题探索>>之类的较广泛的题目,这样比较容易,相关资料也比较好找

孩子你太狠了。我汗颜。

粒子聚集毕业论文

基于动态双种群粒子群算法的柔性工作车间调度摘 要: 针对标准粒子群优化算法存在易陷入局部最优点的缺点,提出了一种基于动态双种群的粒子群优化算法(DPSO) ·DPSO 算法将种群划分成两个种群规模随进化过程不断变化的子种群,两个子种群分别采用不同的学习策略进行进化,并在进化过程中相互交换信息·该算法提高了全局寻优能力,有效地避免了早熟收敛的发生·将以DPSO 算法为基础的排序算法和启发式分配算法(HA) 相结合形成了解决柔性工作车间调度问题的新方法(DPSO2HA) ·通过对算例的研究和与其他方法的比较表明,该方法是有效可行的·A Dynamic Double2Population Particle Swarm OptimizationAlgorithm for Flexible Job2Shop SchedulingL I Dan , GA O L i2qun , MA Jia , L I Yang( School of Information Science & Engineering , Northeastern University , Shenyang 110004 , : L I Dan , E2mail : lidanneu @163. com)Abstract : A dynamic double2population particle swarm optimization ( DPSO) algorithm ispresented to solve the problem that the standard PSO algorithm is easy to fall into a locallyoptimized point , where the population is divided into two sub2populations varying with their ownevolutionary learning st rategies and the information exchange between them. The algorithm thusimproves it s solvability for global optimization to avoid effectively the precocious , an ordering algorithm based on DPSO is integrated with the heuristic assignation ( HA)algorithm to form a new algorithm DPSO2HA so as to solve the flexible job2shop schedulingproblem (FJ SP) . The new algorithm is applied to a set of benchmark problems as instances , andthe simulation result s show the effectiveness and feasibility of DPSO2HA algorithm for the flexiblejob2shop words : double population ; PSO(particle swarm optimization) ; learning st rategy ; DPSO2HAalgorithm; flexible job2shop scheduling柔性工作车间调度问题( flexible job2shopscheduling problem , FJ SP) 是经典工作车间调度问题的一个延伸,它允许工件被给定的有处理能力的任何机器处理·柔性工作车间调度问题由于减少了机器约束,扩大了可行解的搜索范围,提高了问题的复杂性,所以与传统工作车间调度问题相比更加接近实际生产环境的模拟·相对于传统工作车间调度,关于柔性工作车间调度问题的文献还比较少·目前所采用的方法主要有分枝定界法[1 ] 、多项式算法、分等级法和传统进化算法( EA) [2 ]等,在近几年中,很多研究者使用禁忌搜索和遗传算法对FJ SP 进行求解[3 - 4 ]·本文提出一个新的求解柔性工作车间调度问题的方法———基于动态双种群粒子群优化的分阶段方法·本方法的主要思想是:将柔性工作车间调度问题分解成两个有时间顺序的子问题来考虑,首先考虑工序排序子问题,在获得可行的排序后再考虑机器分配子问题·本文首先利用动态双种群粒子群优化算法为工序进行排序,使其满足约束条件从而获得一个可行解,然后利用文中所提出的分配算法为每道工序分配合适的机器,形成可行的调度方案·本文所考虑的优化目标是最小化最大完工时间(makespan) ·1 柔性工作车间调度问题描述柔性工作车间调度问题可描述为将n 个加工顺序不同的工件在m 台机器上加工完成·每个工件使用同一台机器可以多于一次,每道工序的加工过程不允许中断·机器的集合用U 来表示,每个工件J 包含nj 道工序,各工序之间的顺序不允许改变·Oij表示工件J 的第i 道工序,它可以在有处理能力的任何一台机器上被加工·Ti , j , k表示工序Oij用机器Mk 来加工所需要的时间, 可用集合T ={ Ti , j , k| 1 ≤j ≤N ;1 ≤i ≤nj ;1 ≤k ≤M}表示, N 为工件的数量, M 为机器的数量·例如表1 即是一个实际的柔性工作车间调度加工时间表·表1 柔性工作车间调度加工时间表Table 1 Proce ssing schedule for FJ SP工件工序M1 M2 M3 M4J1O1 ,1 1 3 4 1O2 ,1 3 8 2 1O3 ,1 3 5 4 7J2O1 ,2 4 1 1 4O2 ,2 2 3 9 3O3 ,2 9 1 2 2J3O1 ,3 8 6 3 5O2 ,3 4 5 8 1在柔性工作车间调度问题中, 应满足以下假设:(1) 所有的机器在时间t = 0 时都是可以使用的,每个工件都可以在t = 0 时开始加工;(2) 在给定的时间内, 一台机器只能加工一道工序,直到加工完此工序后方可加工其他工序,这就是所谓的资源约束;(3) 对于每个工件的各道工序只能按照事先给定的顺序加工,这就是所谓的优先约束·对于每一道工序Oi , j , 本文用ri , j来表示其最早开始加工时间, 对不同的工序分别用下式进行计算:ri , j =0 , 1 ≤ j ≤ N ;ri - 1 , j +γi , j , 2 ≤ i ≤ nj ,1 ≤ j ≤ N ·式中,γi , j = mink ( Ti , j , k) ,1 ≤i ≤nj ;1 ≤j ≤N·对于FJ SP 来说一般存在两个难题:第一个是如何为每道工序选择合适的机器;第二个是如何计算每道工序的开始加工时间t i , j和结束加工时间tf i , j·本文所要研究的FJ SP 的优化目标是,在满足上述优先约束和资源约束的条件下寻找最优调度方案,使全部工件的最大完工时间(Makespan)最短·2 排序算法———动态双种群粒子群优化算法2. 1 标准粒子群优化算法粒子群优化(particle swarm optimization ,简称PSO) 算法是由Kennedy 和Eberhart 在1995年提出·在PSO 系统中,每个潜在解被称为一个粒子,多个粒子共存、合作寻优,每个粒子根据它自身的经验在目标搜索空间中向更好的位置飞行,搜索最优解·由文献[ 5 ]可知,每个粒子根据如下的公式来更新自己的速度和在解空间的位置·v ( t +1)id = w v ( t)id + c1 r1 p ( t)id - x ( t)id +c2 r2 p ( t)gd - x ( t)id , (1)x ( t +1)id = x ( t)id + v ( t +1)id · (2)其中, d = 1 ,2 , ⋯, n , i = 1 ,2 , ⋯, m , m 为种群规模; t 为当前进化代数; r1 和r2 为均匀分布于[0 ,1]的随机数; w 为惯性权重, 其值由下式来确定[6 ] :w = w max -w max - w minitermax×iter · (3)式中, w max , w min分别是w 的最大值和最小值;iter ,itermax分别是当前迭代次数和最大迭代次数·2. 2 粒子群优化算法的学习策略由标准粒子群优化算法可知,粒子通过跟踪自己迄今为止所找到的最优解和种群迄今为止所找到最优解这两个极值来更新自己的速度,从而更新自己的位置·这种行为也可以理解为,粒子在借鉴自身和整个群体所取得的成功经验,通过对以往的成功经验的学习获得有用的信息,指导自己下一步的行动策略·但人们也常说“失败乃成功之母”“, 吃一堑,长一智”,可见从一些失败的尝试中也可以获得有用的信息,基于这一点,提出了新的粒子群优化算法学习策略,这就是从以往的失败中获得有价值的信息,使粒子远离粒子本身和整个群体所找到的最差的位置,从而更新粒子的速度和位置·粒子在搜索过程中的失败可以表现为搜索到的具有较差适应值的位置,记第i 个粒子迄今为止搜索到的最差位置为si = ( si1 , si2 ,⋯, sin) ,整个粒子群迄今为止搜索到的最差位置为sg = ( sg1 , sg2 , ⋯, sg n) ,则第i 个粒子的速度和位置更新公式如下:v ( t +1)id = w v ( t)id + c1 r1 x ( t)id - s ( t)id +c2 r2 x ( t)id - s ( t)gd , (4)x ( t +1)id = x ( t)id + v ( t +1)id · (5)如果只是利用上述的位置和速度更新公式更新粒子,也就是说只是从失败中获取经验,这与实际经验不符·一般来说,还是更多地从成功的经历中获取信息,而从失败的经历中获得相对少的信息,基于这一点本文的算法同时从成功和失败的经历中获取信息来更新粒子·2. 3 动态双种群粒子群优化算法由上面的叙述可以知道粒子群中的粒子可以按照不同的学习策略进行学习,对速度和位置作出更新·所以本文将一个种群分成两个子种群,每个子种群选用不同的学习策略,即第一个子种群中的粒子选用从成功经历中获得学习信息的策略,更新自己;第二个子种群中的粒子选用从失败的经历中获得学习信息的策略进行进化·本文可以设置一个比例系数ρ来控制两个子种群中粒子的个数·ρ =m1m2, m1 + m2 = m · (6)式中, m 为粒子群中的粒子总数; m1 为第一个子种群中的粒子个数; m2 为第二个子种群中的粒子个数·为了使每个粒子都能从自身和群体的经历中获得充分的学习, 本文规定两个子种群中的粒子是不断变化的, 即每隔一定的代数后将整个种群按照比例系数ρ重新随机划分成两个子种群·从粒子群优化算法的进化过程中知道在优化的初期粒子的位置比较分散, 得到较优值和较差值的机会相差不多,所以此时采用上述两种不同学习策略的粒子的个数应大致相等·在优化搜索的后期粒子将聚集在最优值的附近,这时将很难出现比历史最差值更差的值了,第二个子种群将从失败经历中得不到太多的有价值的信息·此时第二个子种群中的粒子数应该远远小于第一个子种群中的粒子个数,直至完全采用跟踪最优值来更新粒子,即第二个子种群消亡·基于上述原因将ρ设为一个线性变化的量,其值由下式确定:ρ = ρmax -ρmax - ρmin018 ×itermax×iterc · (7)式中,ρmax和ρmin分别是ρ的最大值和最小值;iterc 和itermax分别是种群重新划分时的进化代数和最大进化代数·动态双种群粒子群优化算法的实现步骤如下:(1) 设PSO 种群规模为m , 加速常数为c1和c2 ,惯性权重的最大值和最小值为w max , w min ,比例系数ρ的最大值和最小值为ρmax ,ρmin ,种群重新划分代数iterc ,最大进化代数为Tmax·将当前进化代数置为t = 1 ;(2) 在解空间中初始化粒子的速度和位置;(3) 将种群按照比例系数ρ划分为两个子种群;(4) 按式(3) 更新惯性权重w , 按式(7) 更新比例系数ρ, 第一个子种群按式(1) 和(2) 更新粒子速度和位置,第二个子种群按式(4) 和(5) 更新子种群中的粒子,从而产生新种群Xt ;(5) 评价种群Xt·将第i 个粒子当前点适应值与该粒子迄今找到的最优位置pi (最差位置si) 的适应值进行比较, 若更优(差) , 则更新pi( si) ,否则保持pi ( si) 不变,再与种群迄今找到的最优位置pg (最差位置sg) 的适应值进行比较,若更优(差) ,则更新pg ( sg) ;否则保持pg ( sg) 不变;(6) 检查是否满足寻优结束条件, 若满足则结束寻优, 求出最优解; 否则, 置t = t + 1 , 转至(3) ;结束条件为寻优达到最大进化代数Tmax·2. 4 基于动态双种群粒子群优化算法的工序排序2. 4. 1 粒子的编码和解码根据第1 节对柔性工作车间调度问题的描述,本文定义所有工件的总工序数L = 6nj =1nj ,把一个粒子表示为一个L 维的向量·对所有工序进行连续编号,即为每道工序指定一个固定的编号·例如可以对表1 所给出的例子中的工序进行编号,如表2 所示,则粒子的位置向量x [ L ]就是由一组连续的自然数组成的L 维的向量,自然数的顺序决定了工序调度的顺序·xi = [1 ,7 ,2 ,4 ,8 ,3 ,5 ,6 ]就表示了一个满足优先约束的可行的工序排序·表2 工序编号Table 2 Serial numbers of operations工序O1 ,1 O2 ,1 O3 ,1 O1 ,2 O2 ,2 O3 ,2 O1 ,3 O2 ,3编号1 2 3 4 5 6 7 82. 4. 2 位置向量和速度向量的更新对每个粒子, 粒子的速度向量可以用v [ L ]表示·按照上面所述的更新公式对x [ L ] , v [ L ]进行更新·由于粒子群优化算法经常用在连续空间上,而柔性工作车间调度问题为整数规划问题而且有工序先后顺序约束,所以将粒子群算法用于柔性工作车间调度问题时,在速度和位置更新方式上要做如下的修改:令粒子i 的当前的位置为xi = [1 , 7 , 2 , 4 , 8 , 3 , 5 , 6 ] , 在经过一次迭代以后位置向量变为xi = [ 2. 5 , 6. 7 , 3. 6 , 5. 9 , 8. 5 ,112 ,4. 1 ,7. 6 ]·位置向量里存放的是工序的编号,很明显不能为小数, 本文对迭代后的位置向量进行如下的处理:将更新后的位置向量中各分量的值按照由小到大的顺序进行排列, 并为其进行重新编号:1. 2 (1) < 2. 5 (2) < 3. 6 (3) < 4. 1 (4) < 5. 9(5) < 6. 7 (6) < 7. 6 (7) < 8. 5 (8) ,式中括号内的数字为该分量的编号, 然后位置向量中各分量用其获得的相应的编号代替·例如,第一个分量2. 5 用编号2 代替,第二个分量6. 7 用编号6 代替等等,此时位置向量变为xi = [2 , 6 , 3 , 5 , 8 , 1 , 4 , 7 ]·但是这个工序排序不满足优先约束,还要对其进行调整,使其满足约束条件·例如第一个分量2 代表的是工序O21 ,第6 个分量1 代表的是工序O11 ,工序O21应在工序O11之后进行加工, 所以要对其进行调整·调整的方法为:对属于同一个工件的工序调换其相应先后位置使其满足约束, 对每个工件都做相似的处理, 则可以得到满足优先级约束的位置向量: xi = [1 ,4 ,2 ,5 ,7 ,3 ,6 ,8 ]·3 启发式分配算法通过上一节介绍的排序算法本文可以获得一个满足工序优先约束的可行的工序序列·这一节通过一个启发式算法为这一工序序列中的每一工序分配一台合适的机器对其进行加工·本文所采用的分配算法的主要思想是:选择一台能使本道工序获得最小完工时间的机器分配给待加工的工序·可以用如下公式表示选择机器Mk 分配给待加工的工序以使本道工序的完工时间最短:tf i , j = min k ( ri , j + Ti , j , k) ,ri , j = max ( rpfk , ropf) ·式中, tf i , j 为工序Oi , j 的完工时间; ri , j 为工序的开始加工时间; Ti , j , k为工序用机器k 加工消耗的时间; rpfk为机器Mk 当前状态下所加工的最后一个工件的完工时间; ropf为待加工工序紧前工序的完工时间·利用排序算法和分配算法就可以获得一个满足优先约束和资源约束的可行的调度方案, 并且利用分配算法还可以得到目标函数———全部工件的最大完工时间的值·将前面介绍的排序算法和分配算法综合起来便形成本文所采用的处理柔性工作车间调度优化问题的方法,记为DPSO2HA·该方法将柔性工作车间调度问题分解为两个子问题———排序问题和分配问题,在每一次迭代中首先通过动态双种群粒子群算法获得一个可行的工序序列, 然后利用分配算法给该序列分配合适的机器并计算目标函数值,直至达到最大进化代数·4 算例仿真4. 1 仿真研究1本文选用文献[ 7 ]中的一个10 ×10 (10 个工件,10 台机器) ,30 道工序的柔性工作车间调度问题来计算最大完工时间·实验参数如下:粒子群的种群规模为m = 30 , c1 = c2 = 2 ,ρmax = 015 ,ρmin =0 ,每隔5 代重新划分种群,最大迭代次数Tmax =150·实验中采用本文所提出的算法运行10 次,和传统的GA 方法、文献[8 ]中采用的MSA 算法相比较,比较结果如表3 所示·表3 实验结果比较Table 3 Comparison of te sting re sults方 法最优值平均值标准偏差GA 8 11. 5 2. 67MSA 7 7. 9 0. 97DPSO2HA 7 7. 1 0. 32从表3 中可以看出DPSO2HA 求得的平均值和标准偏差都明显优于GA 和VEGA , 这说明DPSO2HA 的精度与稳定性明显优于GA 和VEGA 算法·实验中所获得的一个较优的调度方案的甘特图如图1 所示·图中方框内的数字“i . j”表示第j 个工件的第i 道工序·,(不好意思,图粘贴不下来,要不你告我邮箱)图1 柔性工作车间调度优化结果Fig. 1 Optimization solution to the problem10 ×10 with 30 operations4. 2 仿真研究2为了进一步对本文提出的算法的性能加以验证,选用文献[ 9 ]中所给出的实验数据,利用本文提出的算法进行求解,并将调度结果与文献[ 9 ]及文献[ 10 ]中所提算法的调度结果加以比较·比较结果如表4 所示·表4 不同方法的调度结果比较Table 4 Comparison of different scheduling re sults算例描述Brandimarte GENACE DPSO2HAMK1 10 ×6 42 41 40MK2 10 ×6 32 29 28MK4 15 ×8 81 67 61MK5 15 ×4 186 176 173MK6 10 ×15 86 68 62MK7 20 ×5 157 148 141MK8 20 ×10 523 523 523MK9 20 ×10 369 328 307MK10 20 ×15 296 231 207由上述的比较结果可以看出,本文所提出的DPSO2HA 方法对上述算例的求解结果较另外两种方法有了较大的提高·5 结 论本文提出了一种动态双种群粒子群优化算法(DPSO) ·DPSO 将种群划分成两个种群规模随进化过程不断变化的子种群,两个子种群分别采用不同的学习策略进行进化,并在进化过程中相互交换信息·该算法在保持PSO 算法高效简单的基础上提高了全局寻优能力·将以DPSO 算法为基础的排序算法和启发式分配算法相结合形成了解决柔性工作车间调度问题的新方法·通过对算例的研究和与其他方法的比较表明,该方法是有效可行的·参考文献:[ 1 ] Carlier J , Pinson E. An algorithm for solving the job2shopproblem[J ] . Management Science , 1989 ,35 (2) :164 - 176.[ 2 ] Reynolds R G. An introduction to cultural algorithms[ C] ‖Proceedings of the Third Annual Conference on EvolutionaryProgramming. River Edge : World Scientific , 1994 : 131 -139.[ 3 ] Mastrolilli M , Gambardella L M. Effective neighborhoodfunctions for the flexible job shop problem[ J ] . Journal ofScheduling , 2002 ,3 (1) :3 - 20.[ 4 ] Kacem I , Hammadi S , Borne P. Pareto2optimality approachfor flexible job2shop scheduling problems : hybridization ofevolutionary algorithms and fuzzy logic[J ] . Mathematics andComputers in Simulation , 2002 ,60 (3) :245 - 276.[ 5 ] Kennedy J , Eberhart R. Particle swarm optimization [ C] ‖Proceedings of IEEE International Conference on NeuralNetworks. Perth : IEEE Press , 1995 :1942 - 1948.[ 6 ] Shi Y, Eberhart R C. Empirical study of particle swarmoptimization [ C ] ‖Proceedings of the 1999 Congress onEvolutionary Computation. Washington , 1999 : 1945 -1950.[ 7 ] Xia WJ , Wu Z M. An effective hybrid optimization approachfor multi2objective flexible job2shop scheduling problems[J ] .Computers & Indust rial Engineering , 2005 ,48 (2) :409 -425.[ 8 ] Najid N M , Stephane D P , Zaidat A. A modified simulatedannealing method for flexible job shop scheduling problem[C]‖Proceedings of the IEEE International Conference onSystems , Man and Cybernetics. Hammamet : IEEE Press ,2002 :89 - 94.[ 9 ] Brandimarte P. Routing and scheduling in a flexible job shopby tabu search[J ] . A nnals of Operations Research , 1993 ,41(3) :158 - 183.[ 10 ] Ho N B , Tay J C. GENACE: an efficient cultural algorithmfor solving the flexible job2shop problem[C] ‖Proceedings ofthe IEEE Congress on Evolutionary Computation. Portland :IEEE Press , 2004 :1759 - 1766.(do you know)

高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。下文是我为大家整理的有关高分子材料毕业论文的范文,欢迎大家阅读参考! 有关高分子材料毕业论文篇1 浅析高分子材料成型加工技术. 【摘要】高分子材料成型加工技术在工业上取得的飞速发展,介绍高分子材料成型加工技术的发展情况,探讨其创新研究,并详细阐述高分子材料成型加工技术的发展趋势。 【关键词】高分子材料;成型加工;技术 近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。 一、高分子材料成型加工技术发展概况 近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。 在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为,2000年增加至亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。 据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。 目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。 二、现今高分子材料成型加工技术的创新研究 (一)聚合物动态反应加工技术及设备 聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。 目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。 该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 (二)以动态反应加工设备为基础的新材料制备新技术 1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。 2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。 3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。 三、高分子材料成型加工技术的发展趋势 近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。 例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。 综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。 参考文献: [1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999. [2]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435. [3]瞿金平,聚合物电磁动态塑化挤出方法及设备[J].中国专利,I990;美国专利5217302,1993. 有关高分子材料毕业论文篇2 浅论高分子材料的发展前景 摘要:随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。本文主要分析了高分子材料的发展前景和发展趋势。 关键词:高分子材料;发展;前景 一 高分子材料的发展现状与趋势 高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。 鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进? 步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。 二 高分子材料各领域的应用 1高分子材料在机械工业中的应用 高分子材料在机械工业中的应用越来越广泛, “ 以塑代钢” ,“ 塑代铁” 成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂 如煤油、砂浆混合液中, 其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学润滑等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。 2 高分子材料在燃料电池中的应用 高分子电解质膜的厚度会对电池性能产生很大的影响, 减薄膜的厚度可大幅度降低电池内阻, 获得大的功率输出。全氟磺酸质子交换 膜的大分子主链骨架结构有很好的机械强度和化学耐久性, 氟素化合物具有僧水特性, 水容易排出, 但是电池运转时保水率降低, 又要影响电解质膜的导电性, 所以要对反应气体进行增湿处理。高分子电解质膜的加湿技术, 保证了膜的优良导电性, 也带来电池尺寸变大增大左右、系统复杂化以及低温环境下水的管理等问题。现在一批新的高分子材料如增强型全氟磺酸型高分子质子交换膜耐高温芳杂环磺酸基高分子电解质膜纳米级碳纤维材料新的一导电高分子材料等等, 已经得到研究工作者的关注。 3 高分子材料在现代农业种子处理中的应用及发展 高分子材料在现代农业种子处理中的应用:新一代种子化学处理一般可分为物理包裹利用干型和湿形高分子成膜剂, 包裹种子。种子表面包膜利用高分子成膜剂将农用药物和其他成分涂膜在种子表面。种子物理造粒将种子和其他高分子材料混和造粒, 以改善种子外观和形状, 便于机械播种。高分子材料在现代农业种子处理中研究开发进展:种子处理用高分子材料已经从石油型高分子材料逐步向天然型以及功能型高分子材料的方向发展。其中较为常见和重要的高分子材料类型包括多糖类天然高分子材料, 具有在低温情况下维持较好膜性能的高分子材料, 高吸水性材料, 温敏材料, 以及综合利用天然生物资源开发的天然高分子材料等, 其中利用可持续生物资源并发的种衣剂尤为引人关注。 4 高分子材料在智能隐身技术中的应用 智能隐身材料是伴随着智能材料的发展和装备隐身需求而发展起来的一种功能材料,它是一种对外界信号具有感知功能、信息处理功能。自动调节自身电磁特性功能、自我指令并对信号作出最佳响应功能的材料/系统。区别于传统的外加式隐身和内在式雷达波隐身思路设计,为隐身材料的发展和设计提供了崭新的思路,是隐身技术发展的必然趋势 ,高分子聚合物材料以其可在微观体系即分子水平上对材料进行设计、通过化学键、氢键等组装而成具有多种智能特性而成为智能隐身领域的一个重要发展方向。 三 高分子材料的发展前景 1高性能化 进一步提高耐高温,耐磨性,耐老化,耐腐蚀性及高的机械强度等方面是高分子材料发展的重要方向,这对于航空、航天、电子信息技术、汽车工业、家用电器领域都有极其重要的作用。高分子材料高性能化的发展趋势主要有创造新的高分子聚合物,通过改变催化剂和催化体系,合成工艺及共聚,共混及交联等对高分子进行改性,通过新的加工方法改变聚合物的聚集态结构,通过微观复合方法,对高分子材料进行改性。 2高功能化 功能高分子材料是材料领域最具活力的新领域,目前已研究出了各种各样新功能的高分子材料,如可以像金属一样导热导电的高聚物,能吸收自重几千倍的高吸水性树脂,可以作为人造器官的医用高分子材料等。鉴于以上发展,高分子吸水性材料、光致抗蚀性材料、高分子分离膜、高分子催化剂等都是功能高分子的研究方向。 3复合化 复合材料可克服单一材料的缺点和不足,发挥不同材料的优点,扩大高分子材料的应用范围,提高经济效益。高性能的结构复合材料是新材料革命的一个重要方向,目前主要用于航空航天、造船、海洋工程等方面,今后复合材料的研究方向主要有高性能、高模量的纤维增强材料的研究与开发,合成具有高强度,优良成型加工性能和优良耐热性的基体树脂,界面性能,粘结性能的提高及评价技术的改进等方面。 4智能化 高分子材料的智能化是一项具有挑战性的重大课题,智能材料是使材料本身带有生物所具有的高级智能,例如预知预告性,自我诊断,自我修复,自我识别能力等特性,对环境的变化可以做出合乎要求的解答;根根据人体的状态,控制和调节药剂释放的微胶囊材料,根据生物体生长或愈合的情况或继续生长或发生分解的人造血管人工骨等医用材料。由功能材料到智能材料是材料科学的又一次飞跃,它是新材料,分子原子级工程技术、生物技术和人 工智能诸多学科相互融合的一个产物。 5绿色化 虽然高分子材料对我们的日常生活起了很大的促进作用,但是高分子材料带来的污染我们仍然不能小视。那些从生产到使用能节约能源与资源,废弃物排放少,对环境污染小,又能循环利用的高分子材料备受关注,即要求高分子材料生产的绿色化。主要有以下几个研究方向,开发原子经济的聚合反应,选用无毒无害的原料,利用可再生资源合成高分子材料,高分子材料的再循环利用。 四 结束语 高分子材料为我国的经济建设做出了重要的贡献,我国已建立了较完善的高分子材料的研究、开发和生产体系,我国虽然在高分在材料的开发和综合利用方面起步较晚,但目前来看也取得了不错的进步,我们应提高其整体技术水平,致力于创新的高分在聚合反应和方法,开发出多种绿色功能材料和智能材料,以提高人类的生活质量,并满足各项工业和新技术的需求。 参考文献: [1]金关泰.《高分子化学的理论和应用》,中国石化出版社,1997 [2]李善君 纪才圭等.《高分子光化学原理及应用》复旦大学出版社2003 6. [3]李克友, 张菊华, 向福如. 《高分子合成原理及工艺学》,科学出版社,1999 猜你喜欢: 1. 全国高分子材料学术论文报告 2. 全国高分子材料学术论文 3. 全国高分子材料学术论文 4. 全国高分子材料学术论文报告 5. 关于材料学方面论文

关键词:超高分子 量聚乙烯 工程塑料1 引言UHMWPE是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和北京助剂二厂投入生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。UHMWPE平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。2 UHMWPE的成型加工由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。 一般加工技术(1)压制烧结压制烧结是UHMWPE最原始的加工方法。此法生产效率颇低,易发生氧化和降解。为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。(2)挤出成型挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。双螺杆挤出多采用同向旋转双螺杆挤出机。60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。北京化工大学于1994年底研制出Φ45型UHMWPE专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。(3)注塑成型日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。1985年美国Hoechst公司也实现了UHMWPE的螺杆注塑成型工艺。北京塑料研究所1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用UHMWPE托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。(4)吹塑成型UHMWPE加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。UHMWPE吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。 特殊加工技术 冻胶纺丝以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的UHMWPE纤维〔3〕。UHMWPE冻胶纺丝过程简述如下:溶解UHMWPE于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。在冻胶原丝中,几乎所有的溶剂被包含其中,因此UHMWPE大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中UHMWPE折叠链片晶的形成。这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。UHMWPE纤维是当今世界上第三代特种纤维,强度高达,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。国际上已将UHMWPE纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。UHMWPE纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。 润滑挤出(注射)润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。产生润滑层的方法主要有两种:自润滑和共润滑。(1)自润滑挤出(注射)UHMWPE的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。有专利报道〔4〕:将70份石蜡油、30份UHMWPE和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。(2)共润滑挤出(注射)UHMWPE的共润滑挤出(注射)有两种情况,一是采用缝隙法〔5、6〕将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分(详见)。如:生产UHMWPE薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。 辊压成型〔1〕辊压成型是一种固态加工方法,即在UHMWPE的熔点以下对其施加一很大的压力,通过粒子形变,有效地将粒子与粒子融合。主要设备是一带有螺槽的旋转轮和一带有舌槽的弓形滑块,舌槽与螺槽垂直。在加工过程中有效地利用了物料与器壁之间的摩擦力,产生的压力足够使UHMWPE粒子发生形变。在机座末端装有加热支台,经过模口挤出物料。如将此项辊压装置与挤压机联用,可使加工过程连续化。 热处理后压制成型〔8〕把UHMWPE树脂粉末在140℃~275℃之间进行1min~30min的短期加热,发现UHMWPE的某些物理性能出人意料地大大改善。用热处理过的UHMWPE粉料压制出的制品和未热处理过的UHMPWE制品相比较,前者具有更好的物理性能和透明性,制品表面的光滑程度和低温机械性能大大提高了。 射频加工〔9〕采用射频加工UHMWPE是一种崭新的加工方法,它是将UHMWPE粉末和介电损耗高的炭黑粉末均匀混合在一起,用射频辐照,产生的热可使UHMWPE粉末表面发生软化,从而使其能在一定压力下固结。用这种方法可在数分钟内模压出很厚的大型部件,其加工效率比目前UHMWPE常规模压加工高许多倍。 凝胶挤出法制备多孔膜〔10〕将UHMWPE溶解在挥发溶剂中,连续挤出,然后经一个热可逆凝胶/结晶过程,使其成为一种湿润的凝胶膜,蒸除溶剂使膜干燥。由于已形成的骨架结构限制了凝胶的收缩,在干燥过程中产生微孔,经双轴拉伸达到最大空隙率而不破坏完整的多孔结构。这种材料可用作防水、通氧织物和耐化学品服装,也可用作超滤/微量过滤膜、复合薄膜和蓄电池隔板等。与其它方法相比,由此法制备的多孔UHMWPE膜具有最佳的孔径、强度和厚度等综合性能。3 UHMWPE的改性 物理机械性能的改进与其它工程塑料相比,UHMWPE具有表面硬度和热变形温度低、弯曲强度以及蠕变性能较差等缺点。这是由于UHMWPE的分子结构和分子聚集形态造成的,可通过填充和交联的方法加以改善。 填充改性采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对UHMWPE进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。用偶联剂处理后,效果更加明显。如填充处理后的玻璃微珠,可使热变形温度提高30℃。玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,UHMWPE仍有相当高的冲击强度。 交联交联是为了改善形态稳定性、耐蠕变性及环境应力开裂性。通过交联,UHMWPE的结晶度下降,被掩盖的韧性复又表现出来。交联可分为化学交联和辐射交联。化学交联是在UHMWPE中加入适当的交联剂后,在熔融过程中发生交联。辐射交联是采用电子射线或γ射线直接对UHMWPE制品进行照射使分子发生交联。UHMWPE的化学交联又分为过氧化物交联和偶联剂交联。(1)过氧化物交联过氧化物交联工艺分为混炼、成型和交联三步。混炼时将UHMWPE与过氧化物熔融共混,UHMWPE在过氧化物作用下产生自由基,自由基偶合而产生交联。这一步要保证温度不要太高,以免树脂完全交联。经过混炼后得到交联度很低的可继续交联型UHMWPE,在比混炼更高的温度下成型为制件,再进行交联处理。UHMWPE经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。国外曾报道用2,5-二甲基-2,5双过氧化叔丁基己炔-3作交联剂〔11〕,但国内很难找到。清华大学用廉价易得的过氧化二异丙苯(DCP)作为交联剂进行了研究〔12〕,结果发现:DCP用量小于1%时,可使冲击强度比纯UHMWPE提高15%~20%,特别是DCP用量为时,冲击强度可提高48%。随DCP用量的增加,热变形温度提高,可用于水暖系统的耐热管道。(2)偶联剂交联UHMWPE主要使用两种硅烷偶联剂:乙烯基硅氧烷和烯丙基硅氧烷,常用的有乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷。偶联剂一般要靠过氧化物引发,常用的是DCP,催化剂一般采用有机锡衍生物。硅烷交联UHMWPE的成型过程首先是使过氧化物受热分解为化学活性很高的游离基,这些游离基夺取聚合物分子中的氢原子使聚合物主链变为活性游离基,然后与硅烷产生接枝反应,接枝后的UHMWPE在水及硅醇缩合催化剂的作用下发生水解缩合,形成交联键即得硅烷交联UHMWPE。(3)辐射交联在一定剂量电子射线或γ射线作用下,UHMWPE分子结构中的一部分主链或侧链可能被射线切断,产生一定数量的游离基,这些游离基彼此结合形成交联链,使UHMWPE的线型分子结构转变为网状大分子结构。经一定剂量辐照后,UHMWPE的蠕变性、浸油性和硬度等物理性能得到一定程度的改善。用γ射线对人造UHMWPE关节进行辐射,在消毒的同时使其发生交联,可增强人造关节的硬度和亲水性,并且使耐蠕变性得以提高〔13〕,从而延长其使用寿命。有研究〔14〕表明,将辐照与PTFE接枝相结合,也可改善UHMWPE的磨损和蠕变行为。这种材料具有组织容忍性,适于体内移植。 加工性能的改进UHMWPE树脂的分子链较长,易受剪切力作用发生断裂,或受热发生降解。因此,较低的加工温度,较短的加工时间和降低对它的剪切是非常必要的。为了解决UHMWPE的加工问题,除对普通成型机械进行特殊设计外,还可对树脂配方进行改进:与其它树脂共混或加入流动改性剂,使之能在普通挤出机和注塑机上成型加工,这就是中介绍的润滑挤出(注射)。 共混改性共混法改善UHMWPE的熔体流动性是最有效、最简便和最实用的途径。目前,这方面的技术多见于专利文献。共混所用的第二组份主要是指低熔点、低粘度树脂,有LDPE、HDPE、PP、聚酯等,其中使用较多的是中分子量PE(分子量40万~60万)和低分子量PE(分子量<40万)。当共混体系被加热到熔点以上时,UHMWPE树脂就会悬浮在第二组份树脂的液相中,形成可挤出、可注射的悬浮体物料。(1)与低、中分子量PE共混UHMWPE与分子量低的LDPE(分子量1,000~20,000,以5,000~12,000为最佳)共混可使其成型加工性获得显著改善,但同时会使拉伸强度、挠曲弹性等力学性能有所下降。HDPE也能显著改善UHMWPE的加工流动性,但也会引起冲击强度、耐摩擦等性能的下降。为使UHMWPE共混体系的力学性能维持在一较高水平,一个有效的补偿办法是加入PE成核剂,如苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐等,可以借PE结晶度的提高,球晶尺寸的微细均化而起到强化作用,从而有效阻止机械性能的下降。有专利〔15〕指出,在UHMWPE/HDPE共混体系中加入很少量的细小的成核剂硅灰石(其粒径尺寸范围5nm~50nm,表面积100m2/g~400m2/g),可很好地补偿机械性能的降低。(2)共混形态UHMWPE的化学结构虽然与其它品种的PE相近,但在一般的熔混设备和条件下,它们的共混物都难以形成均匀的形态,这可能与组份之间粘度相差悬殊有关。采用普通单螺杆混炼得到的UHMWPE/LDPE共混物,两组份各自结晶,不能形成共晶,UHMWPE基本上以填料形式分散于LDPE基体中。熔体长时间处理和使用双辊炼塑机混炼,两组份之间作用有所加强,性能亦有进一步的改善,不过仍不能形成共晶的形态。Vadhar发现〔16〕,当采用两步共混法,即先在高温下将UHMWPE熔融,再降到较低温度下加入LLDPE进行共混,可获得形成共晶的共混物。Vadher用溶液共混法也得到了能形成共晶的UHMWPE/LLDPE共混物。(3)共混物的力学强度对于未加成核剂的UHMWPE/PE体系,其在冷却过程中会形成较大的球晶,球晶之间存在着明显的界面,而在这些界面上存在着由分子链排布不同引起的内应力,由此会导致裂纹的产生,所以与基体聚合物相比,共混物的拉伸强度常常有所下降。当受到外力冲击时裂纹会很快地沿球晶界面发展而导致最后的破碎,因此又引起冲击强度的下降。 流动改进剂改性流动改进剂促进了长链分子的解缠,并在大分子之间起润滑作用,改变了大分子链间的能量传递,从而使得链段位移变得容易,改善了聚合物的流动性。用于UHMWPE的流动改进剂主要是指脂肪族碳氢化合物及其衍生物。其中脂肪族碳氢化合物有:碳原子数在22以上的n-链烷烃及以其作主成分的低级烷烃混合物;石油分裂精制得到的石蜡等。其衍生物是指末端含有脂肪族烃基、内部含有1个或1个以上(最好为1个或2个)羧基、羟基、酯基、羰基、氮基甲酰基、巯基等官能团;碳原子数大于8(最好为12~50)并且分子量为130~2000(以200~800为最佳)的脂肪酸、脂肪醇、脂肪酸酯、脂肪醛、脂肪酮、脂肪族酰胺、脂肪硫醇等。举例来说,脂肪酸有:癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬酯酸、油酸等。北京化工大学制备了一种有效的流动剂(MS2)〔17〕,添加少量(~)就能显著改善UHMWPE的流动性,使其熔点下降达10℃之多,能在普通注塑机上注塑成型,而且拉伸强度仅有少许降低。另外,用苯乙烯及其衍生物改性UHMWPE,除可改善加工性能使制品易于挤出外,还可保持UHMWPE优良的耐摩擦性和耐化学腐蚀性〔18〕;1,1-二苯基乙炔〔19〕、苯乙烯衍生物〔20〕、四氢化萘〔21〕皆可使UHMWPE获得优良的加工性能,同时使材料具有较高的冲击强度和耐磨损性。 液晶高分子原位复合材料液晶高分子原位复合材料是指热致液晶高分子(TLCP)与热塑性树脂的共混物,这种共混物在熔融加工过程中,由于TLCP分子结构的刚直性,在力场作用下可自发地沿流动方向取向,产生明显的剪切变稀行为,并在基体树脂中原位就地形成具有取向结构的增强相,即就地成纤,从而起到增强热塑性树脂和改善加工流动性的作用。清华大学赵安赤等采用原位复合技术,对UHMWPE加工性能的改进取得了明显的效果〔22〕。用TLCP对UHMWPE进行改性,不仅提高了加工时的流动性,采用通常的热塑加工工艺及通用设备就能方便地进行加工,而且可保持较高的拉伸强度和冲击强度,耐磨性也有较大提高。 聚合填充型复合材料高分子合成中的聚合填充工艺是一种新型的聚合方法,它是把填料进行处理,使其粒子表面形成活性中心,在聚合过程中让乙烯、丙烯等烯烃类单体在填料粒子表面聚合,形成紧密包裹粒子的树脂,最后得到具有独特性能的复合材料。它除具有掺混型复合材料性能外,还有自己本身的特性:首先是不必熔融聚乙烯树脂,可保持填料的形状,制备粉状或纤维状的复合材料;其次,该复合材料不受填料/树脂组成比的限制,一般可任意设定填料的含量;另外,所得复合材料是均匀的组合物,不受填料比重、形状的限制。与热熔融共混材料相比,由聚合填充工艺制备的UHMWPE复合材料中,填料粒子分散良好,且粒子与聚合物基体的界面结合也较好。这就使得复合材料的拉伸强度、冲击强度与UHMWPE相差不大,却远远好于共混型材料,尤其是在高填充情况下,对比更加明显,复合材料的硬度、弯曲强度,尤其是弯曲模量比纯UHMWPE提高许多,尤其适用作轴承、轴座等受力零部件。而且复合材料的热力学性能也有较好的改善:维卡软化点提高近30℃,热变形温度提高近20℃,线膨胀系数下降20%以上。因此,此材料可用于温度较高的场合,并适于制造轴承、轴套、齿轮等精密度要求高的机械零件。采用聚合填充技术还可通过向聚合体系中通入氢或其它链转移剂,控制UHMWPE分子量大小,使得树脂易加工〔23〕。美国专利〔24〕用具有酸中性表面的填料:水化氧化铝、二氧化硅、水不溶性硅酸盐、碳酸钙、碱式碳酸铝钠、羟基硅灰石和磷酸钙制成了高模量的均相聚合填充UHMWPE复合材料。另有专利〔25〕指出,在60℃,且有催化剂存在的条件下,使UHMWPE在庚烷中干燥的 氧化铝表面聚合,可得到高模量的均相复合材料。齐鲁石化公司研究院分别用硅藻土、高岭土作为填料合成了UHMWPE复合材料〔26〕。 UHMWPE的自增强〔27、28〕在UHMWPE基体中加入UHMWPE纤维,由于基体和纤维具有相同的化学特征,因此化学相容性好,两组份的界面结合力强,从而可获得机械性能优良的复合材料。UHMWPE纤维的加入可使UHMWPE的拉伸强度和模量、冲击强度、耐蠕变性大大提高。与纯 UHMWPE相比,在UHMWPE中加入体积含量为60%的UHMWPE纤维,可使最大应力和模量分别提高160%和60%。这种自增强的UHMWPE材料尤其适用于生物医学上承重的场合,而用于人造关节的整体替换是近年来才倍受关注的,UHMWPE自增强材料的低体积磨损率可提高人造关节的使用寿命。4 UHMWPE的合金化UHMWPE除可与塑料形成合金来改善其加工性能外(见和),还可获得其它性能。其中,以PP/UHMWPE合金最为突出。通常聚合物的增韧是在树脂中引入柔性链段形成复合物(如橡塑共混物),其增韧机理为“多重银纹化机理”。而在PP/UHMWPE体系,UHMWPE对PP有明显的增韧作用,这是“多重裂纹”理论所无法解释的。国内最早于1993年报道采用UHMWPE增韧PP取得成功,当UHMWPE的含量为15%时,共混物的缺口冲击强度比纯PP提高2倍以上〔29〕。最近又有报道,UHMWPE与含乙烯链段的共聚型PP共混,在UHMWPE的含量为25%时,其冲击强度比PP提高一倍多〔30〕。以上现象的解释是“网络增韧机理”〔31〕。PP/UHMWPE共混体系的亚微观相态为双连续相,UHMWPE分子与长链的PP分子共同构成一种共混网络,其余PP构成一个PP网络,二者交织成为一种“线性互穿网络”。其中共混网络在材料中起到骨架作用,为材料提供机械强度,受到外力冲击时,它会发生较大形变以吸收外界能量,起到增韧的作用;形成的网络越完整,密度越大,则增韧效果越好。为了保证“线性互穿网络”结构的形成,必须使UHMWPE以准分子水平分散在PP基体中,这就对共混方式提出了较高的要求。北京化工大学有研究发现:四螺杆挤出机能将UHMWPE均匀地分散在PP基体中,而双螺杆挤出机的共混效果却不佳。EPDM能对PP/UHMWPE合金起到增容的作用。由于EPDM具备的两种主要链节分别与PP和UHMWPE相同,因而与两种材料都有比较好的亲合力,共混时容易分散在两相界面上。EPDM对复合共晶起到插入、分割和细化的作用,这对提高材料的韧性是有益的,能大幅度地提高缺口冲击强度。另外,UHMWPE也可与橡胶形成合金,获得比纯橡胶优良的机械性能,如耐摩擦性、拉伸强度和断裂伸长率等。其中,橡胶是在混合过程中于UHMWPE的软化点以上进行硫化的。5 UHMWPE的复合化UHMWPE可与各种橡胶(或橡塑合金)硫化复合制成改性PE片材,这些片材可进一步与金属板材制成复合材料。除此之外,UHMWPE还可复合在塑料表面以提高耐冲击性能。在UHMWPE软化点以上的温度条件下,将含有硫化剂的未硫化橡胶片材与UHMWPE片材压制在一起,可制得剥离强度较高的层合制品,与不含硫化剂的情况相比,其剥离强度可提高数十倍。用这种方法同样可使未硫化橡胶与塑料的合金(如EPDM/PA6、EPDM/PP、SBR/PE)和UHMWPE片材牢固地粘接在一起。参考文献:〔1〕 钟玉荣,卢鑫华.塑料〔J〕,1991,20(1):30〔2〕 孙大文.塑料加工应用〔J〕,1983(5):1〔3〕 杨年慈.合成纤维工业〔J〕,1991,14(2):48〔4〕 JP 63,161,075〔P〕〔5〕 .〔J〕,1981,27(1):8

聚乙烯纳米材料的发展前景及现状。这个,您的,任务书可以给我,/吧

  • 索引序列
  • 粒子物理毕业论文题目
  • 粒子物理毕业论文方向
  • 粒子物理研究生毕业论文
  • 物理量子毕业论文题目
  • 粒子聚集毕业论文
  • 返回顶部