∽
让他报个学习兴趣班试试
如何在数学教育教学中提升学生的数学核心素养进入21世纪,社会进步、科学技术和数学发展异常迅速,甚至超出想象,这势必会影响教育,影响基础教育,影响数学教育。20世纪学生应具备的基本能力与21世纪学生应具备的核心素养一致吗?哪些不一致?这是跨世纪的挑战,也是建立基于核心素养的课程体系的背景。一、正确认识和理解数学核心素养21世纪,我国确定了“立德树人”“以人为本”的教育改革指导思想,强调以课程为载体落实指导思想,进而以高中课程标准修订为突破,探索、积累经验,逐步推广。“以素养立意课程体系”主要是将培养、提升学生的核心素养(通识)、学科核心素养作为课程基本目标,根据每一个学科的特点,把三维目标通过每一个学科的核心素养加以落实,把课程总目标与学科教育有机结合。我国数学教育工作者一直在思考:数学教育应留给学生什么?数学核心素养是具有数学基本特征的适应个人终身发展和社会发展需要的人的关键能力与思维品质。不严格地说,数学核心素养不仅包含外显能力,还包含内在思维品质。数学课标修订组提出了六个核心素养:数学抽象、数学推理、数学建模、直观想象、数学运算、数据分析,它是五大基本能力的延续和深化。数学核心素养是数学课程目标的重要的基本组成部分,每个数学核心素养通过“情境与问题”“知识与技能”“思维与表达”“交流与反思”四个方面表现出来,这四个方面也是描述核心素养水平的四个维度。每一个数学核心素养有自身的独立性,在学习数学的过程中,在发现与提出、分析与解决数学问题和实际问题中,各自在不同的环节发挥不同的作用,但我们更需要强调整体性,六个核心素养是一个有机联系的整体,它们不是两两“不交”的独立素养,而是相互“交着”相互“渗透”的,在直观想象中,蕴含着抽象、推理、模型;在抽象概括中,也离不开直观、推理、模型;在数学建模的过程中,更需要直观、推理、模型交互发挥作用……数学核心素养不是独立于知识、技能、思想、经验之外的“神秘”概念,综合体现出对数学知识的理解、对数学技能方法的掌握、对数学思想的感悟及对数学活动经验的积累。二、基于数学核心素养的数学课程体系基于数学核心素养的数学课程要突出三件事,一是符合数学规律并结构清晰;二是突出数学本质;三是便于转化,转化为数学核心素养。体现选择性的高中数学课程结构不同的学生拥有不同的特长,会选择不同的发展方向,需要有不同水平的数学核心素养,而数学课程标准为不同发展方向的学生设计了不同的课程。必修课程为学生发展提供共同基础,是高中毕业考试的内容要求。选修I课程是供学生选择的课程,必修课程和选修I课程是高考的内容要求。选修Ⅱ课程分为ABCDE五类。这些课程为学生确定发展方向提供引导,为学生展示数学才能提供平台,为学生发展数学兴趣提供选择,为大学自主招生提供参考。学生可以根据自己的志向和大学专业的要求选择学习其中的某些课程。A课程是部分理工类(数学、物理、计算机、精密仪器等)学生可以选择的课程。B课程是经济、社会(数理经济等)和部分理工类(化学、生物、机械等)学生可以选择的课程。C课程是人文类(历史、语言等)学生可以选择的课程。D课程是体育、音乐、美术(艺术)类学生等可以选择的课程。E课程(校本课程)是学校自主开设,供学生自主选择的课程,特别包括大学先修课程(CAP)。体现数学核心素养发展的高中数学内容结构数学有丰富的研究领域、问题和方法,形成了很多特点鲜明、作用不同的数学分支,但数学又是一个有机整体,拥有清晰的结构,从学习的角度来说,更是如此。只有这样,才能更好地提升、发展学生的数学核心素养。根据高中学习特点和需要,高中数学内容将突出三条贯穿始终的内容主线:函数及应用、几何与代数、统计与概率。数学建模与数学探究是另一条贯穿始终的主线。另外,还应将数学文化渗透在高中课程内容中。抓住这些贯穿始终的主线,才能反复感受到抽象、推理(运算)、模型、直观所起的作用,有效地促进学生数学核心素养的提升和发展。体现数学本质的关键问题和主要概念、定理、模型、思想方法、应用在整体认识高中数学内容结构和主线的基础上,需要进一步深入思考支撑主线的关键问题和主要概念、定理、模型、思想方法、应用等。以函数主线为例,首先,抓住以下关键问题:整体、全面认识函数概念;深入理解函数性质——整体性质与局部性质;掌握一批基本函数类;把握函数应用;感悟研究函数思想方法;深入理解主要概念、定理、模型、思想方法、应用等,步步深入,逐步提升数学核心素养。三、基于数学核心素养的数学教学教什么,如何教?这是教师教学的永恒课题。基于数学核心素养的教师数学教学,首先要更新观念。培养并提升核心素养,不能依赖模仿、记忆,更需要理解、感悟,需要主动、自觉,将“学生为本”的理念与教学实际有机结合。整体把握数学课程基于数学核心素养的数学教学,整体理解数学课程是基础。高中数学课程是一个有机整体,要整体理解数学课程性质与理念,整体掌握数学课程目标,特别需要整体感悟数学核心素养,整体认识数学课程内容结构—主线—主题—关键概念、定理、模型、思想方法、应用,整体设计与实施教学。在这一过程中,学生会不断感悟、理解抽象、推理、运算、直观的作用,得到新的数学模型,改进思维品质,扩大应用范围,提升关键能力,改善思维品质。主题(单元)教学基于数学核心素养的数学教学,要求教师能从一节一节的教学中跳出来,以“主题(单元)”作为进行教学的基本教学思考对象。可以以“章”作为单元,如将“三角函数”作为教学设计单元;也可以以数学中的重要主题为教学设计单元,如“距离”或“几何度量关系:距离、角度”等;也可以以数学中通性通法为单元,如“模型与待定系数”等。这是深度学习的核心,也是深度学习的抓手,也是整体把握数学课程的抓手,可突出本质——数学核心素养,有利于教学方式多样化,把“教”与“学”结合起来,促进学生自主学习;有助于提高数学教师专业水平(数学、教育教学理论、实践),这是数学骨干教师的基本功,不是教教材,而是创造性地使用教材教数学。抓住数学本质我国著名数学家华罗庚反复强调:能把书读厚,又能把书读薄,读薄就是抓住本质,抓住重点,抓住本质,才能更好地理解和提升数学核心素养。问题引领——发现、提出问题与分析解决问题在关于数学和数学教育的大讨论中,问及在数学和数学教育中什么最重要时,著名数学家P Harmous 在一篇总结文章中强调“问题是关键”,数学概念、定理、模型和应用都是在解决问题的过程中总结形成的。在数学课程目标中,特别强调发展学生发现、提出问题与分析解决问题的能力,在基于数学核心素养的教学中,这也是关注的重点。创设合适情境创设合适情境是基于数学核心素养教学的另一关注点。首先要对“情境需要”有个全面的认识,包括实际情境、科学情境、数学情境、历史情境。情境选择的基本原则是便于理解学习内容和要完成的任务,循序渐进,进而考虑激发学生的兴趣和热情。掌握学情,加强“会学”指导“授之于鱼,不如授之以渔”是古训,这与学会学习的理念一致,“会学”比“学会”重要。“会学数学”应包括:阅读理解、质疑提问、梳理总结、表达交流。以“数学阅读理解”为例,需要清楚数学语言由数学自然语言、符号语言、图形语言组成,它的特点是准确、清晰、简洁,数学阅读就要会读“数学普通话”“符号”“图形(表格)”。而数学符号、图形又是一个系统,彼此联系,学生不能很快习惯,需要指导,不能太急。数学教师强调“学法指导”,是一个很好的经验,需要坚持、总结、提升。四、基于数学核心素养的数学学习基于数学核心素养的数学学习,应关注以下问题。视野—见识学习数学需要有开阔视野,了解数学的历史,了解数学的发展,了解数学在社会发展中作用,在美国科学委员会写给美国总统的咨询报告中特别强调:“高科技本质上是数学技术”;了解数学在现实生活中的作用,英国研究理事会的评估报告认为,数学研究对英国经济的贡献约占英国所有工作岗位的10%和GDP增加值总额的16%。对优秀学生,教师应引导他们不满足学到数学知识,得到好成绩,还需要好的见识。见识比知识更重要。做题=数学学习?会学—自主以做题取代数学学习,这是数学教育中的突出问题。通过做题巩固学习内容,这是学习数学的重要环节,但仅靠做题有很大的局限性。学习数学也需要理解数学概念、定理、应用,需要理解不同内容之间的联系。做题与做数学是有区别的。做数学,首先要选择问题,进而猜想结论,确定条件,探索解决问题的方法;做题,完全不同,条件和结论是确定的,方法也是学习过的,在锻炼数学素养方面有一定的局限性。积极参与数学建模和数学探究数学建模是对现实问题进行数学抽象,用数学语言表达问题,用数学知识与方法构建模型解决问题的过程。数学探究是围绕某个具体数学问题,开展自主探究、合作研究,并最终解决数学问题的过程。它们是高中阶段数学课程的重要内容。“数学建模活动”和“数学探究活动”主要以课题研究的形式开展。课题研究过程包括选题、开题、做题、结题四个环节,这是促进学生自主学习的一项重要措施,可以让他们经历解决问题的过程。会交流在数学学习为主的阶段,交流很重要。听一遍不如看一遍,看一遍不如讲一遍,讲一遍不如写一遍,很有道理。大学研究生授课的主要方式是让学生报告,导师很容易从报告的过程中判断是否真懂,希望中学教师和学生也能借鉴这种方法——交流。基于数学核心素养的评价是落实的重要措施,尤其是高考评价。如果高考试题、考试等形式不进行改变,这次改革就很难落实。当然,也应循序渐进。数学课标修订组下专门成立了“基于数学核心素养考试命题研究组”,研究需要改进的命题要素和形式。因此,基于数学核心素养评价的命题,要关注以下要素:(1)命题者要整体把握高中数学课程,围绕内容主线—主题(单元)和关键概念、结论、模型、思想方法、应用展开;(2)突出数学本质;(3)创设合适情境,强调发现、提出和分析、解决问题背景,情境包括实际情境、科学情境、数学情境、历史情境;(4)强调开放性、探究性。如何在数学教育中提升学生的数学核心素养,是数学教育工作者面临的新课题。一线数学教师是落实本次高中课程标准修订的关键,希望广大教师注重提升自身数学素养,特别是数学核心素养,关注数学内容、数学教学理论、数学教学实践与数学核心素养的有机结合,直面问题,不断探索,为学生营造良好的数学教育。
锐哲教育服务中心帮您解答 我站提供的期刊杂志都是经国家新闻出版署批准,具有CN(国内统一)刊号,ISSN(国际标准)刊号的省级正刊及国家中文核心期刊的正规期刊。 本站受多家杂志期刊委托,目前主要代理教育、法律、经济,社会科学,计算机,财务,工程,机械,贸易,化工,冶金,医药,文化等论文发表。论文快速发表 论文代写 公司运做 决不欺诈 投稿信箱:中国学术期刊网:
引 论代数学是数学的一个基本分支,是其他数学分支的基础。它所处理和研究的数学对象是抽象的代数符号与概念,如整数有理数多项式理想等。计算机代数是以计算机为工具处理研究代数对象的一门新兴科学。它是符号计算的一个主要分支。代数算法的设计分析实现及应用构成了计算机代数的主要研究内容代数计算冗长繁复。常常让人望而生畏。传统的笔纸演算耗时费力又易出错,因而不可能用于大规模的计算。现代计算技术为大型符号计算提供了条件。于是如何将基本代数理论算法化精确化效率化,如何将有效的算法在计算机上有小弟实施,建立完整易用的软件系统,并用来处理形形色色的代数计算就是需要研究的问题。对这些问题的研究便形成了计算机代数这门科学。本综合报告的内容将就这门学科的多项式部分进行简单的研究与分析,Maple软件的介绍及在多项式方面的应用摘 要计算机代数的发展始于20世纪60年代初期。其标志是美国JSlagle在1961年用表处理语言Lisp所写的第一个自动积分程序SAINT。随后,几个基于Fortran和Lisp的符号计算系统,如PM,MATHLAB,ALPAK等,相继出现。这些早期的系统主要在美国的麻雀理工学院贝尔实验室和IBM公司研制开发的。现在,已有多种数学软件供我们使用,是我们可以应用计算机软件辅助进行数学包括高等代数的学习研究,而不只靠纸笔演算了。软件系统是计算机代数中的算法和应用的桥梁。先进的算法只有通过软件才能在应用中发挥其应有的效力和作用。利用日新月异的计算机硬件和技术所开发的高性能多功能简单易用的软件已逐渐是大量的数学研究教学赫英勇走向机械化自动化和计算机化。数学软件是指能在现代电子计算机上运行的程序和储存的数据,它们可以用来在计算机上表示和处理数学概念符号和知识,进行数学计算推理编程和绘图数学活动。数学软件是各种算法和策略在特定程序设计语言和计算机硬件上的具体实现。数学软件的种类繁多功能不一。知识处理软件:TEX/LATEX,MathML。数值计算软件:LAPACK,Matlab。符号计算软件:Maple,M绘图与视化软件:AutoCAD,JavaVMaple 求解多项式一多项式的介绍 多项式的定义定义1 数环R上一个文字x的多项式或一元多项式指的是形式表达式 ⑴ ,这里n是非负整数而 , , ,, 都是R中的数。 在多项式⑴中, 叫做零次项或常数项, 叫做一次项,一般, 叫做i次项, 叫做i次项的系数。定义2 若是数环R上两个一元多项式 f(x)和g(x)有完全相同的项,或者只差一些系数为零的项,那么f(x)和g(x)就说是相等f(x)=g(x)⑵ , 定义3 叫做多项式⑵的最高次项。非负整数n叫做多项式⑵的次数。二多项式的运算根据以上定义,R上两个多项式f(x),g(x)的和差积的系数都可以用f(x)和g(x)的系数的和差积表示出来。由于f(x)和g(x)的系数都属于数环R,所以它们的和差积也都属于R,所以R上两个多项式的和差积仍是R上的多项式。 加法交换律:f(x)+g(x)=g(x)+f(x) 加法结合律:(f(x)+g(x))+h(x)=f(x)+(g(x)+h(x)) 乘法交换律:f(x)g(x)=g(x)f(x) 乘法结合律:(f(x)g(x))h(x)=f(x)(g(x)h(x)) 乘法对加法的分配律:f(x)(g(x)+h(x))=f(x)g(x)+f(x)h(x)三多项式的定理定理设f(x)和g(x)是数环R上两个多项式,并且f(x) 0,g(x) 那么(i) 当f(x)+g(x) 0时。 (f(x)+g(x))) max( (f(x)), (g(x)));(ii) (f(x)g(x))= (f(x))+ (g(x))推论1:f(x)g(x)=0必要且只要f(x)和g(x)中至少有一个是零多项式。推论2:若是f(x)g(x)=f(x)h(x),且f(x) 0,那么g(x)=h(x)四多项式的整除性定义 令f(x)和g(x)是数域F上多项式环F[x]的两个多项式。如果存在F[x]的多项式h(x),使 g(x)=f(x)h(x),我们就说,f(x)整除(能除尽)g(x)我们用符号f(x)|g(x)表示f(x)整除g(x),用符号f(x)| g(x)表示f(x)不能整除g(x)。五多项式整除性的一些基本性质① 如果f(x)|g(x),g(x)|h(x),那么f(x)|h(x)② 如果h(x)|f(x),h(x)|g(x),那么h(x)|(f(x) g(x))③ 如果h(x)|f(x),那么对于F[x]中任意多项式g(x)来说,h(x)|f(x)g(x)④ 如果h(x)| (x),i=1,2,,t,那么对F[x]中任意 (x),i=1,2,,t,h(x)|( (x) (x) (x) (x) (x) (x))⑤ 零次多项式,也就是F中不等于零的数,整除任一多项式。⑥ 每一个多项式f(x)都能被cf(x)整除,这里c是F中任一不等于零的数。事实上,f(x)= (cf(x))⑦ 如果f(x)|g(x),g(x)|f(x),那么f(x)=cg(x),这里c是F中一个不等于零的数。 Maple的介绍 (1)Maple概略Maple是主要的通用计算机代数系统。它都是流行的商业软件,并且能在多种操作系统下运行。Maple是一个用于解决各种数学问题的高效交互式容易使用的通用计算机代数系统它为科学工作者工程师教师和学生提供了一个可以用来处理代数表达式,进行符号与数值计算,用二维和三维图形和动画来视化数学对象的完整数学平台。Maple不仅有非常丰富的函数库,而且提供了高级数学编程语言。它可以在微软视窗MUnix/Linux等操作系统下运行。如今,Maple已被广泛用于数学密码学控制论物理学生物学商学经济学和工程技术,是众多高等院校科学和工程实验室的标准科研与教学工具,它的用户遍及全球。(2)Maple计算Maple中有3000多个用于符号与数值计算的函数,它们为解决各种数学问题提供了极大的灵活性。这些函数能进行的计算包括标准的数学运算如整数运算多项式运算积分微分求和求积解方程级数展开和极限计算等,以及其他专门数学领域中的特殊函数。(3)Maple界面Maple结合了强大的数学计算功能与先进直接的界面。计算结果图形和文字在同一份文档中显示,因而可以保存和注解计算步骤,之后还可以编辑修改并直接运行其中的Maple指令。Maple使用标准的数学记号,因此屏幕上显示的数学和我们在书本上看到的数学一样。这使得学生能够很容易地解释和检查所得的表达式。Maple还提供了几种使用鼠标键入和求值表达式的方式。内容敏感的选项单让用户不需学习编程语言的语法不必记忆指令名称就能使用Maple处理它所产生的数学对象。Maple还集成了NAG的数值计算程序库,并与数值计算软件Matlab有接口。(4)Maple编程除丰富的指令函数外,Maple还提供了一种高级程序设计语言。这种易学易用的语言能让用户通过添加自己的程序来扩充Maple的函数和功能。Maple 求解多项式例1:下面是一个 ,, 的整系数多项式F= + - - + +3 不难看出coef(F, )=-1,coef(F, )=0deg(F, )=1,deg(F, )=2,tdeg(F)=3,切F不是齐次的。设 Q= 为任一多项式。定义P与Q的和为P+Q:= ,其中( ,, ),,( ,, )是( ,, ),,( ,, ),( ,, ),,( ,, )中所有互不相同的n元组,而 有构造n元组 u=1,,t;v=1,,s,并令( ,, ),,( ,, )为它们中所有互不相同者。定义P与Q的积为P•Q:= ,其中 例2:考虑多项式F= +1,G= 关于y,相应的R和Q可如下计算: 由此即得 简化得 符号计算系统的最基本功能是处理符号表达式,多项式则是最基本的符号表达式。从下面的例子中可以看到Maple可以用各种方式处理多项式三角表达式指数与对数等数学表达式。>factor(x^4+2*x^3-12*x^2+40*x-64); (x-2)( )>expand((x+1)^5); >simplify(exp(x*(log(y))); >simplify(sin(x)^2+cos(x)^2); 1>expand((x^2-a)^3*(x+b-1)); >expand(cos(4*x)+4*cos(2*x)+3,trig); 8 >combine(4*cos(x)^3,trig); cos(3x)+3cos(x)总结:随着计算机与数学的发展,计算机软件与数学研究已密不可分。无论是maple还是matlab等等,学习数学都将越来越简单化!参考文献:《Maple教程》 何青 王丽芳编著 科学出版社,2006《计算机代数》王东明 夏壁灿 李子明编著清华大学出版社, 2007《Maple经典》何青 王丽芳 袁荣译高等教育出版社, 2002
至少需要5-8篇参考文献。建议去数据库查相关的文章,多找几篇,确定好后下载下来,几篇文章一起通读,多读几遍,形成自己的观点,最后要记得标注好参考文献。
回答 亲亲您好呀~您反馈的问题我已经到了啦~不用重复询问哦亲~人工解答排队中呢~这边还请您耐心等待一下呢\x14 [1] 亢晓梅 师生课堂互动类型理论比较研究[J] 比较教育研究, 2001,(04) [2] 俞国良,罗晓路 教师教学效能感相关因素研究[J] 北京师范大学学报(人文社会科学版), 2000,(01) [3] 辛涛,申继亮 论教师的教育观念[J] 北京师范大学学报(社会科学版), 1999,(01) [4] 伊文婷 师范生教师职业信仰的近况、理由与对策[J] 福建教育学院学报, 2005,(04) [5] 俞国良,辛自强,林崇德 反思训练是提高教师素质的有效途径[J] 高等师范教育研究, 1999,(04) [6] 林正范,徐丽华 对教师研究的认识[J] 教师教育研究, 2006,(02) [7] 高潇怡,庞丽娟 教师的儿童学习观与其教育的关系研究[J] 教师教育研究, 2007,(03) [8] 任淑萍 新课标下历史教师的转变[J] 晋东南师范专科学校学报, 2004,(03) [9] 史献平 教师信仰:实施素质教育的内动力[J] 江苏教育学院学报(社会科学版), 2000,(01) [10] 辛涛,申继亮,林崇德 教师自我效能感与学校因素关系的研究[J] 教育研究, 1994,(10) [11] 石中英 论教育实践的逻辑[J] 教育研究, 2006,(01) [12] 肖川 作为理想主义者的教师[J] 辽宁教育, 2007,(Z1) [13] 刘莉,杨艳芳 教师教育信念研究综述[J] 内蒙古师范大学学报(教育科学版), 2008,(12) [14] 黄乾玉 论教师的教育信仰及教师的教育幸福[J] 黔东南民族师范高等专科学校学报, 2006,(01) [15] 吕国光,王嘉毅 中小学教师新课程信念的调查研究[J] 当代教育科学, 2004,(13) [16] 姜美玲 课程革新情境中的教师信念与教学实践:叙事探究[J] 当代教育科学, 2005,(20) [17] 王永跃 从支配到支持:建构主义视野中的教师[J] 陕西师范大学学报(哲学社会科学版), 2001,(S1) [18] 康武 信念——数学教师的方向性不足[J] 数学教育学报, 2003,(02) [19] 林智中,张爽 如何通过质化研究探求教师的信念[J] 全球教育展望 这些都是幼儿园可以参考的文献哦亲 另外还可以参考这些书籍 1、《幼儿园教育》,李季湄、肖湘宁,北京师范大学出版社,1995年版 2、《教师与儿童发展》,庞丽娟,北京师范大学出版社,2001年版 3、《 学前教育论稿》,赵寄石,南京大学出版社,2000 4、《幼儿社会性发展与教育》,杨丽珠、吴文菊,辽宁师范大学出版社,2000年 5、《幼儿教育心理学》 ,潘日文、侯桂兰,中央民族大学出版社,2006年 6、《公关心理学》 ,张云,复旦大学出版社,1995年 一分祝福,一分温馨,一分感动!怀有一颗感恩的心生活则处处有感动希望我的回答可以解决您的提问,如果我回答帮助到您了,希望您动动小手给我点个赞,如果没有解决您的问题也请您不要急,直接向我提出我一定会尽心尽责去重新解答,最后祝您生活愉快 更多9条
用与本意相反的词语或句子表达本意,以说反话的方式加强表达效果。有的讽刺揭露,有的表示亲密友好的感情。如:(清国留学生)也有解散辫子,盘得平的,除下帽来
让他报个学习兴趣班试试
动手实践
∽
我的题目和你的一样,关于学前教育,只是辩护通过,可以回家过年去
幼儿园论文参考文献包括幼儿园的管理幼儿园的培养幼儿园的策划幼儿园的作文等等的幼儿心理这些论文都可以捐助。