首页 > 期刊发表知识库 > 数学建模优化模型论文

数学建模优化模型论文

发布时间:

数学建模优化模型论文

无忧在线有很多数学建模论文,你去搜一下就行

论数学建模教育模式探究日期:2009-09-0203:45:17点击:0好评:0论文关键词:数学建模教育模式引导-发现论文摘要:数学建模课程教学的根本宗旨在于能力的培养和综合素质的提高,而能力和素质的培养应以知识及教育模式为载体。本文在高校/html/xueke/html

数模相当纠结啊

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究数学模型的另一个特征是经济性用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真所谓"模型就是模型"(而不是原型),即是指该性质二、数学建模 数学建模是利用数学方法解决实际问题的一种实践即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解简而言之,建立数学模型的这个过程就称为数学建模模型是客观实体有关属性的模拟陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题如果有现成的数学工具当然好如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路而在现在,要真正解决一个实际问题,离了计算机几乎是不行的数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型从这一意义上讲,可以说数学建模是一切科学研究的基础没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法 (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法 (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用 (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式 (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型 (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定机理分析法建模的具体步骤大致可见左图仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验① 离散系统仿真--有一组状态变量② 连续系统仿真--有解析表达式或系统结构图(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响近年来随着数学的发展,又有所谓突变性模型和模糊性模型静态模型和动态模型 取决于是否考虑时间因素引起的变化线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的五、数学建模的一般步骤建模的步骤一般分为下列几步:模型准备首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息模型假设在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解不同的简化假设会得到不同的模型假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化经验在这里也常起重要作用写出假设时,语言要精确,就象做习题时写出已知条件那样模型构成根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型把问题化为数学问题要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用模型求解利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设在难以得出解析解时,也应当借助计算机求出数值解模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等模型检验分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善模型应用所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善应用的方式自然取决于问题的性质和建模的目的参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。

数学建模最优化模型论文

无忧在线有很多数学建模论文,你去搜一下就行

数模相当纠结啊

你太逗了学语言的,竟然选数学建模,那个本身是数学系的课程,你想,它是干什么的吧,当然还有一些计算机系之类的,也可能会学。而且数学建模,本身不想数学那样,并非公式就行,不同实例,可能要牵扯到的各种理论也不少呢。需要学好多理论才行呢,学理学工的,才会选择这个。你们的选修课,如果不过,用不用交重修费?如果不用的话,下学期,再选呗。我的选修课学分都超了2分,呵呵,忘记了,多修了一门。

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献%3A+%C2%DB%CE%C4&ch=uf&num=10&w=site%3A+%C2%DB%CE%C4点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

数学建模简单优化模型论文

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献%3A+%C2%DB%CE%C4&ch=uf&num=10&w=site%3A+%C2%DB%CE%C4点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

你太逗了学语言的,竟然选数学建模,那个本身是数学系的课程,你想,它是干什么的吧,当然还有一些计算机系之类的,也可能会学。而且数学建模,本身不想数学那样,并非公式就行,不同实例,可能要牵扯到的各种理论也不少呢。需要学好多理论才行呢,学理学工的,才会选择这个。你们的选修课,如果不过,用不用交重修费?如果不用的话,下学期,再选呗。我的选修课学分都超了2分,呵呵,忘记了,多修了一门。

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究数学模型的另一个特征是经济性用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真所谓"模型就是模型"(而不是原型),即是指该性质二、数学建模 数学建模是利用数学方法解决实际问题的一种实践即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解简而言之,建立数学模型的这个过程就称为数学建模模型是客观实体有关属性的模拟陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题如果有现成的数学工具当然好如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路而在现在,要真正解决一个实际问题,离了计算机几乎是不行的数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型从这一意义上讲,可以说数学建模是一切科学研究的基础没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法 (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法 (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用 (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式 (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型 (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定机理分析法建模的具体步骤大致可见左图仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验① 离散系统仿真--有一组状态变量② 连续系统仿真--有解析表达式或系统结构图(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响近年来随着数学的发展,又有所谓突变性模型和模糊性模型静态模型和动态模型 取决于是否考虑时间因素引起的变化线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的五、数学建模的一般步骤建模的步骤一般分为下列几步:模型准备首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息模型假设在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解不同的简化假设会得到不同的模型假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化经验在这里也常起重要作用写出假设时,语言要精确,就象做习题时写出已知条件那样模型构成根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型把问题化为数学问题要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用模型求解利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设在难以得出解析解时,也应当借助计算机求出数值解模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等模型检验分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善模型应用所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善应用的方式自然取决于问题的性质和建模的目的参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。

预测的类型灰色预测一般有四种类型:1、数列预测。对某现象随时间的顺延而发生的变化所做的预测定义为数列预测。例如对消费物价指数的预测,需要确定两个变量,一个是消费物价指数的水平。另一个是这一水平所发生的时间。2、灾变预测。对发生灾害或异常突变时间可能发生的时间预测称为灾变预测。例如对地震时间的预测。3、系统预测。对系统中众多变量间相互协调关系的发展变化所进行的预测称为系统预测。例如市场中替代商品、相互关联商品销售量互相制约的预测。4、拓扑预测。将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点

优化类数学建模论文

数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。请采纳。

无忧在线有很多数学建模论文,你去搜一下就行

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究数学模型的另一个特征是经济性用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真所谓"模型就是模型"(而不是原型),即是指该性质二、数学建模 数学建模是利用数学方法解决实际问题的一种实践即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解简而言之,建立数学模型的这个过程就称为数学建模模型是客观实体有关属性的模拟陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题如果有现成的数学工具当然好如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路而在现在,要真正解决一个实际问题,离了计算机几乎是不行的数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型从这一意义上讲,可以说数学建模是一切科学研究的基础没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法 (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法 (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用 (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式 (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型 (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定机理分析法建模的具体步骤大致可见左图仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验① 离散系统仿真--有一组状态变量② 连续系统仿真--有解析表达式或系统结构图(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响近年来随着数学的发展,又有所谓突变性模型和模糊性模型静态模型和动态模型 取决于是否考虑时间因素引起的变化线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的五、数学建模的一般步骤建模的步骤一般分为下列几步:模型准备首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息模型假设在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解不同的简化假设会得到不同的模型假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化经验在这里也常起重要作用写出假设时,语言要精确,就象做习题时写出已知条件那样模型构成根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型把问题化为数学问题要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用模型求解利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设在难以得出解析解时,也应当借助计算机求出数值解模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等模型检验分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善模型应用所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善应用的方式自然取决于问题的性质和建模的目的参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。

论数学建模教育模式探究日期:2009-09-0203:45:17点击:0好评:0论文关键词:数学建模教育模式引导-发现论文摘要:数学建模课程教学的根本宗旨在于能力的培养和综合素质的提高,而能力和素质的培养应以知识及教育模式为载体。本文在高校/html/xueke/html

数学建模优秀论文模板

摘要,关键字,问题重述,模型假设,问题分析,模型建立,模型求解,模型检验,模型优化,参考文献,附录

关于什么问题的?排队论?存储论?说清楚写呀~

全国大学生数学建模竞赛论文格式规范   本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。   论文用白色A4纸单面打印;上下左右各留出至少5厘米的页边距;从左侧装订。   论文第一页为承诺书,具体内容和格式见本规范第二页。   论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。   论文题目和摘要写在论文第三页上,从第四页开始是论文正文。   论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。   论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。   论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。   提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。   引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:  [编号] 作者,书名,出版地:出版社,出版年。  参考文献中期刊杂志论文的表述方式为:  [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。  参考文献中网上资源的表述方式为:  [编号] 作者,资源标题,网址,访问时间(年月日)。   在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。   本规范的解释权属于全国大学生数学建模竞赛组委会。  [注]  赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。  全国大学生数学建模竞赛组委会  2009年3月16日修订  数学建模论文一般结构  1摘要 (单独成页)  主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)  作用:了解文件重要性,对文件有大致认识  最佳页副:页面2/3。  2、问题重述和分析  3、问题假设  假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。  作假设的两个原则:  ① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。  ② 贴近原则:贴近实际。  以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。  4、符号说明 (4可以合并)  5、模型建立与求解(重要程度 :60%以上)  6、模型检验(误差一般指均方误差)  7、结果分析 (7可以合并)  8、模型的进一步讨论 或 模型的推广  9、模型优缺点  10、参考文件  11、附件(结果千万不能放在附件中)  论文最佳页面数:15-21页   论文结构一  题目  摘要  问题的重述  合理假设  符号约定  问题的分析  模型的建立与求解  模型的评价与推广  1、误差分析  2、模型的改进与推广  对XXXX切实可行的建议和意见:  ……  ……  ……  参考文献  附录   数学建模论文一般格式   摘要  (主要理解、主要方法、主要结果、主要特点)  或(背景、目标、方法、结果、结论、建议)   问题重述与分析   问题假设   符号说明   模型建立与求解   模型检验   结果分析   模型的进一步讨论   模型优缺点  优秀论文要点:   语言精练、有逻辑性、书写有条理   文字与图形相结合,使内容直观、清晰、明了、容易理解   切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章   对论文中所引用或用到的知识、软件要清晰地予以说明。   在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去  各步骤解释  摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)  作用:了解文件重要性,对文件有大致认识  最佳页副:页面2/3  问题重述与分析: 一向导、对题意的理解、   建模的创造性  创造性是灵魂,文章要有闪光点。  好创意、好想法应当既在人意料之外,又在人  意料之中。  新颖性(独特性)与合理性皆备。  误区之一:数学用得越高深,越有创造性。  解决问题是第一原则,最合适的方法是最好的方法。  误区之二:创造性主要体现在建模与求解上。  创造性可以体现在建模的各个环节上,并且可以有多种表现形式。  误区之三:好创意来自于灵感,可遇不可求。  好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。   表达的清晰性  好的文章 = 好的内容 + 好的表达   替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。   写好摘要,包括:建模主要方法、主要结果,模型主要优点。   专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。   适当采用图表,增加可读性。

  • 索引序列
  • 数学建模优化模型论文
  • 数学建模最优化模型论文
  • 数学建模简单优化模型论文
  • 优化类数学建模论文
  • 数学建模优秀论文模板
  • 返回顶部