首页 > 期刊发表知识库 > 数学建模论文网

数学建模论文网

发布时间:

数学建模论文网

教育部中国大学生在线是全国大学生数学建模竞赛组委会指定的官方论文发布网站。中国大学生在线网站首页课堂频道列表 “数学建模”专题(如图所示),提供权威的数学建模国赛、数学建模挑战赛论文发布、试题下载及赛事新闻资讯等。请参赛队伍在指定时间及时进入专题,下载竞赛题目

清华同方

中国知网上有很多,不过好像要付费

数学建模论文官网

数学中国啊,注册个账号,里面很多相关的东西都可以下载。有什么疑问可以问我哈

中国知网或者维基百科(一般高校都已购买,可由内网进入下载,资料极为丰富)百度(文库)、谷歌数学中国(很专业的建模网站,强烈推荐)赛才网

数学中国,一个非常不错的网站

数学建模文献网站

教育部中国大学生在线是全国大学生数学建模竞赛组委会指定的官方论文发布网站。中国大学生在线网站首页课堂频道列表 “数学建模”专题(如图所示),提供权威的数学建模国赛、数学建模挑战赛论文发布、试题下载及赛事新闻资讯等。请参赛队伍在指定时间及时进入专题,下载竞赛题目

数学中国,一个非常不错的网站

清华同方

数学建模论文模板

奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1:83% A2:09% A3:63% A4:19% A5:72% A6:73% A7:04% A8:49% A9:95% A10:40%B1:81% B2:26% B3:55% B4:95% B5:49% B6:27% C1:69% C2:60% C3:39% C4:84%在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中) 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)…………………………………………………………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:………………………………………………………………………………………………………………………………………3.问题3求解……………………………………………………………………………………商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1=1 && m1<=4 m2=m1+2; while m2<=7 s1=0;vlb=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];vub=[];a=[-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2];%b=[-1020,-4069,-3143,-7830,-4440,-2131,-7830,-0859,-4069,-7279,-0663,-3783,-4027,-0663,-7363,-7978,-9456,-7796,-9323,-3817];b=[-1027,-0825,-7618,-4591,-1203,-2161,-1094,-4121,-7328,-0535,-3921,-7038,-4033,-7418,-4121,-7996,-0290,-7802,-8503,-3827];c=[m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2];[x,lam]=lp(c,a,b,vlb,vub) for i=1:20 s1=s1+x(i)*m1+x(20+i)*m2; end if min_value>s1 min_value=s1; t=x; p=m1; q=m2; end m2=m2+2; end m1=m1+2;endplot(j,x);附录2:图二图三

(1) 每个参赛队可以从A、B、C、D、E题中任选一题完成论文。(2) 论文用白色A4纸单面打印;上下左右各留出至少5厘米的页边距;从左侧装订。(3) 论文题目和摘要写在论文封面上,封面页的下一页开始论文正文。(4) 论文从编号页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1 ”开始连续编号。(5) 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。(6) 论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。程序一般无须打印,但应有执行文件,和源程序一起附在电子版论文中以备检查。(7) 请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),请认真书写(注意篇幅一般不超过两页,且无需译成英文)。全国评阅时对摘要和论文都会审阅。(8) 引用别人的成果或其他公开的资料(包括网上甚至在“博客”上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。

说起数学建模,相信大家都不陌生,它的定义是根据计算结果来解释实际问题,建立数学模型的检验和验收全过程,下面是学术堂的数学建模论文格式规范的收集,提供参考。  摘要  一般为200~400 字;其内容主要包括建模思想、模型特点、求解方法、主要结果等,其既要概括全文, 又要反映出本队的特点;  注意:  (1) 控制好论文摘要的字数, 一般应在400 字左右。  (2) 摘要应包括: 数学模型的归类( 在数学上属于什么类型) ;所用的数学知识、建模的思想、算法思想、模型及算法特点; 主要结果( 数值结果, 结论, 回答题目所问的全部“问题”)  (3) 摘要表述要准确、简明、条理清晰、合乎语法。  (4)摘要中不应引用正文中的结果, 也不应有所引用的参考文献出现, 一般也不应有第一人称的语句出现。  问题的重述和分析  重述是指对原问题的简要回顾, 大多数情况下, 问题的重述可以省略。分析则是通过对问题和所给数据的透彻理解, 理出建模的清晰思路, 明确正确的数学方法。一般情况下, 问题的分析尤为重要, 它可以使评阅者明晰答卷人的建模思想和所用方法, 借以判断答卷人对问题的敏感性和数学建模素质  假设  一要抓住实际问题的主要因素, 忽略次要因素, 为建立模型创造条件;二要假设应当“ 合理”;三要假设确属“ 必要” ;四是原题中已给的假设, 一般不再写入。  注意:  (1) 根据题目中条件作出假设;  (2) 根据题目中要求作出假设;  (3) 关键性假设不能缺; 假设要切合题意、合理。  (4)符号说明要注意整篇文章符号一致。  模型的建立  一要:通过对问题的分析引出建模的思路,要有建模的过程。  二要:建成的模型有完整的数学表述, 最好能在建成后集中写出来,以免评阅者找来找去。  三要:建模是分阶段完成的, 即基础模型→中间模型→最终模型。  四要:有时所建的模型相当好, 只是求解困难, 这样的模型也要写出来。然后设法给出简化的模型以利求解。  五要:注意一个实际问题可以有多个模型, 但不要贪多求全, 抓一个或两个有代表性的或能反映本队特点的, 建好、解好就足够了。  六要:注意不要片面地追求“ 建模的创造性“”模不惊人誓不休”, 要知道评卷依据中的“ 建模的创造性”并非仅指模型要有创造性, 而是整个答卷要有一定的创造性, 因此,对所建模型的要求是: 起码“ 正确”, 进而“ 更好”。  七要:注意模型的建立与求解可以分开来写, 也可以合在一起写。即可以模型: 问题①, 问题②……求解: 问题①, 问题②……也可以问题①: 模型, 求解; 问题②: 模型, 求解……  建立数学模型应注意以下几点:  (1) 分清变量类型, 恰当使用数学工具。  (2) 抓住问题本质, 简化变量之间的关系。  (3) 建立数学模型时要有严密的数学推理。  (4) 用数学方法建模, 模型要明确, 要有数学表达式。  模型的求解和结果  一要:有算法的设计或选择, 给出算法的具体步骤或框图。  二要:注意计算机实现时, 如果是自己编程,程序不一定要打印在附录中, 如果是选用数学软件, 写出名称即可。  三要:注意在模型的建立和求解过程中, 可能有必要的数学命题, 如果是自己给出的命题,应当有证明; 如果是引用他人的命题, 应当注明出处( 并列入参考献) 。  四要:注意中间结果, 除非必不可少的, 一般不必写入答卷。  五要:注意最终结果至少要“ 答为所问”。  六要:注意有的赛题的最终结果可以甚至应当“ 超出”赛题的要求。  七要:注意结果的表述不仅有多样性( 公式、表格、图、文字等), 也可有创造性  结果的分析和检验  (1) 对数值结果或模拟结果要进行必要的检验, 若结果不正确、不合理、或误差大时, 要分析原因, 对算法、计算方法、或模型进行修正、改进;  (2) 必要时, 要对模型进行稳定性分析、统计检验、误差分析,要对不同模型进行对比及实际可行性检验。  模型的评价和改进  根据所建模型的特点提出中肯的评价, 并提出切实可行的改进意见。  (1) 优点突出, 缺点不回避。  (2) 推广或改进方向  参考文献  文献尽量是少而精, 不要滥用, 不要罗列无关文献。  参考文献按正文中的引用次序列出,其中书籍的表述方式为:  [编号]作者,书名,出版地:出版社,出版年。  参考文献中期刊杂志论文的表述方式为:  [编号]作者,论文名,杂志名,卷期号:起止页码,出版年。  参考文献中网上资源的表述方式为:  [编号]作者,资源标题,网址,访问时间(年月日)。  附录  视情况而定, 可有可无。  (1) 计算程序、详细的结果, 详细的数据表格, 可在此列出。但不要错, 错的宁可不列  (2) 主要结果数据, 应在正文中列出, 不怕重复。  总之, 评判一篇论文优劣的标准应当是结构完整,条理清楚,文字通顺,打印规范。以上关于数学建模论文格式要求规范的详细介绍,希望大家可以顺利发表论文,取得自己满意的成绩。

1、问题陈述2、模型假设3、模型的建立与求解4、模型验证5、结果分析6、提出新方案7、参考文献

数学建模论文模板百度网盘

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。目录背景数学数学建模数学建模应用数学建模的意义数学建模应用数学模型过程模型准备模型假设模型建立模型求解模型分析模型检验模型应用起源进入西方国家大学在中国大学生数学建模竞赛全国大学生数学建模竞赛全国大学生数学建模竞赛章程(2008年)第四届全国大学生数学建模竞赛国际大学生数学建模竞赛数学建模资料竞赛参考书国内教材、丛书国外参考书(中译本)专业性参考书数学建模题目两项题四项题数学建模相关数学建模的意义数学建模经验和体会最新进展数学建模应当掌握的十类算法背景 数学 数学建模 数学建模应用数学建模的意义 数学建模 应用数学模型过程 模型准备 模型假设 模型建立 模型求解 模型分析 模型检验 模型应用起源 进入西方国家大学 在中国大学生数学建模竞赛 全国大学生数学建模竞赛 全国大学生数学建模竞赛章程(2008年) 第四届全国大学生数学建模竞赛 国际大学生数学建模竞赛数学建模资料 竞赛参考书 国内教材、丛书 国外参考书(中译本) 专业性参考书数学建模题目 两项题 四项题数学建模相关 数学建模的意义 数学建模经验和体会最新进展数学建模应当掌握的十类算法展开 编辑本段背景数学  近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。数学建模  数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。   不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。数学建模应用  数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。编辑本段数学建模的意义数学建模  数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。   数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。   我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。   数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。应用数学模型  应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的一个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple,Mathematica,Matlab甚至排版软件等。

你可以从这个网站上下载往年试题这是我下载的一部分,你可以暂时参考一下。全国大学生数学建模竞赛论文格式规范l本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。(全国评奖时,每个组别一、二等奖的总名额按每道题参赛队数的比例分配;但全国一等奖名额的一半将平均分配给本组别的每道题,另一半按每道题参赛队比例分配。)l论文用白色A4纸单面打印;上下左右各留出至少5厘米的页边距;从左侧装订。l论文第一页为承诺书,具体内容和格式见本规范第二页。l论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。l论文题目、摘要和关键词写在论文第三页上,从第四页开始是论文正文,不要目录。l论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。l论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。l论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距。打印文字内容时,应尽量避免彩色打印(必要的彩色图形、图表除外)。l提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。l论文应该思路清晰,表达简洁(正文尽量控制在20页以内,附录页数不限)。l在论文纸质版附录中,应给出参赛者实际使用的软件名称、命令和编写的全部计算机源程序(若有的话)。同时,所有源程序文件必须放入论文电子版中备查。论文及程序电子版压缩在一个文件中,一般不要超过20MB,且应与纸质版同时提交。l引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号]作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号]作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号]作者,资源标题,网址,访问时间(年月日)。l在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。l本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2012年8月26日修订

全国大学生数学建模竞赛论文格式规范   本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。   论文用白色A4纸单面打印;上下左右各留出至少5厘米的页边距;从左侧装订。   论文第一页为承诺书,具体内容和格式见本规范第二页。   论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。   论文题目和摘要写在论文第三页上,从第四页开始是论文正文。   论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。   论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。   论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。   提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。   引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:  [编号] 作者,书名,出版地:出版社,出版年。  参考文献中期刊杂志论文的表述方式为:  [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。  参考文献中网上资源的表述方式为:  [编号] 作者,资源标题,网址,访问时间(年月日)。   在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。   本规范的解释权属于全国大学生数学建模竞赛组委会。  [注]  赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。  全国大学生数学建模竞赛组委会  2009年3月16日修订  数学建模论文一般结构  1摘要 (单独成页)  主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)  作用:了解文件重要性,对文件有大致认识  最佳页副:页面2/3。  2、问题重述和分析  3、问题假设  假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。  作假设的两个原则:  ① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。  ② 贴近原则:贴近实际。  以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。  4、符号说明 (4可以合并)  5、模型建立与求解(重要程度 :60%以上)  6、模型检验(误差一般指均方误差)  7、结果分析 (7可以合并)  8、模型的进一步讨论 或 模型的推广  9、模型优缺点  10、参考文件  11、附件(结果千万不能放在附件中)  论文最佳页面数:15-21页   论文结构一  题目  摘要  问题的重述  合理假设  符号约定  问题的分析  模型的建立与求解  模型的评价与推广  1、误差分析  2、模型的改进与推广  对XXXX切实可行的建议和意见:  ……  ……  ……  参考文献  附录   数学建模论文一般格式   摘要  (主要理解、主要方法、主要结果、主要特点)  或(背景、目标、方法、结果、结论、建议)   问题重述与分析   问题假设   符号说明   模型建立与求解   模型检验   结果分析   模型的进一步讨论   模型优缺点  优秀论文要点:   语言精练、有逻辑性、书写有条理   文字与图形相结合,使内容直观、清晰、明了、容易理解   切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章   对论文中所引用或用到的知识、软件要清晰地予以说明。   在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去  各步骤解释  摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)  作用:了解文件重要性,对文件有大致认识  最佳页副:页面2/3  问题重述与分析: 一向导、对题意的理解、   建模的创造性  创造性是灵魂,文章要有闪光点。  好创意、好想法应当既在人意料之外,又在人  意料之中。  新颖性(独特性)与合理性皆备。  误区之一:数学用得越高深,越有创造性。  解决问题是第一原则,最合适的方法是最好的方法。  误区之二:创造性主要体现在建模与求解上。  创造性可以体现在建模的各个环节上,并且可以有多种表现形式。  误区之三:好创意来自于灵感,可遇不可求。  好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。   表达的清晰性  好的文章 = 好的内容 + 好的表达   替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。   写好摘要,包括:建模主要方法、主要结果,模型主要优点。   专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。   适当采用图表,增加可读性。

  • 索引序列
  • 数学建模论文网
  • 数学建模论文官网
  • 数学建模文献网站
  • 数学建模论文模板
  • 数学建模论文模板百度网盘
  • 返回顶部