哪有二十个字的论文呀 你说的是论文的题目吗
皇一一一222222222222
今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有n组时,他的和也是把(1+2+3+4+……+n)×5+4n=你要求那n组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
什么方面的?一个论文范围太大了吧
今天一早,我想看电脑,可电脑偏偏被老爸给占了,我不服气,说:“为什么我不能看?”老爸嘿嘿一笑,说:“那我们玩个游戏,抢报30,你输我看电脑,赢了你看,好吗?”我心想:老爸又在打什么鬼主意?管他呢!玩就玩,who怕who!我答应了。这个游的规则是很简单的:每个人每次最多报3个自然数,最少报1个自然数,报数的时候不能重复也不能跳过,谁先报到30谁就赢了。这个简单,我和老爸玩了一局,结果我输了。我不服气,又来了几次,我有输有赢。难道还有什么规律?我留心到,只要我每次先抢到数字26的时候,我是必胜无疑的。因为如果我先抢到了数字26,到数字30还有4个数字,按照游戏的规则,每次报的数字最多是3个,最少是1个,那么,当爸爸报1个数字“27”的时候,我报“28、29、30”三个数字,我就先抢到30了;当爸爸报2个数字“27、28”的时候,我报“29、30”两个数字,我也能先抢到30了;当爸爸报3个数字“27、28、29”的时候,我报“30”一个数字就赢定了。看来,先报到数字26绝对是胜利的保证。那么,除了抢到数字26之外呢?在之前的回合中我还要确定抢到哪些数字才能确保自己胜利呢?按照先抢到数字26后的方法,我进行了推算:如果要赢,这些数字在每一回合中我要牢牢记住,它们是22、18、14、10、6、那么,这是不是这个游戏中的规律呢?找到规律我信心十足的和老爸再玩了一次,老爸先说1,2,我看爸爸吧2抢了,心里不免有些着急。我说3,4,爸爸说5,6,又被爸爸抢到6了!我说7,8,9,爸爸报10,11,12我连忙报13,14,心中暗暗高兴,我终于抢到10啦!!接着,爸爸报3个数字,我就报1个数字;爸爸报2个数字,我就报2个数字;爸爸报1个数字,我就报3个数字。我胜利喽!爸爸也不服气,又玩了几局,可我掌握了规律,怎样都是我赢。老爸问:“怎么那么巧啊?”我笑嘻嘻地说:“这可不是偶然,巧合哦,我可是找到规律了呢!”爸爸也笑了:“其实我也是知道的,你果然很聪明啊。”接着,老爸把规律说了一遍。这个狡猾的爸爸!知道不告诉我,让我费脑筋!原来游戏里也有那么多数学规律啊!我们只要要多动脑,就能发现他们
皇一一一222222222222
4本日记本和8本练习本的价钱相等。小明买3本日记本和5本练习本,共用去4元。日记本和练习本的单价各是多少元? 这道题我是这样想的:把‚4本日记本和8本练习本价钱相等‛换句话说,就是‚1本日记本和2本练习本价钱相等‛;再把它换句话说,就是‚3本日记本和6本练习本价钱相等‛,也就是说‚3本日记本可以换成6本练习本‛。题目中的第二个条件‚买3本日记本和5本练习本,共用去4元‛,换句话说就是‚买6本练习本和5本练习本,共用去4元‛。这样就可以先算出每本练习本的价钱是: 4÷(6+5)=4(元) 从而求出日记本的单价是:4×2=8(元)。 联系以前做过的一些题目,我又想,有些题中的已知条件可以用多种方法来说,解题时,把它换句话来说,可以使题目中的已知条件更加直接,数量关系更加一目了然,也就方便我们找到解题方法。我把这个想法告诉陈老师,陈老师肯定了我的想法,还告诉我:‚这就是转化的方法,转化就是把要解决的问题转化成已经会解决的问题。‛ 陈老师又给我出了一道题目: [题目2]一个两位小数,去掉小数点后比原来的数大46。这个两位小数是多少?我想:把‚一个两位小数去掉小数点‛换句话说就是‚把这个两位小数扩大100倍,得到一个新数‛。再想把原来的数看作1倍, 新数就是100倍,又可以把‚去掉小数点后比原来的数大46‛换句话说成‚原数的99倍等于46‛。这样要解决的问题就可以转化成:‚一个数的99倍是46,求这个数。‛ 46÷(100-1)=54 解题时,把已知条件‚换句话说‛,还真能化难为易! 最后,陈老师又给我出了一道题目:两个数相除的商是21,余数是3。如果把被除数、除数、商和余数相加,它们的和是225。被除数、除数各是多少
这小学生一年级哪里会写论文?一般都是写一些记叙文记流水账形式的就够了
数学的色彩 清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。这是早晨的数学题,我把数学定为红色。 上午,爸爸从银行交完电费回来,叫我计算电费。用电量是从1079-1279(度),每度电单价是38元,我用心算整好200度,我把单价变为分数是38/100,列式:200×(38/100),先约分再乘,等于76元。爸爸说没错,和电脑算得一样。我很得意,这时已近中午,我把数学定为黄色。 下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3。这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧。 夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了。 生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。
这个应该是对于一年级来讲,如果写300字的数学小论文是很难的。可以辅导他写写数学,有趣儿的故事。或者是学习这个有趣儿数学的感受。
前几天,我们在学校做了一次实验。准备的材料有:七份食盐,七份大苏打,两个烧杯,水少搅拌棒。我们的问题是:20毫升水能溶解食盐和大苏打各多少份?计划方案是:一、在两个烧杯中各放入20毫升水。二、七份食盐和大苏打每份2克,分成两堆,一堆是食盐,一堆是大苏打。三、把大苏打和食盐一份一份地往水中加,直到不能溶解为止
1位粉丝前几天,我们在学校做了一次实验。准备的材料有:七份食盐,七份大苏打,两个烧杯,水少搅拌棒。我们的问题是:20毫升水能溶解食盐和大苏打各多少份?计划方案是:一、在两个烧杯中各放入20毫升水。二、七份食盐和大苏打每份2克,分成两堆,一堆是食盐,一堆是大苏打。三、把大苏打和食盐一份一份地往水中加,直到不能溶解为止
上网查
前几天,我们在学校做了一次实验。准备的材料有:七份食盐,七份大苏打,两个烧杯,水少搅拌棒。我们的问题是:20毫升水能溶解食盐和大苏打各多少份?计划方案是:一、在两个烧杯中各放入20毫升水。二、七份食盐和大苏打每份2克,分成两堆,一堆是食盐,一堆是大苏打。三、把大苏打和食盐一份一份地往水中加,直到不能溶解为止
回答 1、题目要新颖。一个新颖的题目可以给人耳目一新的感觉,而且容易给读者和评审人员留下深刻的印象,比较容易通过和发表,因此在题目的选择和设定上要多花些心思。 2、范围要小。既然是小论文,那么选题范围就不要太大了,太大太宽泛的论文一个是容易落入俗套,另外就是如果没有深入研究的话,不容易阐述的清晰透彻,给人言之无物的感觉,不如选个小一点的课题深入的说明,这样效果会更好。 3、见解独特。对于你所选择的课题你要有自己独特的见解,与众不同的见解是你论文的核心和亮点,如果没有这些那么这篇论文的质量无疑是值得质疑的,很难引起读者的注意和评审的好感。 4、系统性强。因为数学是一门以逻辑推理为主的学科,因此你的论述要有很好的系统性,从前到后一步步进行推理,这样的论文即使在文采方面并不出众,也是容易因其逻辑性和系统性而成为一篇好的论文的。 更多2条
肇戒备藕倭腐蚀性上
有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!
人民币中的数学问题 有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。 在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!