首页 > 期刊发表知识库 > 数学方面的论文

数学方面的论文

发布时间:

数学方面的论文

论文自己写才行

抽屉原理和六人集会问题 “任意367个人中,必有生日相同的人。” “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,,10中任取6个数,其中至少有2个数为奇偶性不同。” 大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为: “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。” 在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。 抽屉原理的一种更一般的表述为: “把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 1958年6/7月号的《美国数学月刊》上有这样一道题目: “证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 这个问题可以用如下方法简单明了地证出: 在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。 六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!! 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”

浅谈新课改理念下的数学教学方法教学是课程实施的主要途径。因此,教学改革是课程改革系统工程中必不可少的一环。教学改革必然涉及两个方面:教学理念的改变与教学策略的革新。本文结合自己教学实际谈谈对教学改革的理解。下面我粗浅地谈谈在数学教学方法上的一点认识。一、明确数学教学目的,不断改进教学方法数学教学目的,就是规定了数学教学应当完成的知识传授、能力培养、思想、个性品质等方面的教育任务,是根据我国教育的性质、任务和课程目标,并结合数学科学的特点和中学生的年龄特征而制定的。特别是现行初中数学的教学目的,就明确提出了要“运用所学知识解决题”,“在解决实际问题过程中要让学生受到把实际问题抽象成数学问题的训练”,“形成用数学的意识”。作为数学教师,必须对教学目的有明确的认识,并紧紧围绕教学目的展开教学。因为它是考核学生成绩和检查、评估教师教育教学质量的重要标准。因此,我们必须全面、深刻地掌握数学教学目的,并在教学过程中,经常以此来检查和评价自己的教学水平和教学效果,从而不断改进数学教学方法。二、切实抓好课堂教学,进一步提高教学效果课堂教学过程是师生相互交流的互动过程。师生均以一种积极的心态进入教学过程,是学生主动参与学习并取得教学效果的前提。(一)、改进师生关系,使学生真正成为教学中的主体。 在传统教学中教学沟通的形式是制度化了的形式:以教师为中心、以讲台为中心。教与学的关系不是教师与学生的平等关系,而是指导与被指导、命令与服从的关系,这种关系渗透着教师的权威,即在教学形态里教师是权威的代言人,学生是被动的接受者。新《数学课程标准》提出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。新标准揭示出教学活动的本质是一种沟通,一种合作。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。教学活动的教与学不仅形成了教师与学生之间一对一的关系,也形成了学生与学生之间的关系、教师与学生群体之间的关系、学生与学生群体之间的关系等多重的网状关系,而教学就是在这种网状关系中进行的。现实的教学分析表明,教育者与受教育者的关系是交互主体性的伙伴关系,教学过程既不是单纯的学生,也不是单纯的教师。教师和学生是教或学的中心人物。怎样改进师生之间的关系以培养学生学习的积极性呢?

小学数学方面的论文

小学数学论文怎么写?最佳答案cc小学数学教育,快从计算中摆脱出来 时至今日,离开小学数学很多年后,很多人依旧对小学数学中甲乙相遇的难题心有余悸,仔细回忆,这种题在小学应用题中十分常见,在奥数考试中更是出卷人的宠儿,可能很多人会认为这种类型的题目可以代表中国小学数学的教学观点,然而经过很多人多年的探究,如今小学数学教育文化,正与这种类型的题目背道而驰。 自古以来,中国人的计算能力远超国外,圆周率的计算也比国外早近千年,对于数学方面,中国人一直用自己的计算能力解决问题。这要归功于中国人独有的思维模式,对于数学方面,中国人期望得到一个准确的结果,他们也习惯忽略复杂的证明过程,依照直觉推动数学的发展。长期以来,中国和数学有关的工作者都具备了超强的计算能力,发明的九九乘法表更是让国外组团来考察。或许我们可以为我们独有的能力自豪一番,因为中国的数学从来都是用来解决问题的,而不是研究为什么。 庆幸之中,我们却突然发现,在中国人越来越把计算等同于数学时,这种自古以来的思维模式,原来从小学数学中就已经存在。 在中国的小学,数学是这样被安排的:10以内加减法,10以上20以内加减法,100以内加减法,循序渐进,把计算融进整个教育之中。对比国外,想必很多人听过一个故事,说国外一家家长因为老师教其孩子算了个加法而将其告上法庭,理由是扼杀了孩子的想象力。看似荒谬的故事其实映射的小学数学中外的区别。 在国外的小学,老师通常只会告诉孩子们某件食物数量的多少,而不会要求他们对此加减乘除。除此之外,老师会把某个数用坐标的形式表示出来,或者是把这个数和计算机中的某个知识联系起来。 由此我们可以看出,中国小学数学注重计算,国外小学数学注重逻辑。 这是个模糊的概念,很多人会想说,连计算都不会,哪里谈逻辑。其实逻辑根本和计算不挨边。因此,中国小学数学会出现很多小朋友用手指辅助计算的情形,而国外会因为一个2+2的问题让小朋友做无数个实验。这些就是中国小学数学与外国小学数学的区别。那么究竟那种方式才适合数学的发展,究竟中国应该选择哪种方式来让中国的小学教育更加的完善? 答案是显而易见的,再回到甲乙相遇的问题上,甲何时出发,乙何时出发,速度如何,刚开始距离如何,等等问题,都是一个个有关逻辑的思维导图。这种问题让小学数学的教学充满了逻辑性,让小学生学会思考一些问题。这是中国小学数学教学所需要的。由于国家对工业发展的大力需求,数学的计算一直被国人看作是十分重要的一件事,在这之中往往忽视很多逻辑问题。但随着科技的发展,计算慢慢被科技所代替,如果中国数学从小学开始还是一直注重学生的计算,那么以后中国的数学领域,将会培养出一批机器人。 转向逻辑教学的道路肯定是不平整的,毕竟这种注重计算的教学模式已经根深蒂固很多个年头,想要一时改变,突兀地转向逻辑教学,确实不太实际。但对于教学方式的探讨中,肯定有适合快速转型的数学教学方法。例如,在小学数学课堂,老师可以将单纯的数字具体化,如一加一的问题可以表述成一片草地和一个花园的模型,然后在在“草地”和“花园”中加深内容,把学生带到这个情景中,不断地加深问题难度,把简单的运算转化成小学生能够接受的逻辑推导,这种方法是国外常用的思维开发模式,对于小学生在数学方面的逻辑构成很有帮助。 也有其他一些方法来帮助逻辑教学,例如在美国,想让孩子学乘法之前必须把学生带到学校的计算机房,老师会拿着计算机的插头,然后告诉这些小学生,这就是乘法。其实这不过是老师的“无理取闹”,这一切举动和要学习的数学根本无关,但学生会对此产生很大的好奇,会一再思考为什么计算机插座就是乘法。这让学生的逻辑性又是进一步提高。 所以,或许国外的逻辑教学不是十全十美,甚至有点夸大其词。但相比国内的“纯计算”教学,更能为学生以后思考的方式做出更大的帮助。 中国杰出的数学家陈景瑞先生说过:“我在国外作研究的那几年,学到了真正的数学。”对于小学数学,家长,老师一直以为先任的计算让孩子们被束缚了很多,这种模式的小学数学教学,带来的是初中对几何证明题的一窍不通,带来的是高中对解析几何问题的不求甚解,带来的是大学对高等数学的应试习惯。 经过这些分析和多年的教学实验,我们能够得到这样的结论:数学的教学要偏重逻辑,而且这种偏重,从小学数学就要开始。

大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

寒假中的一天,我和妈妈一起出去逛街。我们边走边商量,先去服装店买衣服,再去超市购物,最后回家。 街上产品琳琅满目,到处都热热闹闹,喜气洋洋。忽听一个高音喇叭广告,吸引了妈妈:清仓大处理!清仓大处理!买一送一!心动不如行动,大家快来买呀!……妈妈一听心动了,于是走进商场行动起来。这时我看见了在广告排的最后一行有几个较小的字,是这么一句话:“(注:送的衣服价格不超过买的衣服价格)”。虽然我感到很奇怪,但我还是跟着妈妈进去了,妈妈先挑中了一件黑色羽绒服给自己,需要204元,又挑了一件棉大衣给爸爸,需要169元,妈妈想也没想就付了钱,觉得挺合算,用204元就可以买到369元的东西。可我总觉得很奇怪,俗话说:“只有买亏,没有卖亏。”我边走边想:没有优惠时的总价是204+165=369元;平均每件只有369 ÷2=5元;把这个价格与羽绒服的价格对比一下:204元>5元 204-5=5元看来妈妈亏了5元这个结果还没加上成本与售价间的差距耶!看来商家永远是赚了!

参考范本:小学数学学生兴趣培养一、培养数学学习兴趣在小学数学教学中的重要性数学是其他自然科学的基础和保证,因此,学好数学对于学生以后其他学科的学习具有非常重要的现实意义小学数学主要是促进学生在幼年时期接受数学教育,进而为将来的数学学习奠定基石,因此,培养小学生对于数学的学习兴趣显得非常重要处于7~12岁年龄段的小学生是各项认知技能都在快速发展的阶段和人群在这一年龄阶段,其学习数学知识的能力会随着其兴趣而得到不同的发展如果学生因为缺乏学习兴趣,产生厌学心理,就会对其今后的发展造成不可修复的伤害教育和教学就是培养人和塑造人的一门科学,所以说,好的教育教学是会使得人的全面发展得到增强的二、在小学数学教学中培养学生学习兴趣的方法1.必须要实行的原则在小学数学教学中培养学生的数学兴趣是一个重要的教学问题,它必须与学生的知识结构一致和协调,符合学生的身心发展和全面发展,那么,我们就必须必须遵循和执行一定的原则:(1)适应性原则适应性原则要求在小学数学教育的日常活动中,学习兴趣是关键,那么,我们就需要以此为原则来不用该年龄阶段的知识去引导学生的努力方向比如说,现在小学阶段,那些小学奥数比赛已经非常流行了这些所谓的奥数竞赛,不符合小学生的学习阶段和知识结构,很多题目大大超出他们的知识范围但这在校园里却是一种很普遍的风尚,这种错误的风尚打击了一大部分学生,使他们发出“数学难”的呼声这样的学习榜样当然值得肯定,但不适宜在推广而后实施,也不利于培养学生学习数学的积极性和兴趣(2)发展性原则发展性原则是为了培养学生学习数学的兴趣来结合社会的生活和学生的身心特点双重因素那么,启发学生思考的问题要符合学生知识结构,既不能太简单也不能太难,主要是要联系理论知识与现实生活,促进学生的全面发展此外,让学生在学习过程中既感到有挑战性,又感觉到好玩和有成效这样,学生在数学课堂上的学习中不但能学到一定的知识,又有了继续学习的欲望和兴趣,为以后的学习和生活打下了良好的基础,是实现促进学生全面发展的教育目的的2.所采取的方法以根本原则为基础,以具体措施为方法来有针对性地达到教学目标例如:我们在小学数学的教学过程中可以采取趣味性的教学方式,激发学生的学习兴趣从小学数学的教学学习环境来说分成两个部分,一是课堂教学,二是课外思考和课外作业在课堂教学中,应该:(1)每名学生都积极参与老师在授课的过程中,要以所教知识与学生的现有认知水平为基础,设计师生共同参与的学习模式,让所有学生参与其中,提高其学习的主动性和效率(2)不同的成功体验让每一名学生都有自己对成功的体验,老师通过教学情境的创设来区别对待,并根据学生不同学习程度和学习能力因材施教,这样所有程度的学生都能获得成功的喜悦数学这一学科具有系统性和连续性,所以说,循序渐进、激励优生和表扬后进生都是可行之策,每一名学生都会体验到自己的成就感来获得喜悦之情,更能激发学生学习的积极性和主动性(3)积极表扬和鼓励小学生具有年龄小和争强好胜的特点以及荣誉感,所以,在教学的活动中,教师要发现学生的闪光点和优点来加以表扬特别是,在学生取得进步时,教师要及时给予表扬和鼓励,这样就会使得学生们不断保持学习兴趣(4)趣味性课堂活动教师可以组织一些趣味活动首先是重视直观的教学方法,例如在教授小学一年级“加减法”的时候,可以让同学们自制一些小工具,这样课堂上玩耍的过程中就学会了知识,同时也使学生学习变得直观化和简单化其次,我们教师在日常的教学中,尽量将一些大家都熟悉的生活场景引入到课堂来,通过生动有趣的故事,在中间穿插一些数学知识,并通过模型、实物等教具,配合多媒体等教育设施,形象而又直观地引导学生去掌握新知识在课堂外,应该:给学生创造自由的发展空间因为小学数学学科本身以理解为主,只要在课堂上真正理解消化了,我们可以适当地减少家庭作业毕竟在如此小的年纪搞题海战术实在不是一件痛快的事为了保持学生在课堂中的热情和兴趣,尽量不要给学生的课外生活布下阴影课外作业以质量取胜适量的人性的家庭作业能够使学生对数学这一重要学科保持持久的正面的重视所以我们在给小学生布置数学课外作业时,必须对题量和题型做细致的考察归根到底,作业的意义就是为了发现问题并解决问题,而不是作为惩罚学生的硬性指标

有关数学方面的论文

寒假中的一天,我和妈妈一起出去逛街。我们边走边商量,先去服装店买衣服,再去超市购物,最后回家。 街上产品琳琅满目,到处都热热闹闹,喜气洋洋。忽听一个高音喇叭广告,吸引了妈妈:清仓大处理!清仓大处理!买一送一!心动不如行动,大家快来买呀!……妈妈一听心动了,于是走进商场行动起来。这时我看见了在广告排的最后一行有几个较小的字,是这么一句话:“(注:送的衣服价格不超过买的衣服价格)”。虽然我感到很奇怪,但我还是跟着妈妈进去了,妈妈先挑中了一件黑色羽绒服给自己,需要204元,又挑了一件棉大衣给爸爸,需要169元,妈妈想也没想就付了钱,觉得挺合算,用204元就可以买到369元的东西。可我总觉得很奇怪,俗话说:“只有买亏,没有卖亏。”我边走边想:没有优惠时的总价是204+165=369元;平均每件只有369 ÷2=5元;把这个价格与羽绒服的价格对比一下:204元>5元 204-5=5元看来妈妈亏了5元这个结果还没加上成本与售价间的差距耶!看来商家永远是赚了!

抽屉原理和六人集会问题 “任意367个人中,必有生日相同的人。” “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,,10中任取6个数,其中至少有2个数为奇偶性不同。” 大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为: “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。” 在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。 抽屉原理的一种更一般的表述为: “把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 1958年6/7月号的《美国数学月刊》上有这样一道题目: “证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 这个问题可以用如下方法简单明了地证出: 在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。 六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

论文自己写才行

一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r2,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r2=92∏+62∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r2=152∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。

数学方面的期刊论文

要看你是毕业用论文还是职称用论文。后者的话,是什么级别等,综合性因素对比出来会更符合情况。

数学学报 数学年刊A辑 应用数学学报 计算数学 数学进展 数学研究与评论 系统科学与数学 数学物理学报 应用概率统计 工程数学学报 应用数学 数学杂志 高校应用数学学报A辑 模糊系统与数学 高等学校计算数学学报 数学季刊 工科数学(改名为:大学数学) 数学的实践与认识 纯粹数学与应用数学 运筹学学报 数学教育学报 都是忙着发论文的人啊~~

《中国科教创新导刊》《数学大世界》《数学学习与研究》《数理化解题研究》《理科考试研究》等等可以发表。可进我空间参考参考

应用数学进展》是一本关注应用数学领域最新进展的国际中文期刊,主要刊登数学的各种计算方法研究,数学在统计学、计算机等方面应用的学术讠仑文和成果评述、

数学教育方面的论文

0

(1)思维导图在小学数学中的运用探究(2)小学数学教学有效性的提升策略分析(3)小组合作学习在小学数学中的应用研究(4)小学数学教学中渗透数学思想的探索如需资料,可M我

  • 索引序列
  • 数学方面的论文
  • 小学数学方面的论文
  • 有关数学方面的论文
  • 数学方面的期刊论文
  • 数学教育方面的论文
  • 返回顶部