有以下几点:1.在阳光下才能用,不能随时随地的为手机充电。2.带有锂电池的太阳能面板小,充电慢,太阳能面板大的笨重。3.没有锂电池的不能蓄电。4.携带不方便,能折叠的会方便些。若说充电的速度和充电宝的快充还是有些差别的,可以选择转化率较高的太阳能充电器,国瑞阳光在转化率上还是可以的,20%以上的充电速度会比较快。
①只能太阳下充电 强光下不能间段充电(直射太阳能面板)约8小时 受天气制约② 灯光无效③ 隔着玻璃 效果不好④小功率太阳能转换率不高,太阳能充电较慢参考百科
阴雨天效果差、晚上不能用……
太阳能手机充电宝是一种可以通过太阳能充电来给手机等电子设备充电的充电设备。这种充电宝的使用效果受到很多因素的影响,例如天气、光照强度、充电宝的质量等等。因此,具体的好不好用情况可能因产品质量和使用环境等因素而异。太阳能充电宝的优点是可以在户外环境中随时随地为手机等设备充电,无需电源插座等设施,非常方便。同时,使用太阳能充电也可以减少对传统能源的消耗,具有一定的环保效益。然而,由于太阳能充电宝的充电效率较低,需要较长时间才能充满电,因此如果时间比较紧急或者天气不好,可能无法满足用户的需求。总的来说,太阳能手机充电宝具有一定的优点和局限性,具体使用效果需要根据产品质量、使用环境和个人需求等因素来综合评估。
内部使用的是锂离子电池,符合国际环保公约要求,可以反复使用。使用取之不尽,用之不绝的清洁能源—太阳能,节能环保,无二次污染。 电池组件与灯体之间由于采用插卡式连接,电池组件可方便地从灯体上拔插下来,放置在太阳光下进行自动充电。充满后,可以直接放置在台灯底盘槽上,供台灯照明,也可以将电池盒内的电板直接取下,为本公司生产的其他壁灯吊灯供电使用,插卡即可。同时电池盒上有USB接口,可以直接为公司生产的其他灯具供电和充电使用,真正做到一物多用,使得本产品功能更加强大,实用。 本台灯具有外观新型,简洁时尚,经久耐用,质量可靠稳定,使用寿命较长等优点。
1 查阅光伏电池产品规格,光照/伏特:特征;
参考一下我的附图。
2 寻找高效率的DC-DC变换电路。
查一下,同步整流的DCDC,一般美信和凌特的都有,美信的可以到网上申请样片,速度比较快。
提醒一点,强光注意限流和过充保护,避免损坏电池。
==============
太阳能电池是一个限功率的电源。根据光照情况的不同,其输出功率是变化的。
太阳能电池在带载时,如果电流增大,电压是线性下降的,你如果实际测绘一下输出电压和电流的曲线,其中有一个交汇点,在这个点上面,输出功率是最大的。
当然,电流过大是不太好的,电压跌下来的那一部分,其实是消耗在太阳能电池的内阻上了,电池会发热,所以必须适当的给予控制,比如串入一个恒流源,来保证电流上限不超过电池设计电流为好。
=======
参考:
MPPT是Maximum Power Point Tracking的缩写
太阳电池是一种非线性的器件,在不同的光照辐射强度下其输出特性是不同的,在一定的光强下存在一个工作点,在该点上太阳电池输出的功率最大,称为最大功率点,相应的输出电压和功率称为最大功率点输出电压及最大输出功率.
从充分利用太阳电池的方面考虑,希望太阳电池在不同的光强条件下始终工作在最大功率点上.实际使用中,光强是不断变化的,所以需要一个跟踪模块,该模块的功能是调整太阳电池的工作电压,使其输出功率最大化.
关于太阳能充电台灯好用吗,这个问题主要还是看牌子,和单个产品的质量,有点太阳能充电台灯好用。
水热法生长二氧化钛纳晶及在染料敏化太阳能电池板的应用1 引言1991 年瑞士学者Gratzel 等在Nature 上发表文章,提出了一种新型的以染料敏化二氧化钛纳晶薄膜为光阳极的太阳能电池,其具有制作简单、成本低廉、效率高和寿命长等优点,光电转换效率目前可以达到11%以上,因此成为新一代太阳能电池的主要研究发展方向[1-4]。染料敏化太阳能电池的光电转换效率的提高要归功于其独特的纳晶多孔薄膜电极,其可以使电子在薄膜中有较快的传输速度,且具有足够大的比表面积,能够吸附大量的染料,并且与染料的能级相匹配。所以因对染料敏化太阳能电池的复杂的作用,许多科学工作者致力于制备功能和性能良好的TiO2 纳晶多孔薄膜电极[5, 6]。在纳晶TiO2 的三种晶型中,锐钛矿相的光电活性最好,最实用于染料敏化太阳能电池中,所以在制备纳晶TiO2 时,金红石相和板钛矿相纳晶应该尽量避免。对TiO2 纳晶的生长,许多研究者开始在水热法中采用有机碱做胶溶剂来制备TiO2 纳晶[7-9]。Yang 用三种有机碱做胶溶剂制备了粒经和形貌不相同的TiO2 纳晶,其结果证明了有机碱的加入对纳晶粒子大小、形貌及表面积等有一定影响[10]。但是,如何制备晶型和形貌都能满足于染料敏化太阳能电池的要求却很少讨论。在本章中,采用水热法基础上,分别使用三种有机碱四甲基氢氧化铵(TMAOH)、四乙基氢氧化铵(TEAOH)、四丁基氢氧化铵(TBAOH)做胶溶剂来制TiO2 备纳晶并应用于染料敏化太阳能电池中并研究了制备条件的不同对纳晶形貌、粒径大小及电池光电性能的影响。2 实验主要药品和仪器钛酸四正丁酯、异丙醇、聚乙二醇20,000、碘、碘化锂、4-叔丁基吡啶(TBP)、OP乳化剂(Triton X-100)(AR,均购于中国医药集团上海化学试剂公司);敏化染料(cis-[(dcbH2)2Ru(SCN)2],SOLARONIX SA.);四甲基氢氧化铵(TMAOH)(25 %)、四乙基氢氧化铵(TEAOH)(20 %)、四丁基氢氧化铵(TBAOH)(10 %) (均购于中国医药集团上海化学试剂公司);可控温磁力搅拌器(C-MAG HS4,德国IKA);马弗炉(上海实验电炉厂);100 W 氙灯(XQ-100 W,上海电光器件有限公司);导电玻璃基片(FTO,15 Ω/cm2,北京建筑材料研究院);X 射线粉末衍射仪(XRD) D8-advance(Bruker 公司);扫描电子显微镜(SEM)S-3500N(日本日立公司);透射电镜(TEM)JEM-2010(日本);红外光谱分析仪Nicolet Impact 410 spectrometer;紫外–可见分光光度计UV-Vis 3100 (Shimadzu corporation, Japan)。3 实验部分 纳晶TiO2 的制备根据文献的制备方法[6-11],把钛酸四正丁酯与等体积的异丙醇混合均匀并逐滴加入到蒸馏水中并不断的搅拌30分钟([H2O]/[Ti(OBu)4] = 150),过滤并用水和乙醇溶液洗剂2-3次。在强烈搅拌下,把所得到的沉淀加入到pH=的含有有机碱的溶液中,在100 °C搅拌24小时,得到半透明的胶体。将得到胶体装入高压釜(填充度小于80%)。在200 oC水热处理12小时。水热处理后,得乳白色混合物并伴有鱼腥味,这表明有机碱分解为了胺类化合物。将高压釜处理后的TiO2胶体连同沉淀一起倒入烧杯,经50 oC浓缩至原来的1/5,加入相当于TiO2量20%-30%的聚乙二醇20,000及几滴Triton X-100,搅拌至均匀,得稳定的TiO2纳晶浆体。 纳晶薄膜电极的制备将洗净的导电玻璃四边用透明胶带覆盖,通过控制胶带的厚度和胶体的浓度来控制膜的厚度[12],中间留出约1×1 cm2空隙,将在酸性条件下制备的小粒径的纳晶TiO2胶体用玻片均匀的平铺在空隙中。空气中自然晾干后,在马弗炉中升温至450 ?C热处理30分钟,使TiO2固化并烧去聚乙二醇等有机物,冷却至80 ?C,经过仪器测量,薄膜的平均厚度在6微米左右。将获得的纳晶多孔薄膜浸泡于N3染料溶液中24小时,使染料充分地吸附在TiO2上,取出后用乙醇浸泡3-5分钟,洗去吸附在表面的染料,在暗处自然晾干,即得到染料敏化的纳晶多孔TiO2薄膜电极。首先按上文所述制备纳晶多孔薄膜,制备的薄膜平均厚度在微米左右,将其重新用透明胶带覆盖,把用TMAOH做胶溶剂的条件下制备的大粒径的纳晶TiO2浆体用玻片均匀的平铺在空隙中。空气中自然晾干后,重新在马弗炉中升温至450 ?C热处理30分钟,反射层的纳晶薄膜的平均厚度控制在微米左右,热处理后即得双层纳晶薄膜。浸泡染料后即得双层纳晶薄膜电极。 DSSC 的组装以染料敏化纳晶多孔TiO2薄膜电极为工作电极,以镀铂电极为对阴极[13],将染料敏化电极与对阴极用夹子固定,在其间隙中滴入以乙腈为溶剂、以 mol/L LiI+ mol/L I2+ TBP为溶质的液态电解质,封装后即得到染料敏化太阳能电池。 光电性能测量采用100 W氙灯作为太阳光模拟器,其入射光强Pin为100 mW/cm2。在室温下进行测量,记录其短路电流ISC和开路电压VOC,并应用公式计算其填充因子ff和光电转换效率η。 表征与分析采用 D8-advance 型X 射线粉末衍射仪测定TiO2 的晶体结构,测试条件为:Cu Kα(λ= ?),电压:40 KV,电流:40 mA。扫描速度:6?/min,扫描范围:10?-80?。采用KBr 压片法测量样品的红外光谱,测试条件:400-4000 cm-1,软件:OMNIC ,扫描次数30 次。采用JEM-2010(日本)型透射电子显微镜(TEM)观察TiO2 纳晶的表面形貌及粒径大小。用紫外-可见分光光度计(UV-3100)测试不同粒径TiO2 纳晶多孔薄膜电极吸附染料的吸光度。TG 的升温速度:10 ℃/min,范围:室温至1000 ℃,测试仪器:SDT 2960 同步DSC-TGA 装置 (USA TA 设备)。4 结果与讨论 有机碱对TiO2 纳晶的形貌和粒径的影响Sugimoto 和他的合作者们研究了影响TiO2 纳晶生长的一些因素,其中pH 的值、有机碱的烷基链的长短、水热的温度以及水热的时间等因素都对TiO2 纳晶颗粒的大小和形貌有很大的影响[14-17]。通过研究发现,四烷基有机碱作为模板来控制TiO2 纳晶的形貌和大小。所以可以使用不同的有机碱来制备适合于染料敏化太阳能电池光电传输的晶型完整并具有较大的比表面积的TiO2 纳晶。是在不同的有机碱做胶溶剂时制备的TiO2 纳晶的TEM 图,a 图是采用TMAOH 做胶溶剂,b 图是采用TEAOH 做胶溶剂,c 图是采用TBAOH 做胶溶剂。从图中可以看出,在相同pH 值下,不同的有机碱做胶溶剂时,制备的纳晶明显不同,这说明胶溶剂对TiO2纳晶的粒径大小和形貌有很大的影响,而且随着有机碱胶溶剂烷基链的加长,TiO2 纳晶的粒径减小,并且粒子为多面体。当用TMAOH 做胶溶剂时,制备的TiO2 纳晶的粒子多为四方体,颗粒宽12-20 nm,粒子长20-40 nm,如图1a 所示。当用TEAOH 做胶溶剂时制备的TiO2 纳晶的粒子颗粒不均匀,而且形貌也不规则有多面体形的也有四面体形的,粒子宽度8-10 nm,长度10-25 nm,如图1b 所示。而当有机碱的烷基链长从两个碳原子增加到四个碳原子时,即用TBAOH 用作胶溶剂时制备的纳晶颗粒粒子大小较均匀而且形貌也较规则,多为正方体,粒子大小一般在5nm 左右,如图1c 所示。在TiO2 纳晶的水热生长过程中,有机碱首先是吸附在TiO2 的晶核上,而烷基链的长短不同吸附的能力不同,吸附能力越大则就会阻碍纳晶的生长。研究发现[6],烷基链越长则有机碱吸附在晶核上的吸附力越大,则会阻碍晶体的生长,所以随着有机碱烷基链的长度的增加,纳晶颗粒在不断的减小;并且研究发现,胶溶剂的浓度不能太大,太大时制备的TiO2 纳晶就会出现严重的团聚现象[10]。 有机碱对TiO2 纳晶晶型的影响是用三种有机碱做胶溶剂时制备的TiO2 纳晶的XRD 图,a 是制备的TiO2 纳晶经过自然风干后的XRD,b 是制备的三种TiO2 纳晶经过50 °C 热处理30 分钟中后的XRD 图。从图2a 中可以看出,2θ = °是TiO2 纳晶锐钛矿的特征峰,但是还有一些其它的杂峰,这些杂峰证明是有机胺类化合物的峰。当把制备的纳晶经过450 °C 热处理30 分钟中后,a 图中的杂峰就消失,TiO2 在2q =°,°,°,°,°和°的衍射峰的d 值均与标准PDF 卡片锐钛矿型TiO2 衍射峰相符,说明所制备的TiO2 的晶型为锐钛矿,没有金红石相和板钛矿相出现,制备的为纯的锐钛矿相TiO2 纳晶。在传统水热方法中,采用硝酸做胶溶剂,制备的纳晶TiO2 中,含有少量的金红石相和板钛矿相,而这两种的光电性能较差,影响染料敏化太阳能电池的光电转换效率。而用有机碱做胶溶剂制备的TiO2 纳晶可满足染料敏化太阳能电池中对锐钛矿相的要求。随着有机碱烷基链的增加,样品的特征衍射峰宽逐渐变大,并且衍射峰值逐渐减小,这表明制备纳晶颗粒不断减小,这与TEM 的结果一致。 TiO2 纳晶的热稳定性分析是用三种有机碱制备的TiO2 纳晶的红外光谱图,(a) 是制备的纳晶粉末在80 °C 烘干24 小时,(b)是制备的纳晶粉末在450 °C 热处理1 小时,光谱范围是400-4000 cm-1。从红外光谱图可知,三种纳晶红外图谱相近。图3(a)中出现了有机化合物的一些键如C-H, N-H,和O-H 等键,但随着在450 °C 热处理1 小时后,这些化合键就消失了,而TiO2 薄膜的红外谱图中主要有Ti-O-Ti 键伸缩振动峰在500cm-1 附近,没有出现宽的吸收带,如图3(b)所示,这一结果与文献中的结果相一致[7]。这说明在有机碱条件下制备的TiO2 纳晶在经过450 °C后为稳定的锐钛矿相,吸附在其表面的有机物分解完全。从XRD 的结果也可以得出(图 3b),所有有机化合物在经过450 °C 热处理后都消失完全了,这说明二氧化钛化合物在高于450 °C热处理后,可以晶化为稳定的锐钛矿相TiO2 纳晶。是用有机碱做胶溶剂时制备的TiO2 纳晶粉末热稳定性的TG 分析。这些纳晶粉末是在105 °C 下烘干24 小时,而没有进行任何热处理的。从图中可以看出,有两个失重过程。第一个过程是100~250 °C 之间的明显失重,可以认为是失去了吸附在纳晶粉末表面的水分子和一些醇。第二个过程是250~400 °C 之间的失重,是因为粉体中吸附的有机物成份的失去。有机物与制备的氧化物之间有很强的键和作用,这些有机物包裹着氧化物,当温度达到400 °C 时,这些键和作用才会消失,有机物完全分解,这说明有机物与纳晶颗粒之间的力结合不是太大不影响纳晶的晶化。另外发现,在不同有机碱胶溶剂下制备的纳晶粉末的失重情况明显不同,在采用TBAOH 做胶溶剂时的失重明显要高于使用TMAOH 做胶溶剂时的,这说明前者表面吸附了更多的有机物。吸附有机物的量不同,表明制备的纳晶粉末的形貌和粒径大小也明显不同[14],这与TEM 的结果一致,在采用TBAOH 做胶溶剂时制备的TiO2纳晶颗粒较小表面积较大,这就使吸附在纳晶表面的有机物就增多,所以在进行热分解时失重较多;而采用TMAOH 做胶溶剂时制备的TiO2 纳晶颗粒明显大许多,表面积又小所以吸附的有机物就会减小,所以在热分解时失重较少。从失重量的多少也可以简单分析出制备的纳晶颗粒和形貌的异同。用有机碱做胶溶剂来制备TiO2 纳晶,会对其晶型及其晶型的稳定性有一定的影响。图5 为有机碱TEAOH 做胶溶剂的条件下制备的TiO2 纳晶及其分别在300 °C,500 °C,700 °C,800 °C,900 °C 烧结1 小时样品的XRD 谱图。在TiO2 纳晶的晶型中,峰位于2θ=°是锐钛矿相的特征衍射峰,峰位于2θ=°是金红石相的特征衍射峰。从图中可知,TiO2 纳晶在800 °C 烧结前,晶型没有发生变化。在800 °C 烧结之后,才出现了金红石相晶型,这一结果与Young 等人的研究结果一致[18]。据报道在酸性条件下制备的TiO2 纳晶,在烧结温度达600 °C 时,锐钛矿晶型就开始向金红石晶型转变[19]。而用有机碱TEAOH 做胶溶剂制备的TiO2 纳晶从锐钛矿相向金红石相转变的温度有所提高,这说明用有机碱TEAOH 做胶溶剂制备的TiO2 纳晶热稳定性提高了,这一稳定性说明,可以对锐钛矿型TiO2 纳晶在较高的温度下进行烧结,而不改变其晶型,即没有金红石型纳晶出现。 BET 和吸附染料能力的研究用不同的有机碱做胶溶剂所制备的TiO2 纳晶粉的表面积进行分析,实验得出,在使用有机碱TMAOH 做胶溶剂时制备的TiO2 纳晶粉的比表面积为66 m2·g-1,但是当使用TEAOH和TBAOH 做胶溶剂时,制备的TiO2 纳晶粉的比表面积为78 m2·g-1 和82 m2·g-1。这一结果与粒径越大比表面积越小相一致,颗粒大小如图1 所示,这说明颗粒越小比表面积越大。研究发现,吸附的染料(RuL2(SCN)2)的多少并不一定随着比表面积的增大而增大。为了研究用于染料敏化太阳能电池测试的TiO2 纳晶多孔薄膜吸附染料的多少,把敏化的电极在5 mL mol/L NaOH 溶液中让染料进行脱附,之后对染料的碱性溶液进行吸光度的分析,UV-vis 吸收光谱的结果如图5 所示。图中a、b 和c 三条曲线分别是采用TMAOH、TEAOH和TBAOH 做胶溶剂时制备的TiO2 纳晶。根据朗伯-比尔定律可知吸光度随浓度增加而增大,结果显示,采用TMAOH 做胶溶剂时制备的TiO2 纳晶吸收的染料最少,这与比表面积越小吸附的染料越少相吻合,但比其它两种纳晶的吸附量要少很多。虽然采用TBAOH 做胶溶剂时制备的TiO2 纳晶的比表面积比用TEAOH 做胶溶剂所制备的TiO2 纳晶的比表面积大,但是后者却比前者所吸附的染料多,这里可能的解释就是因其用TBAOH 做胶溶剂时制备的TiO2 纳晶的颗粒太小还不足10nm,所以用其制备的纳晶多孔薄膜太致密而使得吸附的染料减小。 染料敏化太阳能电池光电性能研究采用有机碱制备的三种不同形貌和粒径大小的TiO2 纳晶,并用其制备了敏化电极应用于染料敏化太阳能电池光电性能的研究,如图6 所示。表1 给出了三种不同电极的所组装的电池的短路电流、开路电压、填充因子和光电转换效率的值。在100 mW/cm2 光照条件下,三种电池的短路电流分别为、、 mA/cm2,开路电压分别为、、,填充因子分别为,光电转换效率分别达到了。从实验结果可知,采用有机碱TEAOH 制备的TiO2 纳晶所组装的电池的光电转换效率比其它两种电池的光电转换效率要高。可知,采用有机碱TEAOH 所制备的TiO2 所制备的电池的开路电压要比采用有机碱TMAOH 所制备的TiO2 所制备的电池的要低,但是其电池的短路电流和填充因子都要比其它两种有机碱所制备TiO2 所组装的电池要高。这可能是因为(1)用有机碱TEAOH 所制备的TiO2 纳晶粒经比较适中,制备的多孔薄膜粒子与粒子之间结合比较紧密,这样就提高了电子在薄膜中的传播速度;(2)较其它两种多孔薄膜吸附的染料要多,研究表明吸附的染料的量与所产生的光电流成正比,吸附的染料越多,则产生的光电流越大,用有机碱TEAOH 做胶溶剂所制备的TiO2 多孔薄膜所吸附的染料最多,所以用其所组装的染料敏化太阳能电池的短路电流最高,电池的光电转换效率也达到最好。5 结论本章采用了钛酸四正丁酯为原料,以三种有机碱做胶溶剂来制备TiO2 纳晶,以三种制备的敏化的纳晶多孔薄膜为电极组装了染料敏化太阳能电池,并对其进行了电池光电性能的测试。研究了这三种有机胶溶剂对TiO2 纳晶晶体生长的影响,采用三种不同烷基链的有机碱做胶溶剂制备的纳晶形貌和大小有很大的不同,研究发现,随着烷基链的加长,纳晶的形貌开始变得规整,粒径也减小,但是有机碱的浓度不能太大,浓度过高时,会使制备的纳晶出现团聚,所以在使用有机碱做胶溶剂时,采用的是在pH= 的条件下制备的。通过热稳定性分析发现,吸附在TiO2 纳晶表面的有机碱在450 °C 热处理后,有机物分解完全,这说明在制备纳晶多孔薄膜时,有机物分解完全,多孔薄膜中为纯的TiO2 纳晶。因为三种TiO2纳晶形貌和大小不同所以制备的多孔薄膜吸附染料的量也不相同。实验发现采用有机碱TEAOH 做胶溶剂时制备的TiO2 的敏化电极吸附的染料最多,电池光电性能测试也显示用此TiO2 纳晶制备的电池开路电流达到 mA cm-2,光电转换效率达到,比其它两种电池的光电转换效率要高,这说明用有机碱TEAOH 做胶溶剂所制备的TiO2 纳晶的形貌和大小比其它两种有机碱胶溶剂制备的TiO2 更适合应用于染料敏化太阳能电池。更多毕业论文请到
水热法生长二氧化钛纳晶及在染料敏化太阳能电池板的应用1 引言1991 年瑞士学者Gratzel 等在Nature 上发表文章,提出了一种新型的以染料敏化二氧化钛纳晶薄膜为光阳极的太阳能电池,其具有制作简单、成本低廉、效率高和寿命长等优点,光电转换效率目前可以达到11%以上,因此成为新一代太阳能电池的主要研究发展方向[1-4]。染料敏化太阳能电池的光电转换效率的提高要归功于其独特的纳晶多孔薄膜电极,其可以使电子在薄膜中有较快的传输速度,且具有足够大的比表面积,能够吸附大量的染料,并且与染料的能级相匹配。所以因对染料敏化太阳能电池的复杂的作用,许多科学工作者致力于制备功能和性能良好的TiO2 纳晶多孔薄膜电极[5, 6]。在纳晶TiO2 的三种晶型中,锐钛矿相的光电活性最好,最实用于染料敏化太阳能电池中,所以在制备纳晶TiO2 时,金红石相和板钛矿相纳晶应该尽量避免。对TiO2 纳晶的生长,许多研究者开始在水热法中采用有机碱做胶溶剂来制备TiO2 纳晶[7-9]。Yang 用三种有机碱做胶溶剂制备了粒经和形貌不相同的TiO2 纳晶,其结果证明了有机碱的加入对纳晶粒子大小、形貌及表面积等有一定影响[10]。但是,如何制备晶型和形貌都能满足于染料敏化太阳能电池的要求却很少讨论。在本章中,采用水热法基础上,分别使用三种有机碱四甲基氢氧化铵(TMAOH)、四乙基氢氧化铵(TEAOH)、四丁基氢氧化铵(TBAOH)做胶溶剂来制TiO2 备纳晶并应用于染料敏化太阳能电池中并研究了制备条件的不同对纳晶形貌、粒径大小及电池光电性能的影响。2 实验主要药品和仪器钛酸四正丁酯、异丙醇、聚乙二醇20,000、碘、碘化锂、4-叔丁基吡啶(TBP)、OP乳化剂(Triton X-100)(AR,均购于中国医药集团上海化学试剂公司);敏化染料(cis-[(dcbH2)2Ru(SCN)2],SOLARONIX SA.);四甲基氢氧化铵(TMAOH)(25 %)、四乙基氢氧化铵(TEAOH)(20 %)、四丁基氢氧化铵(TBAOH)(10 %) (均购于中国医药集团上海化学试剂公司);可控温磁力搅拌器(C-MAG HS4,德国IKA);马弗炉(上海实验电炉厂);100 W 氙灯(XQ-100 W,上海电光器件有限公司);导电玻璃基片(FTO,15 Ω/cm2,北京建筑材料研究院);X 射线粉末衍射仪(XRD) D8-advance(Bruker 公司);扫描电子显微镜(SEM)S-3500N(日本日立公司);透射电镜(TEM)JEM-2010(日本);红外光谱分析仪Nicolet Impact 410 spectrometer;紫外–可见分光光度计UV-Vis 3100 (Shimadzu corporation, Japan)。3 实验部分 纳晶TiO2 的制备根据文献的制备方法[6-11],把钛酸四正丁酯与等体积的异丙醇混合均匀并逐滴加入到蒸馏水中并不断的搅拌30分钟([H2O]/[Ti(OBu)4] = 150),过滤并用水和乙醇溶液洗剂2-3次。在强烈搅拌下,把所得到的沉淀加入到pH=的含有有机碱的溶液中,在100 °C搅拌24小时,得到半透明的胶体。将得到胶体装入高压釜(填充度小于80%)。在200 oC水热处理12小时。水热处理后,得乳白色混合物并伴有鱼腥味,这表明有机碱分解为了胺类化合物。将高压釜处理后的TiO2胶体连同沉淀一起倒入烧杯,经50 oC浓缩至原来的1/5,加入相当于TiO2量20%-30%的聚乙二醇20,000及几滴Triton X-100,搅拌至均匀,得稳定的TiO2纳晶浆体。 纳晶薄膜电极的制备将洗净的导电玻璃四边用透明胶带覆盖,通过控制胶带的厚度和胶体的浓度来控制膜的厚度[12],中间留出约1×1 cm2空隙,将在酸性条件下制备的小粒径的纳晶TiO2胶体用玻片均匀的平铺在空隙中。空气中自然晾干后,在马弗炉中升温至450 ?C热处理30分钟,使TiO2固化并烧去聚乙二醇等有机物,冷却至80 ?C,经过仪器测量,薄膜的平均厚度在6微米左右。将获得的纳晶多孔薄膜浸泡于N3染料溶液中24小时,使染料充分地吸附在TiO2上,取出后用乙醇浸泡3-5分钟,洗去吸附在表面的染料,在暗处自然晾干,即得到染料敏化的纳晶多孔TiO2薄膜电极。首先按上文所述制备纳晶多孔薄膜,制备的薄膜平均厚度在微米左右,将其重新用透明胶带覆盖,把用TMAOH做胶溶剂的条件下制备的大粒径的纳晶TiO2浆体用玻片均匀的平铺在空隙中。空气中自然晾干后,重新在马弗炉中升温至450 ?C热处理30分钟,反射层的纳晶薄膜的平均厚度控制在微米左右,热处理后即得双层纳晶薄膜。浸泡染料后即得双层纳晶薄膜电极。 DSSC 的组装以染料敏化纳晶多孔TiO2薄膜电极为工作电极,以镀铂电极为对阴极[13],将染料敏化电极与对阴极用夹子固定,在其间隙中滴入以乙腈为溶剂、以 mol/L LiI+ mol/L I2+ TBP为溶质的液态电解质,封装后即得到染料敏化太阳能电池。 光电性能测量采用100 W氙灯作为太阳光模拟器,其入射光强Pin为100 mW/cm2。在室温下进行测量,记录其短路电流ISC和开路电压VOC,并应用公式计算其填充因子ff和光电转换效率η。 表征与分析采用 D8-advance 型X 射线粉末衍射仪测定TiO2 的晶体结构,测试条件为:Cu Kα(λ= ?),电压:40 KV,电流:40 mA。扫描速度:6?/min,扫描范围:10?-80?。采用KBr 压片法测量样品的红外光谱,测试条件:400-4000 cm-1,软件:OMNIC ,扫描次数30 次。采用JEM-2010(日本)型透射电子显微镜(TEM)观察TiO2 纳晶的表面形貌及粒径大小。用紫外-可见分光光度计(UV-3100)测试不同粒径TiO2 纳晶多孔薄膜电极吸附染料的吸光度。TG 的升温速度:10 ℃/min,范围:室温至1000 ℃,测试仪器:SDT 2960 同步DSC-TGA 装置 (USA TA 设备)。4 结果与讨论 有机碱对TiO2 纳晶的形貌和粒径的影响Sugimoto 和他的合作者们研究了影响TiO2 纳晶生长的一些因素,其中pH 的值、有机碱的烷基链的长短、水热的温度以及水热的时间等因素都对TiO2 纳晶颗粒的大小和形貌有很大的影响[14-17]。通过研究发现,四烷基有机碱作为模板来控制TiO2 纳晶的形貌和大小。所以可以使用不同的有机碱来制备适合于染料敏化太阳能电池光电传输的晶型完整并具有较大的比表面积的TiO2 纳晶。是在不同的有机碱做胶溶剂时制备的TiO2 纳晶的TEM 图,a 图是采用TMAOH 做胶溶剂,b 图是采用TEAOH 做胶溶剂,c 图是采用TBAOH 做胶溶剂。从图中可以看出,在相同pH 值下,不同的有机碱做胶溶剂时,制备的纳晶明显不同,这说明胶溶剂对TiO2纳晶的粒径大小和形貌有很大的影响,而且随着有机碱胶溶剂烷基链的加长,TiO2 纳晶的粒径减小,并且粒子为多面体。当用TMAOH 做胶溶剂时,制备的TiO2 纳晶的粒子多为四方体,颗粒宽12-20 nm,粒子长20-40 nm,如图1a 所示。当用TEAOH 做胶溶剂时制备的TiO2 纳晶的粒子颗粒不均匀,而且形貌也不规则有多面体形的也有四面体形的,粒子宽度8-10 nm,长度10-25 nm,如图1b 所示。而当有机碱的烷基链长从两个碳原子增加到四个碳原子时,即用TBAOH 用作胶溶剂时制备的纳晶颗粒粒子大小较均匀而且形貌也较规则,多为正方体,粒子大小一般在5nm 左右,如图1c 所示。在TiO2 纳晶的水热生长过程中,有机碱首先是吸附在TiO2 的晶核上,而烷基链的长短不同吸附的能力不同,吸附能力越大则就会阻碍纳晶的生长。研究发现[6],烷基链越长则有机碱吸附在晶核上的吸附力越大,则会阻碍晶体的生长,所以随着有机碱烷基链的长度的增加,纳晶颗粒在不断的减小;并且研究发现,胶溶剂的浓度不能太大,太大时制备的TiO2 纳晶就会出现严重的团聚现象[10]。 有机碱对TiO2 纳晶晶型的影响是用三种有机碱做胶溶剂时制备的TiO2 纳晶的XRD 图,a 是制备的TiO2 纳晶经过自然风干后的XRD,b 是制备的三种TiO2 纳晶经过50 °C 热处理30 分钟中后的XRD 图。从图2a 中可以看出,2θ = °是TiO2 纳晶锐钛矿的特征峰,但是还有一些其它的杂峰,这些杂峰证明是有机胺类化合物的峰。当把制备的纳晶经过450 °C 热处理30 分钟中后,a 图中的杂峰就消失,TiO2 在2q =°,°,°,°,°和°的衍射峰的d 值均与标准PDF 卡片锐钛矿型TiO2 衍射峰相符,说明所制备的TiO2 的晶型为锐钛矿,没有金红石相和板钛矿相出现,制备的为纯的锐钛矿相TiO2 纳晶。在传统水热方法中,采用硝酸做胶溶剂,制备的纳晶TiO2 中,含有少量的金红石相和板钛矿相,而这两种的光电性能较差,影响染料敏化太阳能电池的光电转换效率。而用有机碱做胶溶剂制备的TiO2 纳晶可满足染料敏化太阳能电池中对锐钛矿相的要求。随着有机碱烷基链的增加,样品的特征衍射峰宽逐渐变大,并且衍射峰值逐渐减小,这表明制备纳晶颗粒不断减小,这与TEM 的结果一致。 TiO2 纳晶的热稳定性分析是用三种有机碱制备的TiO2 纳晶的红外光谱图,(a) 是制备的纳晶粉末在80 °C 烘干24 小时,(b)是制备的纳晶粉末在450 °C 热处理1 小时,光谱范围是400-4000 cm-1。从红外光谱图可知,三种纳晶红外图谱相近。图3(a)中出现了有机化合物的一些键如C-H, N-H,和O-H 等键,但随着在450 °C 热处理1 小时后,这些化合键就消失了,而TiO2 薄膜的红外谱图中主要有Ti-O-Ti 键伸缩振动峰在500cm-1 附近,没有出现宽的吸收带,如图3(b)所示,这一结果与文献中的结果相一致[7]。这说明在有机碱条件下制备的TiO2 纳晶在经过450 °C后为稳定的锐钛矿相,吸附在其表面的有机物分解完全。从XRD 的结果也可以得出(图 3b),所有有机化合物在经过450 °C 热处理后都消失完全了,这说明二氧化钛化合物在高于450 °C热处理后,可以晶化为稳定的锐钛矿相TiO2 纳晶。是用有机碱做胶溶剂时制备的TiO2 纳晶粉末热稳定性的TG 分析。这些纳晶粉末是在105 °C 下烘干24 小时,而没有进行任何热处理的。从图中可以看出,有两个失重过程。第一个过程是100~250 °C 之间的明显失重,可以认为是失去了吸附在纳晶粉末表面的水分子和一些醇。第二个过程是250~400 °C 之间的失重,是因为粉体中吸附的有机物成份的失去。有机物与制备的氧化物之间有很强的键和作用,这些有机物包裹着氧化物,当温度达到400 °C 时,这些键和作用才会消失,有机物完全分解,这说明有机物与纳晶颗粒之间的力结合不是太大不影响纳晶的晶化。另外发现,在不同有机碱胶溶剂下制备的纳晶粉末的失重情况明显不同,在采用TBAOH 做胶溶剂时的失重明显要高于使用TMAOH 做胶溶剂时的,这说明前者表面吸附了更多的有机物。吸附有机物的量不同,表明制备的纳晶粉末的形貌和粒径大小也明显不同[14],这与TEM 的结果一致,在采用TBAOH 做胶溶剂时制备的TiO2纳晶颗粒较小表面积较大,这就使吸附在纳晶表面的有机物就增多,所以在进行热分解时失重较多;而采用TMAOH 做胶溶剂时制备的TiO2 纳晶颗粒明显大许多,表面积又小所以吸附的有机物就会减小,所以在热分解时失重较少。从失重量的多少也可以简单分析出制备的纳晶颗粒和形貌的异同。用有机碱做胶溶剂来制备TiO2 纳晶,会对其晶型及其晶型的稳定性有一定的影响。图5 为有机碱TEAOH 做胶溶剂的条件下制备的TiO2 纳晶及其分别在300 °C,500 °C,700 °C,800 °C,900 °C 烧结1 小时样品的XRD 谱图。在TiO2 纳晶的晶型中,峰位于2θ=°是锐钛矿相的特征衍射峰,峰位于2θ=°是金红石相的特征衍射峰。从图中可知,TiO2 纳晶在800 °C 烧结前,晶型没有发生变化。在800 °C 烧结之后,才出现了金红石相晶型,这一结果与Young 等人的研究结果一致[18]。据报道在酸性条件下制备的TiO2 纳晶,在烧结温度达600 °C 时,锐钛矿晶型就开始向金红石晶型转变[19]。而用有机碱TEAOH 做胶溶剂制备的TiO2 纳晶从锐钛矿相向金红石相转变的温度有所提高,这说明用有机碱TEAOH 做胶溶剂制备的TiO2 纳晶热稳定性提高了,这一稳定性说明,可以对锐钛矿型TiO2 纳晶在较高的温度下进行烧结,而不改变其晶型,即没有金红石型纳晶出现。 BET 和吸附染料能力的研究用不同的有机碱做胶溶剂所制备的TiO2 纳晶粉的表面积进行分析,实验得出,在使用有机碱TMAOH 做胶溶剂时制备的TiO2 纳晶粉的比表面积为66 m2·g-1,但是当使用TEAOH和TBAOH 做胶溶剂时,制备的TiO2 纳晶粉的比表面积为78 m2·g-1 和82 m2·g-1。这一结果与粒径越大比表面积越小相一致,颗粒大小如图1 所示,这说明颗粒越小比表面积越大。研究发现,吸附的染料(RuL2(SCN)2)的多少并不一定随着比表面积的增大而增大。为了研究用于染料敏化太阳能电池测试的TiO2 纳晶多孔薄膜吸附染料的多少,把敏化的电极在5 mL mol/L NaOH 溶液中让染料进行脱附,之后对染料的碱性溶液进行吸光度的分析,UV-vis 吸收光谱的结果如图5 所示。图中a、b 和c 三条曲线分别是采用TMAOH、TEAOH和TBAOH 做胶溶剂时制备的TiO2 纳晶。根据朗伯-比尔定律可知吸光度随浓度增加而增大,结果显示,采用TMAOH 做胶溶剂时制备的TiO2 纳晶吸收的染料最少,这与比表面积越小吸附的染料越少相吻合,但比其它两种纳晶的吸附量要少很多。虽然采用TBAOH 做胶溶剂时制备的TiO2 纳晶的比表面积比用TEAOH 做胶溶剂所制备的TiO2 纳晶的比表面积大,但是后者却比前者所吸附的染料多,这里可能的解释就是因其用TBAOH 做胶溶剂时制备的TiO2 纳晶的颗粒太小还不足10nm,所以用其制备的纳晶多孔薄膜太致密而使得吸附的染料减小。 染料敏化太阳能电池光电性能研究采用有机碱制备的三种不同形貌和粒径大小的TiO2 纳晶,并用其制备了敏化电极应用于染料敏化太阳能电池光电性能的研究,如图6 所示。表1 给出了三种不同电极的所组装的电池的短路电流、开路电压、填充因子和光电转换效率的值。在100 mW/cm2 光照条件下,三种电池的短路电流分别为、、 mA/cm2,开路电压分别为、、,填充因子分别为,光电转换效率分别达到了。从实验结果可知,采用有机碱TEAOH 制备的TiO2 纳晶所组装的电池的光电转换效率比其它两种电池的光电转换效率要高。可知,采用有机碱TEAOH 所制备的TiO2 所制备的电池的开路电压要比采用有机碱TMAOH 所制备的TiO2 所制备的电池的要低,但是其电池的短路电流和填充因子都要比其它两种有机碱所制备TiO2 所组装的电池要高。这可能是因为(1)用有机碱TEAOH 所制备的TiO2 纳晶粒经比较适中,制备的多孔薄膜粒子与粒子之间结合比较紧密,这样就提高了电子在薄膜中的传播速度;(2)较其它两种多孔薄膜吸附的染料要多,研究表明吸附的染料的量与所产生的光电流成正比,吸附的染料越多,则产生的光电流越大,用有机碱TEAOH 做胶溶剂所制备的TiO2 多孔薄膜所吸附的染料最多,所以用其所组装的染料敏化太阳能电池的短路电流最高,电池的光电转换效率也达到最好。5 结论本章采用了钛酸四正丁酯为原料,以三种有机碱做胶溶剂来制备TiO2 纳晶,以三种制备的敏化的纳晶多孔薄膜为电极组装了染料敏化太阳能电池,并对其进行了电池光电性能的测试。研究了这三种有机胶溶剂对TiO2 纳晶晶体生长的影响,采用三种不同烷基链的有机碱做胶溶剂制备的纳晶形貌和大小有很大的不同,研究发现,随着烷基链的加长,纳晶的形貌开始变得规整,粒径也减小,但是有机碱的浓度不能太大,浓度过高时,会使制备的纳晶出现团聚,所以在使用有机碱做胶溶剂时,采用的是在pH= 的条件下制备的。通过热稳定性分析发现,吸附在TiO2 纳晶表面的有机碱在450 °C 热处理后,有机物分解完全,这说明在制备纳晶多孔薄膜时,有机物分解完全,多孔薄膜中为纯的TiO2 纳晶。因为三种TiO2纳晶形貌和大小不同所以制备的多孔薄膜吸附染料的量也不相同。实验发现采用有机碱TEAOH 做胶溶剂时制备的TiO2 的敏化电极吸附的染料最多,电池光电性能测试也显示用此TiO2 纳晶制备的电池开路电流达到 mA cm-2,光电转换效率达到,比其它两种电池的光电转换效率要高,这说明用有机碱TEAOH 做胶溶剂所制备的TiO2 纳晶的形貌和大小比其它两种有机碱胶溶剂制备的TiO2 更适合应用于染料敏化太阳能电池。更多毕业论文请到
基于P2N 结的太阳能电池伏安特性的分析与模拟摘 要 通过分析实际P2N 结与理想模型之间的差别,建立了P2N 结二极管及太阳能电池的数学模型;利用Matlab 中的系统仿真模块库建立仿真模型,设置参量,求解模型方程并绘制了图形1 对太阳能电池在一定光照下旁路电阻及串联电阻取不同数值时对其开路电压、短路电流及填充因子的影响做了模拟,并与实际测得的硅太阳能电池伏安特性进行了比较1 模型分析与实验测量的结果表明:等效的旁路电阻和串联电阻分别影响电池的开路电压和短路电流1 仿真结果与实验测量结果一致1关键词 P2N 结;伏安特性;等效电路模型;太阳能电池中图分类号 O475 文献标识码 A0 引言P2N结是许多微电子和光电子器件的核心部分1这些半导体器件的电学特性及光电特性由P2N 结的性质所决定,掌握P2N 结的性质是分析这些器件特性的基础1 半导体导电是通过两种载流子的漂移、扩散及产生与复合实现的[1 ]1 由于P2N 结的非线性特性,其电流电压关系无法通过一个简单的解析模型来确定1 虽然肖克莱方程给出了理想P2N结的电流电压关系,但与实际器件的性质差别很大1在实际器件中,由于表面效应、势垒区载流子的产生及复合、电阻效应等因素的影响,其电流电压特性只在很小的范围内接近理想值1 正向电压增大时, I2V曲线由指数关系转变为线性关系1 反向电压增大时,在一定范围内也是线性关系,反向电压过大还会发生P2N 结的击穿1本文通过一个简单的电路模型模拟了实际的P2N 结,讨论了各实际参量对伏安特性的影响1 并针对太阳能电池在一定光照下其实际参量如旁路电阻和串联电阻对其开路电压、短路电流及填充因子的影响,利用计算机对其伏安特性进行建模分析,以获得接近实际器件的特性11 P2N结的伏安特性分析及等效电路理想P2N 结模型满足小注入、突变耗尽层及玻耳兹曼边界条件,且不考虑耗尽层中载流子的产生和复合作用[2 ]1 其电流电压关系可由肖克莱方程给出,即J = J s expqVk T- 1 (1)式中,V 为P2N 结两端的电压, J 为通过P2N 结的电流密度, J s 为反向饱和电流1 当正向偏压较大时,括号中的指数项远大于1 ,因而第二项可以忽略,电流密度与电压呈指数增加关系1 反向偏压时,当q| V | m k T 时, 指数项趋于0 , 电流不随电压改变,趋于饱和值J s1实验测量发现,肖克莱方程与实际P2N 结的伏安特性偏离较大,主要表现在两个方面:1) 正向电压较小时,理论值比实验值小,正向电压较大时,J2V关系变为线性关系;2) 反向偏压时,反向电流比理论值大许多,反向电流不饱和,随反向偏压的增大略有增加1 这说明理想模型不能真实反映实际器件的特性,需要建立更为完善的P2N 结模型[3 ]1 在实际器件中,载流子的产生、传输和复合会对P2N 结中的空间电荷场产生影响[4 ] ,从而导致P2N 结电流电压特性偏离理想方程1正向偏压时,注入势垒区的载流子有一部分形成复合电流,其大小与exp ( qV/ 2 k T) 成正比, 总电流密度为扩散电流密度与复合电流密度之和1 对于硅,在较低正向偏压下, 复合电流占主要地位, 因而总电流大于理想条件下的电流,正向偏压较高时,复合电流可以忽略具体的去我们论坛看看吧!!
已经发了,请注意查收!!!
什么是太阳能光伏太阳能光伏发电系统是利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。独立运行的光伏发电系统需要有蓄电池作为储能装置,主要用于无电网的边远地区和人口分散地区,整个系统造价很高;在有公共电网的地区,光伏发电系统与电网连接并网运行,省去蓄电池,不仅可以大幅度降低造价,而且具有更高的发电效率和更好的环保性能。太阳能电池发电历史自从1954年第一块实用光伏电池问世以来,太阳光伏发电取得了长足的进步。但比计算机和光纤通讯的发展要慢得多。其原因可能是人们对信息的追求特别强烈,而常规能源还能满足人类对能源的需求。1973年的石油危机和90年代的环境污染问题大大促进了太阳光伏发电的发展。其发展过程简列如下:1839年 法国科学家贝克勒尔发现“光生伏特效应”,即“光伏效应”。1876年 亚当斯等在金属和硒片上发现固态光伏效应。1883年 制成第一个“硒光电池”,用作敏感器件。1930年 肖特基提出Cu2O势垒的“光伏效应”理论。同年,朗格首次提 出用“光伏效应”制造“太阳电池”,使太阳能变成电能。1931年 布鲁诺将铜化合物和硒银电极浸入电解液,在阳光下启动了一个电动机。1932年 奥杜博特和斯托拉制成第一块“硫化镉”太阳电池。1941年 奥尔在硅上发现光伏效应。1954年 恰宾和皮尔松在美国贝尔实验室,首次制成了实用的单晶太阳电池,效率为6%。同年,韦克尔首次发现了砷化镓有光伏效应,并在玻璃上沉积硫化镉薄膜,制成了第一块薄膜太阳电池。1955年 吉尼和罗非斯基进行材料的光电转换效率优化设计。同年,第一个光电航标灯问世。美国RCA研究砷化镓太阳电池。1957年 硅太阳电池效率达8%。1958年 太阳电池首次在空间应用,装备美国先锋1号卫星电源。1959年 第一个多晶硅太阳电池问世,效率达5%。1960年 硅太阳电池首次实现并网运行。1962年 砷化镓太阳电池光电转换效率达13%。1969年 薄膜硫化镉太阳电池效率达8%。1972年 罗非斯基研制出紫光电池,效率达16%。1972年 美国宇航公司背场电池问世。1973年 砷化镓太阳电池效率达15%。1974年 COMSAT研究所提出无反射绒面电池,硅太阳电池效率达18%。1975年 非晶硅太阳电池问世。同年,带硅电池效率达6%~%。1976年 多晶硅太阳电池效率达10%。1978年 美国建成100kWp太阳地面光伏电站。1980年 单晶硅太阳电池效率达20%,砷化镓电池达,多晶硅电池达,硫化镉电池达。1983年 美国建成1MWp光伏电站;冶金硅(外延)电池效率达。1986年 美国建成光伏电站。1990年 德国提出“2000个光伏屋顶计划”,每个家庭的屋顶装3~5kWp光伏电池。1995年 高效聚光砷化镓太阳电池效率达32%。1997年 美国提出“克林顿总统百万太阳能屋顶计划”,在2010年以前为100万户,每户安装3~5kWp。光伏电池。有太阳时光伏屋顶向电网供电,电表反转;无太阳时电网向家庭供电,电表正转。家庭只需交“净电费”。1997年 日本“新阳光计划”提出到2010年生产43亿Wp光伏电池。1997年 欧洲联盟计划到2010年生产37亿Wp光伏电池。1998年 单晶硅光伏电池效率达25%。荷兰政府提出“荷兰百万个太阳光伏屋顶计划”,到2020年完成。中国光伏发电产业的发展中国太阳能资源非常丰富,理论储量达每年17000亿吨标准煤。太阳能资源开发利用的潜力非常广阔。中国光伏发电产业于20世纪70年代起步,90年代中期进入稳步发展时期。太阳电池及组件产量逐年稳步增加。经过30多年的努力,已迎来了快速发展的新阶段。在“光明工程”先导项目和“送电到乡”工程等国家项目及世界光伏市场的有力拉动下,中国光伏发电产业迅猛发展。2007年,中国光伏电池产量首次超过德国和日本,居世界第一位。2008年的产量继续提高,达到了200万千瓦。近5年来,中国光伏电池产量年增长速度为1-3倍,光伏电池产量占全球产量的比例也由2002年%增长到2008年的近15%。商业化晶体硅太阳能电池的效率也从3年前的13%-14%提高到16%-17%。因美国次贷问题而引发的金融危机,从华尔街迅速向全球蔓延,致使部分金融机构轰然倒塌,证券市场持续低迷,石油价格大幅下滑。中国光伏发电产业近年发展迅速,成为政府重视、股市活跃、风投青睐、各行各业蜂涌相聚的世界太阳谷。由于设备、原料和市场三头在外,它对美国、欧洲和日本等国际市场存在很大依存度。随着这场金融危机特别是国际油价的大幅下挫,对中国光伏发电业的投资资金、出口订单等方面产生重大影响,但金融危机对光伏产业的巨大影响一定会在未来的某个时间得到消化。长远来看,世界光伏市场的政策推动力依然存在,光伏产业的市场成长依然强劲。注:更多资料,请参考光电新闻网,里面有太阳能光伏频道专讲的
基于P2N 结的太阳能电池伏安特性的分析与模拟摘 要 通过分析实际P2N 结与理想模型之间的差别,建立了P2N 结二极管及太阳能电池的数学模型;利用Matlab 中的系统仿真模块库建立仿真模型,设置参量,求解模型方程并绘制了图形1 对太阳能电池在一定光照下旁路电阻及串联电阻取不同数值时对其开路电压、短路电流及填充因子的影响做了模拟,并与实际测得的硅太阳能电池伏安特性进行了比较1 模型分析与实验测量的结果表明:等效的旁路电阻和串联电阻分别影响电池的开路电压和短路电流1 仿真结果与实验测量结果一致1关键词 P2N 结;伏安特性;等效电路模型;太阳能电池中图分类号 O475 文献标识码 A0 引言P2N结是许多微电子和光电子器件的核心部分1这些半导体器件的电学特性及光电特性由P2N 结的性质所决定,掌握P2N 结的性质是分析这些器件特性的基础1 半导体导电是通过两种载流子的漂移、扩散及产生与复合实现的[1 ]1 由于P2N 结的非线性特性,其电流电压关系无法通过一个简单的解析模型来确定1 虽然肖克莱方程给出了理想P2N结的电流电压关系,但与实际器件的性质差别很大1在实际器件中,由于表面效应、势垒区载流子的产生及复合、电阻效应等因素的影响,其电流电压特性只在很小的范围内接近理想值1 正向电压增大时, I2V曲线由指数关系转变为线性关系1 反向电压增大时,在一定范围内也是线性关系,反向电压过大还会发生P2N 结的击穿1本文通过一个简单的电路模型模拟了实际的P2N 结,讨论了各实际参量对伏安特性的影响1 并针对太阳能电池在一定光照下其实际参量如旁路电阻和串联电阻对其开路电压、短路电流及填充因子的影响,利用计算机对其伏安特性进行建模分析,以获得接近实际器件的特性11 P2N结的伏安特性分析及等效电路理想P2N 结模型满足小注入、突变耗尽层及玻耳兹曼边界条件,且不考虑耗尽层中载流子的产生和复合作用[2 ]1 其电流电压关系可由肖克莱方程给出,即J = J s expqVk T- 1 (1)式中,V 为P2N 结两端的电压, J 为通过P2N 结的电流密度, J s 为反向饱和电流1 当正向偏压较大时,括号中的指数项远大于1 ,因而第二项可以忽略,电流密度与电压呈指数增加关系1 反向偏压时,当q| V | m k T 时, 指数项趋于0 , 电流不随电压改变,趋于饱和值J s1实验测量发现,肖克莱方程与实际P2N 结的伏安特性偏离较大,主要表现在两个方面:1) 正向电压较小时,理论值比实验值小,正向电压较大时,J2V关系变为线性关系;2) 反向偏压时,反向电流比理论值大许多,反向电流不饱和,随反向偏压的增大略有增加1 这说明理想模型不能真实反映实际器件的特性,需要建立更为完善的P2N 结模型[3 ]1 在实际器件中,载流子的产生、传输和复合会对P2N 结中的空间电荷场产生影响[4 ] ,从而导致P2N 结电流电压特性偏离理想方程1正向偏压时,注入势垒区的载流子有一部分形成复合电流,其大小与exp ( qV/ 2 k T) 成正比, 总电流密度为扩散电流密度与复合电流密度之和1 对于硅,在较低正向偏压下, 复合电流占主要地位, 因而总电流大于理想条件下的电流,正向偏压较高时,复合电流可以忽略具体的去我们论坛看看吧!!
太阳电池又称光伏电池,是一种能有效地吸收太阳辐射能,并使之转变成电能的半导体器件。它可单独地作为光探测元件,例如在照像机中使用,主要是经过串联和并联,以获得所需的电压及电流来作为供电电源使用。太阳电池的外观就如一张薄的卡片或一片薄的玻璃片一样,与普通电池外观不同,它自身也不能储存电能,即没以有光时就不发电,如果晚上要用它,就要与蓄电池配合使用。 太阳电池的面积每100㎝2在强阳光下约产生1瓦的电,我们常说的1度电是1千瓦小时,也就是1千瓦这样的电池工作1小时才能产生1度电。 太阳电池发展概况 太阳能光伏发电,可视为迄今为止最美妙、最长寿和最可靠的发电技术。与太阳能发电相比,它另涉及半导体器件,既无运动部件,又无流动工质,因此,避免了机械维修和工质腐蚀的问题,是可再生能源和可持续发展的可靠能源。 硅太阳电池的发展,始于1954年在,美国贝尔研究所试制成功,次年便被用做电信装置的电源,1958年又被美国首次应用和于“先锋1号”人造卫星。宇宙开发极大地促进了太阳电池的开发。与此同时,地面用太阳电池的研究也在不断开展,特别是1973年的能源危机,又大大加速了地面太阳电池的发展。许多国家为开发、利用太阳能电池,为阳光发电的研究投入了相当数量的资金。迄今为止翱翔于太空的成千个飞行器中,大多数都配备了太阳能电池系统。第一颗人造卫星上天,是光伏技术开发利用的起点,经过近五十年的发展,它已形成一门新的光伏科学与光伏工程。无论是在宇宙飞行中的应用,还是作为地面发电系统的应用,从开发速度、技术成熟性和应用领域来看,光伏技术都是新能源中的佼佼者。 太阳电池作为有潜力的可再生能源,在地面上逐渐得到推广。太阳电池的成本及售价也在逐年下降,多年来太阳电池的产量一直以10-25%的增长率在增加。1990年世界太阳能电池组件的产量70MW(兆瓦),我国为,主要是用在太阳光照好的边远地区。到2001年全世界太阳电池的产量达到350MW,我国太阳能电池的实际产量已达到,累计安装量已超过20MW。我国是个发展中国家,地域辽阔,有许多边远省份和经济欠发达地区。据统计目前我国尚有700万户(2800万人口),还没有用上电,60%的有电县严重缺电。这些地区在短期内不可能靠常规电力解决用电问题,光伏发电则是解决分散农、牧民用电的理想途径,市场潜力非常巨大。 光伏发电具有许多优点:如:安全可靠、无噪声、无污染、能量随处可得,不受地域限制,无须消耗燃料,无机械转动部件,故障率低,维护简便,可以无人值守,建站周期短,规模大小随意,无须架输电线路,可以方便地与建筑物相结合等,这些优点都是其它发电方式所不及的。 目前国际上大量使用的电池为单晶硅太阳电池、多晶硅太阳电池和非晶硅太阳电池三种,这三种电池约各占1/3的市场,我国目前有7个太阳电池生产线,主要是生产单晶硅及非晶硅太阳电池,多晶硅太阳电池也有少量生产。我国生产单晶硅太阳电池的效率在12-13%,多晶硅太阳电池在10%,非晶硅太阳电池在5-6%。晶体硅太阳电池在研究上是朝着高效率化、薄片化、大面积化的方向发展。1995年我国晶体硅太阳电池组件的参考价格为45元/瓦,非晶硅太阳电池组件为25元/瓦,仍为常规能源的几倍,但在无电地区及拉线不方便的地方,已产生了良好的经济效益。
找中国论文榜,说清楚论文要求就好了
摘要:随着我国汽车保有量的持续增长,汽车排放污染跟能源问题将会越来越严峻。现在我们国家提 摘要 倡低碳生活和可持续发展,为了响应国家的政策。我们必须寻找一种对环境零污染或低污染的汽车,而目 前公认最为理想可行的就是纯电动汽车了。而作为内燃机跟纯电动汽车的过渡产物就是混合动力汽车,混 合动力汽车已经不是什么新鲜的产物了,目前已经有很多车企生产了。在近两年,我国的车企对纯电动汽 车的热情很高,可惜都只是雷声大雨点小。大都只是处于概念车的阶段。发动纯电动汽车还有一段很曲折 艰辛的路要走。 关键词:内燃机:混合动力: 电动汽车:汽车: 关键词 内燃机 像我们这代人,对于汽车并不会感到很陌生.特别是近几年中国车市出现井喷的现象,据保 守的估计,中国现在的机动车保有量已经超过两亿.而且还保持上升的趋势,去年的产销量达 1360 万辆,首次超过美国而位居世界第一.今年 1 到 9 月份的产销已经达到去年全年的水平了, 保守估计今年的产销量将达 1700 万辆.而且在接下来的几年会稳居榜首,产销量持续增长.在 这数据中,又有多少是属于电动汽车的呢?统计数据显示是非常非常的少,几乎可以被忽视. 汽车的产销量不断的增长,这也将引起一系列的问题.内燃机技术发展到今天已经可说是 炉火纯青的地步了,想到再进一步改善是非常的困难了.我们都是知道无论是汽油机还是柴油 机,都会排放一些对大气有害的气体,如:CO HC Nox 等.虽然说排放标准不断的在提高,但是污 染还是存在的.这将跟我们提倡的低碳生活有点格格不入,因此我们就必须找出其它代替品. 就目前而言,就有新燃料发动机,如:醇燃料 氢燃料 石油气燃料 天然气燃料 太阳能燃料混合动力汽车 电动车等等.在这些新能源汽车中,纯电动汽车将是我们发展的趋势.因为其它 的,不是技术太难攻关,就是使用经济性和燃料来源困难等等.电动汽车的优点是零排放 零污 染 燃料来源方便 动力性良好等.但就目前的现状而言,电动汽车的缺点也是显而易见的, 目 前电动汽车尚不如内燃机汽车技术完善,尤其是动力电源(电池)的寿命短,使用成本高。 电池的储能量小,一次充电后行驶里程不理想,电动车的价格较贵。但从发展的角度看,随 着科技的进步,投入相应的人力物力,电动汽车的问题会逐步得到解决。扬长避短,电动汽 车会逐渐普及, 其价格和使用成本必然会降低。 现在处于内燃机跟纯电动汽车的过渡产物是HEV 混合动力汽车, 混合动力汽车的种类目前主要有 3 种。一种是以发动机为主动力,电 动马达作为辅 串联混合动力电动汽车原理。 另外一种是, 在低速时只靠电动马达驱动行驶, 速度提高时发动机和电动马达相配合驱动的“串联、并联方式” 。还有一种是只用电动马达 驱动行驶的电动汽车“串联方式” ,发动机只作为动力源,汽车只靠电动马达驱动行驶,驱 动系统只是电动马达,但因为同样需要安装燃料发动机,所以也是混合动力汽车的一种。 现在车市的混合动力车主要有,PRIUS 思域 凯美瑞 凯越 LS600H S400 SMART F3DM 等等. 由于我们国家提倡低碳生活,国家的政策便大力的支持发展纯电动汽车.目前几乎所有的车企都积极的响应国家的号召,如:比亚迪的 E6 奇瑞 S18 众泰 2008EV 长安奔奔 MINI 日 产的 LEAF 通用的 VOLT 等等.虽然推出的车型很多,但也只是雷声大雨点小.技术都不啥的, 而且销量也是少之又少. 电动汽车并不是现代才有的产物, 早在 19 世纪后半叶的 1873 年,英国人罗伯特·戴维 森 (Robert Davidsson) 制作了世界上最初的可供实用的电动汽车。 这比德国人戴姆勒 (Gottlieb Daimler)和本茨(Karl Benz)发明汽油发动机汽车早了 10 年以上。戴维森发明的电动汽车 是一辆载货车,长 4800mm,宽 1800mm,使用铁、锌、汞合金与硫酸进行反应的一次电池。 其后,从 1880 年开始,应用了可以充放电的二次电池。从一次电子表池发展到二次电池, 这对于当时电动汽车来讲是一次重大的技术变革,由此电动汽车需求量有了很大提高。在 19 世纪下半叶成为交通运输的重要产品,写下了电动汽车需求量有了很大提高。在 19 世纪 下半叶成为交通运输的重要产品,写下了电动汽车在人类交通史上的辉煌一页。1890 年法 国和英伦敦的街道上行驶着电动大客车,当时电动汽车生产的车用内燃机技术还相当落后, 行驶里程短,故障多,维修困难,而电动汽车却维修方便. 电池是电动汽车发展的首要关键,汽车动力电池难在 “低成本要求”“高容量要求”及 、 “高安全要求”等三个要求上。要想在较大范围内应用电动汽车,要依靠先进的蓄电池经过 10 多年的筛选,现在普遍看好的氢镍电池,铁电池,锂离子和锂聚合物电池。氢镍电池单 位重量储存能量比铅酸电池多一倍, 其它性能也都优于铅酸电池。 但目前价格为铅酸电池的 4-5 倍,正在大力攻关让它降下来。铁电池采用的是资源丰富、价格低廉的铁元素材料,成 本得到大幅度降低,也有厂家采用。锂是最轻、化学特性十分活泼的金属,锂离子电池单位 重量储能为铅酸电池的 3 倍,锂聚合物电池为 4 倍,而且锂资源较丰富,价格也不很贵,是 很有希望的电池。 我国在镍氢电池和锂离子电池的产业化开发方面均取得了快速的发展。 电 动汽车其他有关的技术,近年都有巨大的进步,如:交流感应电机及其控制,稀土永磁无刷 电机及其控制,电池和整车能量管理系统,智能及快速充电技术,低阻力轮胎,轻量和低风 阻车身,制动能量回收等等,这些技术的进步使电动汽车日见完善和走向实用化。我国大城 市的大气污染已不能忽视,汽车排放是主要污染源之一,我国已有 16 个城市被列入全球大 气污染最严重的 20 个城市之中。我国现今人均汽车是每 1000 人平均 10 辆汽车,但石油资 源不足,每年已进口几千万吨石油,随着经济的发展,假如中国人均汽车持有量达到现在全 球水平---每 1000 人有 110 辆汽车, 我国汽车持有量将成 10 倍地增加, 石油进口就成为大问 题。因此在我国研究发展电动汽车不是一个临时的短期措施,而是意义重大的、长远的战略 考虑。 下面是一些专家对我国发展电动汽车的看法: 锂电池大规模用于电动车还需一定时间 河南环宇集团锂电池产业技术副总工程师邓伦浩 目前国内锂电池的研究工作和国外相比,差距主要体现在电池的控制系统和电源 管理系统上。邓伦浩对记者说,现在国内对锂电池的研究处于各自开发的状态。目前,有的公司已经能 够为电 动汽车提供相应 的锂电 池配套产品,配 套的锂 电池一般能跑 200~500 公里左右。 邓伦浩告诉记者,现在国内锂电池的价格太高,电源管理系统的问题还没得到很 好地解决。电动汽车还面临充电的问题。目前,家里的一般线路不能为电动汽车锂电 池充电,必须配一个小型的专用充电器,而且充电的时间很长,很麻烦。在国外,为 了解决这一问题,一般都把充电站和加油站放在一起。现在国内的充电站还没有大规 模地建立起来。 国内锂电池研究存在三大问题 中国汽车工程学会电动汽车分会主任陈全世 陈全世告诉记者,目前国内锂电池研究存在三大问题。首先是制造的一致性问题。 由于在锂电池的制造工艺和设备上存在差距,使得国内锂电池的生产工艺参差不齐, 制造标准还达不到一致性。电动汽车所用的锂电池都是串联或并联在一起,如果一致 性问题解决不好,那么所生产的锂电池也就无法大规模应用于电动汽车。 其次是知识产权问题。目前国内在磷酸铁锂电池的研究上已经取得突破,但是由 于美国在这方面有专利,所以虽然我们在一些环节上能够自主研发,但是在知识产权 问题上,还不知如何应对。 第三是原材料的筛选问题。现在用于锂电池生产的原材料不可能全部进口,主要 还是取自国内, 但是国内的原材料要通过国际认证, 生产出的锂电池才能被国际认可, 所以在原材料认证环节上目前还存在一些问题。 大力发展电动汽车将增加能源供需紧张形势 中国国际经济合作学会经济合作部副主任杨金贵 目前中国 80%的二氧化碳排放来自燃煤,超过 50%的煤炭消费用于火力发电,而同时, 火力发电量占到总发电量的 70%以上。加之目前我国煤炭发电平均效率只有 35%,在这样 的情况下,发展电动汽车,无异于增加电力消耗,同时也就意味着增加碳排放量。随着我国 城镇化、工业化步伐的加快,电力资法律论文 源将更为紧张。而在风能、核能发电尚在发展阶段的我 国而言,大力发展电动汽车,势必将增加能源供需紧张形势,相反不利于低碳产业的发展布 局。对于政府来说,在不遗余力地支持电动汽车发展、支持相关企业开发新产品的同时,更 需要解决源头问题。以电动汽车为例,用煤炭替换石油的作为并不可取,电动汽车成为低碳 经济时代先锋的前提是解决电力资源问题,否则,前景并不乐观。 从以上各个专家的看法,可以看出我国要发展电动汽车是非常艰辛的和曲折的。但这并 不代表不可能, 只是时间问题, 只要我们攻关了那些技术难题, 电动汽车将会造福我们国民, 甚至全人类。因此,发展纯电动汽车势不可挡。
新能源汽车专业毕业论文参考文献
列出论文参考文献的目的是让读者了解论文研究命题的来龙去脉,便于查找,同时也是尊重前人劳动,对自己的工作有准确的定位。因此这里既有技术问题,也有科学道德问题。如下是我为大家收集的新能源汽车专业毕业论文参考文献,欢迎阅读!
[1]徐枭,王巧凤,周荣,新能源汽车发展主要障碍及其解决方案[J],上海汽车,2009,(5):7—10
[2]杨婕,消费者对电动汽车购买意愿实证研究—基于政府产业政策理论[J],特区经济,2012,(2):302—304
[3]李光,影响我国电动汽车产业发展的关键因素研究[J],武汉理工大学学报,2011,(6):14—18
[4]霍风利,我国发展电动汽车产业的'可行性及对策研究[D],中国海洋大学硕士学位论文,2010:23—27
[5]田萍,新能源汽车是新的经济增长点[J],资源与人居环境,2009,(9):74—76
[6]方海洲,胡研,促进新能源汽车快速发展的税收优惠政策影响分析[J],汽车科技,2009,(3):7—10
[7]国家863电动汽车重大科技专项办公室,全球氢能研发及相关政策调查报告[R],2004
[8]德勤全球制造组,电动车现状与消费者期望之比较[J],全球视角,2011,(1)
[9]曾耀明,史忠良,中外新能源汽车产业政策对比分析[J],企业经济,2011,(2):107—109
[10]李东卫,我国新能源汽车产业的挑战及对策[J],广东经济,2011,(2)
[11]迈克尔·波特,竞争优势[M],北京:华夏出版社,1997:280—317
[12]李大元,低碳经济背景下我国新能源汽车产业发展的对策研究[J],经济纵横,2011
[13]罗少文,我国新能源汽车产业发展战略研究[D],复旦大学硕士学位论文,2008
[14]杨海霞,新能源汽车技术路线落定,中国投资[J],2012,(11)
[15]张海波,我国新能源汽车产业技术路线图研究[D],武汉理工大学硕士学位论文,2012
[16]刘浩华,程杨,中国新能源汽车需求风险关键因素研究[J],科技管理研究,2014,(19)
[17]章荣武,“钻石模型”及其应用:中国船舶工业产业竞争优势分析[D],厦门大学硕士学位,2006
[18]赵亮,BYD公司新能源汽车发展战略研究[D],山东大学硕士学位论文,2013
[19]张坤,安徽汽车产业国际竞争力分析[D],安徽大学硕士学位论文,2011
[20]赵斌,比亚迪新能源汽车消费的影响因素分析[D],中南大学硕士学位论文,2010
[21]顾瑞兰,促进我国新能源汽车产业发展的财税政策研究[D],财政部财政科学研究所博士学位论文,2013
[22]王慧,促进我国新能源汽车产业发展的财税政策研究[D],江西财经大学硕士学位论文,2010
[23]温岳中,基于产业生命周期理论的新能源汽车产业支持政策研究[D],北京交通大学硕士学位论文,2012
[24]方玲,基于成本—效益分析视角的我国新能源汽车产业发展策略研究[D],中南大学商学院硕士学位论文,2013
[25]文凯,借鉴国际经验发展我国新能源汽车产业研究[D],东北财经大学硕士学位论文,2010
[26]陈柳钦,美日欧新能源汽车产业发展的政策支持[J],汽车工程师,2010,(10):22—25
[27]孙浩然,日本新能源汽车产业发展分析[D],吉林大学硕士学位论文,2011
[28]金永花,日本新能源汽车市场推广策略对我国的借鉴[J],东北亚论坛,2012,(3):105—112
[29]高飞,我国电动汽车研发战略联盟模式选择研究[D],河北师范大学硕士学位论文,2012
[30]韩怀玉,我国新能源汽车产业发展的国际比较研究[D],陕西师范大学硕士学位论文,2012
新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。下面是学术堂整理的关于新能源汽车的论文题目,欢迎大家阅读参考:1、对汽车新能源技术的初步探讨2、2011第九届(上海)汽车电子与汽车新能源高峰论坛圆满落幕3、现阶段我国汽车新能源技术发展战略研究4、汽车新能源及润滑油的发展研究5、宝马汽车新能源发展战略6、汽车新能源之氢动力7、21世纪汽车新能源——燃料电池8、汽车新能源领域异军突起的新秀——来自EVS25珠海银通展区的报告9、宝马集团展示汽车新能源技术的现在和未来10、未来的汽车新能源11、汽车新能源的N种可能12、FPT菲亚特动力科技杯中国汽车新能源技术金牌榜揭晓13、汽车新能源开发蕴育绿色革命的到来14、CNG车型走俏 力帆汽车新能源战略将分“两步走”15、也谈汽车新能源——形形色色的清洁汽车“食谱”