数据可从网上搜索,统计年鉴及各大数据库都有再通过统计软件作分析,例如相关分析和回归分析,这种论文偏理论型也可以通过设计调查问卷,可针对身边某一热点问题进行调查,如消费观,就业观,来搜集数据,再写一篇调查报告
基本原理微量元素在各种天然物质中的含量,一般是服从对数正态分布或正态分布的,这就是应用数理统计方法确定背景值和异常下限的理论根据。因此,只有确认测区内元素含量是属于或近似于对数正态分布或正态分布时,才能用数理统计方法来确定背累值和异常下限。根据背景值的概念,当元素含量是属于或近似于对数正态分布或正态分布时,背景值就可用样本的几何平均值(xg)或算术平均值(x),众数(Mo),中位数(Me)来估计。因为几何平均值或算术平均值受极大值和极小值的影响较大,虽然众数和中位数不受极大值和极小值的影响,但当数据集中趋势不明显时,众数就求不出来,并且也随数据分组不同而异。因此,在估计背景值时,一定要考虑样本的特征,选出其最佳估计值。当含量服从对数正态分布时,计算公式为地球化学找矿方法式中: TL为对数异常下限; σ 为元素含量的对数标准离差; Co为背景值; K 为常数。当元素含量服从正态分布时,计算公式为地球化学找矿方法K 值一般可定为 1 ~ 3。K 值愈小,异常值出现的可能性愈大; K 值愈大,异常值出现的可能性愈小。例如,当 K =1 时,异常出现的概率为 9% ; 当 K =2 时,异常出现的概率为 3% ; 而当 K =3 时,异常出现的概率为 1% ,等等。K 值的选取主要是取决于测区内的成矿地质条件,还要考虑工作的目的和任务等。当测区内成矿地质条件良好,K 值应取小一些; 当成矿地质条件不好,K 值就要取大一些; 在初步普查阶段,主要是怕漏掉有找矿意义的异常,K 值要取小一些; 在详查阶段,主要是为避免混入非矿致异常,K 值就要取大一些。常用方法现以下面的实例来介绍确定背景值和异常下限的具体方法。在某铜矿区外围,采集了100 个土壤样品,Cu 分析结果及其对数值的统计结果见表7-1。如果 Cu 含量服从对数正态分布,试求出该区的背景值和异常下限。表7-1 Cu 分析结果及其对数结果(1)计算法直接计算法利用分析结果的对数值,直接求出其平均值:地球化学找矿方法式中: m 为不同分析结果的数目。本例的计算结果如下:地球化学找矿方法简化计算法这是为了突出地反映数据频率分布规律和简化运算时的计算方法。一般是按下列步骤和方法进行运算:第一步,将分析结果的对数值分成若干组。分组时,首先要根据数据本身的性质、变化范围和样本容量,以及样品分析和计算的精度,确定组数(n)和组距(l)。组数不宜过少或过多,一般以 5 ~7 组为宜,最多不能超过 15 ~20 组。要求每组平均不得少于 5 个数据,组距一般是在 lg(l/10- 6)=(1 ~ 5)之间。其次是确定分组的下界和上界,下界要小于数据中最低值; 上界要大于数据中最高值。上界与下界之差等于组距与组数之积。另外,确定上、下界时,应尽量使数据避开分组点的数值。第二步,将分组后的数据统计结果填入计算表内,其格式和内容见表7-2。表7-2 简化计算法分组后的统计结果第三步,利用下列公式求出分析结果对数值的平均值 和对数标准离差(σ):地球化学找矿方法本例计算结果为:地球化学找矿方法第四步,求背景值和异常下限:地球化学找矿方法TL= lg xg+ 2σ = 906 + 2 × 205 = 316查反对数表可得(10- 6): Co= 05; T = 70。(2)图解法第一步,将数据分组。第二步,将分组后的数据统计结果填入计算表内,其格式和内容见表7-3。表7-3 图解法分组后的数据统计结果第三步,编绘频率分布直方图,并以其绘制频率密度曲线。取一平面直角坐标系,以横坐标表示元素含量对数值(lgxi),并按此例标出下界、各分组点和上界。再以组距为底边,画一系列矩形,以矩形面积表示各组的频率(全部矩形面积之和为 100%),就得到频率分布直方图,再以其绘出频率密度曲线,如图 7 8所示。纵坐标表示的是频率分布密度,也就是频率与组距的比值。第四步,利用直方图求出众数对数值,再利用频率密度曲线求出含量对数标准离差。在直方图的最高的矩形内,连接 AC 和 BD,二者的交点所对应的横坐标就是众数对数值,再取频率密度曲线极大值(p)的 6 倍,作一平行横坐标轴的直线,其与频率密度曲线左翼的交点所对应的横坐标为 lgMo- σ,而与右翼的交点所对应的横坐标为 lgMo+ σ。则可求出含量对数标准离差。本例,求得 lgMo= 91,σ = 20。第五步,求出背景值和异常下限:取 Co= Mo,K =2,则TL= lgCo+ Kσ = 91 + 2 × 2 = 31查反对数表可得(10- 6): Co= 13; T = 42。图7-8 众数(Mo)与标准离差(σ)图解法示意图除上述图解法外,还可以利用累积频率图求出中位数对数值和含量对数标准离差,以中位数估计背景值,再求出异常下限。其步骤是: 第一步和第二步同上。第三步是绘制累积频率图。取一平面直角坐标系,以横坐标表示含量对数值,以纵坐标表示累积频率。再用组上限为横坐标,用该组对应的累积频率为纵坐标,依次绘出各坐标点的位置,最后用圆滑曲线将各点连接起来,就得到频率分布曲线(见图7-9)。如果采用概率格纸按上述方法绘图,则频率分布曲线展为直线(见图7-10)。第四步是利用频率分布曲线求出lgMe和 σ。频率分布曲线上累积频率为 50% 的点,所对应的横坐标为 lgMe,而累积频率为 9% ,1% 的点,所对应的横坐标为 lgMe- σ,lgMe+ σ。故可求出 σ。在图7 9和图 7 10 上求得:lgMe= 91; σ = 20。第五步是求出背景值和异常下限。本例求得(10- 6):Co= 13; T = 42。图7-9 中位数与标准离差图解法示意图图7-10 中位数与标准离差图解法示意图
从统计学的发展趋势谈统计教育的改革 摘要:要培养出新型的21世纪的人才,统计教育必须高瞻远瞩。本文从统计学的发展趋势谈了统计教育急需改革的几个方面。关键词:统计学;发展趋势;统计教育改革 随着国家创新体系的建立,统计创新工程已经提上议事日程
果是一种的话,请给出依据,比如有论 这么肯定好的事情
我给你发这份才完成好的,不要愁了
数据,,有,,
这个比较广泛,主流的分析方法有如下一些:回归分析方差分析协方差分析聚类分析判别分析卡方分析对数线性主成份分析因子分析对应分析logistic分析信度分析等等
基本原理微量元素在各种天然物质中的含量,一般是服从对数正态分布或正态分布的,这就是应用数理统计方法确定背景值和异常下限的理论根据。因此,只有确认测区内元素含量是属于或近似于对数正态分布或正态分布时,才能用数理统计方法来确定背累值和异常下限。根据背景值的概念,当元素含量是属于或近似于对数正态分布或正态分布时,背景值就可用样本的几何平均值(xg)或算术平均值(x),众数(Mo),中位数(Me)来估计。因为几何平均值或算术平均值受极大值和极小值的影响较大,虽然众数和中位数不受极大值和极小值的影响,但当数据集中趋势不明显时,众数就求不出来,并且也随数据分组不同而异。因此,在估计背景值时,一定要考虑样本的特征,选出其最佳估计值。当含量服从对数正态分布时,计算公式为地球化学找矿方法式中: TL为对数异常下限; σ 为元素含量的对数标准离差; Co为背景值; K 为常数。当元素含量服从正态分布时,计算公式为地球化学找矿方法K 值一般可定为 1 ~ 3。K 值愈小,异常值出现的可能性愈大; K 值愈大,异常值出现的可能性愈小。例如,当 K =1 时,异常出现的概率为 9% ; 当 K =2 时,异常出现的概率为 3% ; 而当 K =3 时,异常出现的概率为 1% ,等等。K 值的选取主要是取决于测区内的成矿地质条件,还要考虑工作的目的和任务等。当测区内成矿地质条件良好,K 值应取小一些; 当成矿地质条件不好,K 值就要取大一些; 在初步普查阶段,主要是怕漏掉有找矿意义的异常,K 值要取小一些; 在详查阶段,主要是为避免混入非矿致异常,K 值就要取大一些。常用方法现以下面的实例来介绍确定背景值和异常下限的具体方法。在某铜矿区外围,采集了100 个土壤样品,Cu 分析结果及其对数值的统计结果见表7-1。如果 Cu 含量服从对数正态分布,试求出该区的背景值和异常下限。表7-1 Cu 分析结果及其对数结果(1)计算法直接计算法利用分析结果的对数值,直接求出其平均值:地球化学找矿方法式中: m 为不同分析结果的数目。本例的计算结果如下:地球化学找矿方法简化计算法这是为了突出地反映数据频率分布规律和简化运算时的计算方法。一般是按下列步骤和方法进行运算:第一步,将分析结果的对数值分成若干组。分组时,首先要根据数据本身的性质、变化范围和样本容量,以及样品分析和计算的精度,确定组数(n)和组距(l)。组数不宜过少或过多,一般以 5 ~7 组为宜,最多不能超过 15 ~20 组。要求每组平均不得少于 5 个数据,组距一般是在 lg(l/10- 6)=(1 ~ 5)之间。其次是确定分组的下界和上界,下界要小于数据中最低值; 上界要大于数据中最高值。上界与下界之差等于组距与组数之积。另外,确定上、下界时,应尽量使数据避开分组点的数值。第二步,将分组后的数据统计结果填入计算表内,其格式和内容见表7-2。表7-2 简化计算法分组后的统计结果第三步,利用下列公式求出分析结果对数值的平均值 和对数标准离差(σ):地球化学找矿方法本例计算结果为:地球化学找矿方法第四步,求背景值和异常下限:地球化学找矿方法TL= lg xg+ 2σ = 906 + 2 × 205 = 316查反对数表可得(10- 6): Co= 05; T = 70。(2)图解法第一步,将数据分组。第二步,将分组后的数据统计结果填入计算表内,其格式和内容见表7-3。表7-3 图解法分组后的数据统计结果第三步,编绘频率分布直方图,并以其绘制频率密度曲线。取一平面直角坐标系,以横坐标表示元素含量对数值(lgxi),并按此例标出下界、各分组点和上界。再以组距为底边,画一系列矩形,以矩形面积表示各组的频率(全部矩形面积之和为 100%),就得到频率分布直方图,再以其绘出频率密度曲线,如图 7 8所示。纵坐标表示的是频率分布密度,也就是频率与组距的比值。第四步,利用直方图求出众数对数值,再利用频率密度曲线求出含量对数标准离差。在直方图的最高的矩形内,连接 AC 和 BD,二者的交点所对应的横坐标就是众数对数值,再取频率密度曲线极大值(p)的 6 倍,作一平行横坐标轴的直线,其与频率密度曲线左翼的交点所对应的横坐标为 lgMo- σ,而与右翼的交点所对应的横坐标为 lgMo+ σ。则可求出含量对数标准离差。本例,求得 lgMo= 91,σ = 20。第五步,求出背景值和异常下限:取 Co= Mo,K =2,则TL= lgCo+ Kσ = 91 + 2 × 2 = 31查反对数表可得(10- 6): Co= 13; T = 42。图7-8 众数(Mo)与标准离差(σ)图解法示意图除上述图解法外,还可以利用累积频率图求出中位数对数值和含量对数标准离差,以中位数估计背景值,再求出异常下限。其步骤是: 第一步和第二步同上。第三步是绘制累积频率图。取一平面直角坐标系,以横坐标表示含量对数值,以纵坐标表示累积频率。再用组上限为横坐标,用该组对应的累积频率为纵坐标,依次绘出各坐标点的位置,最后用圆滑曲线将各点连接起来,就得到频率分布曲线(见图7-9)。如果采用概率格纸按上述方法绘图,则频率分布曲线展为直线(见图7-10)。第四步是利用频率分布曲线求出lgMe和 σ。频率分布曲线上累积频率为 50% 的点,所对应的横坐标为 lgMe,而累积频率为 9% ,1% 的点,所对应的横坐标为 lgMe- σ,lgMe+ σ。故可求出 σ。在图7 9和图 7 10 上求得:lgMe= 91; σ = 20。第五步是求出背景值和异常下限。本例求得(10- 6):Co= 13; T = 42。图7-9 中位数与标准离差图解法示意图图7-10 中位数与标准离差图解法示意图
如果研究一个X或多个X对Y的影响关系,其中Y为定量数据,可使用线性回归分析,构建回归模型。如果研究一个X或多个X对Y的影响关系,其中Y为定类数据,可使用Logistic分析,构建Logistic回归模型。如果要分析1组X与一组Y之间的关系情况,可使用典型相关分析。如果要分析多个X与多个Y之间的影响关系情况,且样本量较小(通常小于200),可使用PLS回归分析。
双因素方差分析即可
有数理统计分析法和数理统计法两种概念,你看看是哪种。数理统计分析法(mathematical statistics method)是在矿床勘探中,用数理统计的原理研究勘探网度的一种方法。它在研究矿体形态和品位变化程度的基础上,根据预期探明储量的精度要求(即允许误差),计算出在一定的勘探地段面积内所需要的勘探工程数量,或每个勘探工程所控制的矿体面积。其计算式为:n=V2xP2;或s=SP2V2x,式中:n为在一定勘探地段面积内所需要的勘探工程数量;s为每个勘探工程所控制的矿体面积;S为已知矿化范围或选定的勘探地段的面积;P为储量的相对允许误差;Vx为勘探地段内矿体厚度或品位的变化系数。这种方法只能保证平均值具有给定精度,而对地质误差则未考虑,因此应用时要拥有足够的工程资料作计算依据,并结合地质情况加以分析。[数理统计法:数学的一门分支学科。它以概率论为基础运用统计学的方法对数据进行分析、研究导出其概念规律性(即统计规律)。它主要研究随机现象中局部(字样)与整体(母体)之间。以及各有关因素之间相互联系的规律性。它主要是利用样本的平均数、标准差、标准误、变异系数率、均方、检验推断、相关、回归、聚类分析、判别分析、主成分分析、正交试验、模糊数学和灰色系统理论等有关统计量的计算来对实验所取得的数据和测量、调查所获得的数据进行有关分6f研究得到所需结果的一种科学方法。它要求具有随机性,而且数据必须真实可靠,这是进行定量分析的基础。这种方法不可借助计算机来进行,亦更能达到快速、准确和实施大量计算的目的。
OK ,没、问、题、我、提、供。