首页 > 期刊发表知识库 > 大数据平台主要采用了什么核心技术

大数据平台主要采用了什么核心技术

发布时间:

大数据平台主要采用了什么核心技术

大数据技术,简而言之,就是提取大数据价值的技术,是根据特定目标,经过数据收集与存储、数据筛选、算法分析与预测、数据分析结果展示等,为做出正确决策提供依据,其处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据处理手段所无法完成的,其涉及的技术有分布式计算、高并发处理、高可用处理、集群、实时性计算等,汇集了当前IT领域热门流行的IT技术。想要成为炙手可热的大数据技术人才,这些大数据的核心技术一定要知晓!一、大数据基础阶段大数据基础阶段需掌握的技术有:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis以及hadoop mapreduce hdfs yarn等。1、Linux命令对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令2、 RedisRedis是一个key-value存储系统,其出现很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用,它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便,大数据开发需掌握Redis的安装、配置及相关使用方法。二、大数据存储阶段大数据存储阶段需掌握的技术有:hbase、hive、sqoop等。1、HBaseHBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。2、HiveHive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。三、大数据架构设计阶段大数据架构设计阶段需掌握的技术有:Flume分布式、Zookeeper、Kafka等。1、KafkaKafka是一种高吞吐量的分布式发布订阅消息系统,其在大数据开发应用上的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。大数据开发需掌握Kafka架构原理及各组件的作用和使用方法及相关功能的实现!2、FlumeFlume是一款高可用、高可靠、分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。大数据开发需掌握其安装、配置以及相关使用方法。3、ZooKeeperZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。四、大数据实时计算阶段大数据实时计算阶段需掌握的技术有:Mahout、Spark、storm。1、SparkSpark是专为大规模数据处理而设计的快速通用的计算引擎,其提供了一个全面、统一的框架用于管理各种不同性质的数据集和数据源的大数据处理的需求,大数据开发需掌握Spark基础、SparkJob、Spark RDD、spark job部署与资源分配、Spark shuffle、Spark内存管理、Spark广播变量、Spark SQL、Spark Streaming以及Spark ML等相关知识。2、stormStorm为分布式实时计算提供了一组通用原语,可被用于“流处理”之中,实时处理消息并更新数据库。这是管理队列及工作者集群的另一种方式。Storm可以方便地在一个计算机集群中编写与扩展复杂的实时计算,Storm用于实时处理,就好比 Hadoop 用于批处理。Storm保证每个消息都会得到处理,而且它很快——在一个小集群中,每秒可以处理数以百万计的消息。五、大数据数据采集阶段大数据数据采集阶段需掌握的技术有:Python、Scala。1、Python与数据分析Python是面向对象的编程语言,拥有丰富的库,使用简单,应用广泛,在大数据领域也有所应用,主要可用于数据采集、数据分析以及数据可视化等,因此,大数据开发需学习一定的Python知识。2、ScalaScala是一门多范式的编程语言,大数据开发重要框架Spark是采用Scala语言设计的,想要学好Spark框架,拥有Scala基础是必不可少的,因此,大数据开发需掌握Scala编程基础知识!以上只是一些简单的大数据核心技术总结,比较零散,想要学习大数据的同学,还是要按照一定到的技术路线图学习!

楼上说的对,目前国内基本就是hadoop生态做分布式存储,实时计算框架的话spark和flink。基本都是开源技术,可以多关注一下官方了解,也可以关注一些好的微信公众号如“自学帮”,里边都有各个组件的详细说明

实时处理 flink框架,批处理spark框架。

大数据是非常重要的。大数据对于科技的发展有着重要的支撑作用。

大数据平台核心技术考核答案

人工智能数据采集是指在人工智能领域,根据特定项为训练机器学习数学模型所使用的的训练数据集的要求,在一定的既定标准下收集和衡量数据和信息的过程,并输出一套有序的数据。澳鹏提供的数据采集服务,提升规模化机器学习。作为训练数据服务的行业领先者,我们能够快速交付涵盖多种数据类型大量优质数据,包括图像、视频、语音、音频和文本,以满足客户特定 AI 项目的需求

这个只能说主流技术吧,不能说核心技术;现在国内很多公司大数据方面的主要使用时Hadoop生态圈内的技术,比如Hadoop、yarn、zookeeper、kafka、flume、spark 、hive、Hbase ,这些事使用比较多的,并不是说就只有这些技术,而且只是应用技术方便的,还有数据分析方向的等等。所以你这个问题首先就有问题,大数据是一个方向领域,就好比你问饮食是什么,饮食有哪些方面一样。

大叔就是什么学的合理只要你天天的是学习学习

想学习大数据技术,是不是首先要知道大数据技术有哪些呢?也好知道自己未来应该往哪个方向发展,应该重点学习哪些知识? 抽象而言,各种大数据技术无外乎分布式存储 + 并行计算。具体体现为各种分布式文件系统和建立在其上的并行运算框架。这些软件程序都部署在多个相互连通、统一管理的物理或虚拟运算节点之上,形成集群(cluster)。因此不妨说,云计算是大数据的基础。下面介绍几种当前比较流行的大数据技术:HadoopHadoop无疑是当前很知名的大数据技术了。2003年到2004年间,Google发布了关于GFS、MapReduce和BigTable三篇技术论文(这几篇论文成为了后来云计算、大数据领域发展的重要基石)。当时一位因公司倒闭赋闲在家的程序员Doug Cutting根据前两篇论文,开发出了一个简化的山寨版GFS – HDFS,以及基于其的MapReduce计算框架,这就是Hadoop当初的版本。后来Cutting被Yahoo雇佣,得以依赖Yahoo的资源改进Hadoop,并将其贡献给了Apache开源社区。简单描述Hadoop原理:数据分布式存储,运算程序被发派到各个数据节点进行分别运算(Map),再将各个节点的运算结果进行合并归一(Reduce),生成结果。相对于动辄TB级别的数据,计算程序一般在KB – MB的量级,这种移动计算不移动数据的设计节约了大量网络带宽和时间,并使得运算过程可以充分并行化。在其诞生后的近10年里,Hadoop凭借其简单、易用、高效、免费、社区支持丰富等特征成为众多企业云计算、大数据实施的首选。StormHadoop虽好,却有其“死穴”其一:它的运算模式是批处理。这对于许多有实时性要求的业务就无法做到很好的支持。因此,Twitter推出了他们自己的基于流的运算框架——Storm。不同于Hadoop一次性处理所有数据并得出统一结果的作业(job),Storm对源源导入的数据流进行持续不断的处理,随时得出增量结果。SparkHadoop的另一个致命弱点是:它的所有中间结果都需要进行硬盘存储,I/O消耗巨大,这就使得它很不适合多次迭代的运算。而大多数机器学习算法,恰恰要求大量迭代运算。2010年开始,UC Berkeley AMP Lab开始研发分布式运算的中间过程全部内存存储的Spark框架,由此在迭代计算上大大提高了效率。也因此成为了Hadoop的强有力竞争者。NoSQL 数据库NoSQL数据库可以泛指非关系型数据库,不过一般用来指称那些建立在分布式文件系统(例如HDFS)之上,基于key-value对的数据管理系统。相对于传统的关系型数据库,NoSQL数据库中存储的数据无需主键和严格定义的schema。于是,大量半结构化、非结构化数据可以在未经清洗的情况下直接进行存储。这一点满足了处理大量、高速、多样的大数据的需求。当前比较流行的NoSQL数据库有MongoDB,Redis,Cassandra,HBase等。NoSQL并不是没有SQL,而是不仅仅有(not only)SQL的意思。为了兼容之前许多运行在关系型数据库上的业务逻辑,有很多在NoSQL数据库上运行SQL的工具涌现出来,典型的例如Hive和Pig,它们将用户的SQL语句转化成MapReduce作业,在Hadoop上运行。大数据产业已进入发展的“快车道”,急需大量优秀的大数据人才作为后盾。能够在大数据行业崛起的初期进入到这个行业当中来,才有机会成为时代的弄潮儿。

大数据核心技术是什么

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。1、数据采集与预处理:Flume NG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。2、数据存储:Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。3、数据清洗:MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算4、数据查询分析:Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。

总的来说大数据有5个部分。数据采集,数据存储,数据清洗,数据挖掘,数据可视化。还有新兴的实时流处理,可能还有别的

非问答能发link我给link譬Hadoop等源数据项目编程语言数据底层技术说简单永洪科技技术说四面其实代表部通用数据底层技术:Z-Suite具高性能数据析能力完全摒弃向升级(Scale-Up)全面支持横向扩展(Scale-Out)Z-Suite主要通核技术支撑PB级数据:跨粒度计算(In-DatabaseComputing)Z-Suite支持各种见汇总支持几乎全部专业统计函数益于跨粒度计算技术Z-Suite数据析引擎找寻优化计算案继所销较、昂贵计算都移数据存储直接计算我称库内计算(In-Database)技术减少数据移降低通讯负担保证高性能数据析并行计算(MPP Computing)Z-Suite基于MPP架构商业智能平台能够计算布计算节点再指定节点计算结汇总输Z-Suite能够充利用各种计算存储资源管服务器普通PC网络条件没严苛要求作横向扩展数据平台Z-Suite能够充发挥各节点计算能力轻松实现针TB/PB级数据析秒级响应列存储 (Column-Based)Z-Suite列存储基于列存储数据集市读取关数据能降低读写销同提高I/O 效率提高查询性能另外列存储能够更压缩数据般压缩比5 -10倍间数据占空间降低传统存储1/51/10 良数据压缩技术节省存储设备内存销却提升计算性能内存计算益于列存储技术并行计算技术Z-Suite能够压缩数据并同利用节点计算能力内存容量般内存访问速度比磁盘访问速度要快几百倍甚至千倍通内存计算CPU直接内存非磁盘读取数据并数据进行计算内存计算传统数据处理式种加速实现数据析关键应用技术

大数据开发涉及到的关键技术:大数据采集技术大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。大数据预处理技术大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。大数据存储及管理技术大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。大数据处理技术大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。大数据分析及挖掘技术大数据处理的核心就是对大数据进行分析,只有通过分析才能获取很多智能的、深入的、有价值的信息。大数据展示技术在大数据时代下,数据井喷似地增长,分析人员将这些庞大的数据汇总并进行分析,而分析出的成果如果是密密麻麻的文字,那么就没有几个人能理解,所以我们就需要将数据可视化。数据可视化技术主要指的是技术上较为高级的技术方法,这些技术方法通过表达、建模,以及对立体、表面、属性、动画的显示,对数据加以可视化解释。

大数据的什么是大数据技术的核心

大数据是非常重要的。大数据对于科技的发展有着重要的支撑作用。

大叔就是什么学的合理只要你天天的是学习学习

大数据的核心有哪些中琛魔方大数据分析平台表示大数据的两个核心技术是云技术和BI,离开云技术大数据没有根基和落地可能,离开BI和价值,大数据又变化为舍本逐末,丢弃关键目标。简单的总结是:大数据的目标驱动是BI,大数据实施落地是云技术。

大数据开发涉及到的关键技术:大数据采集技术大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。大数据预处理技术大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。大数据存储及管理技术大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。大数据处理技术大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。大数据分析及挖掘技术大数据处理的核心就是对大数据进行分析,只有通过分析才能获取很多智能的、深入的、有价值的信息。大数据展示技术在大数据时代下,数据井喷似地增长,分析人员将这些庞大的数据汇总并进行分析,而分析出的成果如果是密密麻麻的文字,那么就没有几个人能理解,所以我们就需要将数据可视化。数据可视化技术主要指的是技术上较为高级的技术方法,这些技术方法通过表达、建模,以及对立体、表面、属性、动画的显示,对数据加以可视化解释。

大数据核心技术

大叔就是什么学的合理只要你天天的是学习学习

非问答能发link我给link譬Hadoop等源数据项目编程语言数据底层技术说简单永洪科技技术说四面其实代表部通用数据底层技术:Z-Suite具高性能数据析能力完全摒弃向升级(Scale-Up)全面支持横向扩展(Scale-Out)Z-Suite主要通核技术支撑PB级数据:跨粒度计算(In-DatabaseComputing)Z-Suite支持各种见汇总支持几乎全部专业统计函数益于跨粒度计算技术Z-Suite数据析引擎找寻优化计算案继所销较、昂贵计算都移数据存储直接计算我称库内计算(In-Database)技术减少数据移降低通讯负担保证高性能数据析并行计算(MPP Computing)Z-Suite基于MPP架构商业智能平台能够计算布计算节点再指定节点计算结汇总输Z-Suite能够充利用各种计算存储资源管服务器普通PC网络条件没严苛要求作横向扩展数据平台Z-Suite能够充发挥各节点计算能力轻松实现针TB/PB级数据析秒级响应列存储 (Column-Based)Z-Suite列存储基于列存储数据集市读取关数据能降低读写销同提高I/O 效率提高查询性能另外列存储能够更压缩数据般压缩比5 -10倍间数据占空间降低传统存储1/51/10 良数据压缩技术节省存储设备内存销却提升计算性能内存计算益于列存储技术并行计算技术Z-Suite能够压缩数据并同利用节点计算能力内存容量般内存访问速度比磁盘访问速度要快几百倍甚至千倍通内存计算CPU直接内存非磁盘读取数据并数据进行计算内存计算传统数据处理式种加速实现数据析关键应用技术

人工智能数据采集是指在人工智能领域,根据特定项为训练机器学习数学模型所使用的的训练数据集的要求,在一定的既定标准下收集和衡量数据和信息的过程,并输出一套有序的数据。澳鹏提供的数据采集服务,提升规模化机器学习。作为训练数据服务的行业领先者,我们能够快速交付涵盖多种数据类型大量优质数据,包括图像、视频、语音、音频和文本,以满足客户特定 AI 项目的需求

大数据是非常重要的。大数据对于科技的发展有着重要的支撑作用。

  • 索引序列
  • 大数据平台主要采用了什么核心技术
  • 大数据平台核心技术考核答案
  • 大数据核心技术是什么
  • 大数据的什么是大数据技术的核心
  • 大数据核心技术
  • 返回顶部