首页 > 期刊投稿知识库 > 关于智能公交的毕业论文

关于智能公交的毕业论文

发布时间:

关于智能公交的毕业论文

智能公共交通系统在中国城市的应用及发展趋势摘要:智能交通系统是目前国内外公认的解决城市交通拥堵问题的重要途径之一,也是费效比最显著的途径.作为国内城市交通系统最重要组成部分之一的公共交通系统,近年来开始出现了大量智能公共交通系统方面的应用尝试.对我国目前城市投入应用的智能公共交通系统(APTS)的应用状况进行了分析,并根据我国当前国情,分析了我国智能公交系统未来可能的应用方向,提出了对智能公共交通系统改进的技术趋势分析.关键词:智能公共交通系统;GPS;IC卡;应用0引言我国是发展中国家,虽然近20年来始终保持了经济的高速增长,但是与西方发达国家相比,在城市基础设施尤其是公共交通基础设施方面,依然存在着很大的差距.同时近年来随着我国城镇化水平的快速提高,城镇人口数量在急剧增加.此外,我国的城镇化时期恰好又伴随着机动化,这必然造成有限的城市道路空间与巨大的机动车增长之间的冲突,给本来就非常拥堵的城市交通增加了更大的压力.从世界范围来看城市交通的发展,几十年来世界各工业化国家城市机动交通的发展历程,大都走过了先发展小汽车,后控制小汽车,最终选择发展大公交的曲折道路.我国土地资源稀缺,城市人口密集,群众收入水平总体不高,优先发展城市公共交通更是我们的现实选择.近年来,我国各个主要城市在常规公交设施方面投资较大,城市公交运力得以快速增加,万人公交车辆拥有量由2001年的6.1辆增长到2004年的8.4辆.但是城市公共交通客运量并没有相应大幅度提高,部分城市呈现下降趋势.在出行方式结构方面,我国主要大城市公共交通基本呈现下降趋势,公交客运量和运力的比值均在下降,运力的增加不一定带来运量的增加.如图1所示,我国主要大城市历年公交运量Π公交运力比值都出现了大幅度下降[1].当前,城市居民对公共交通系统最大的不满主要就是公交服务水平低,例如公交出行速度慢、舒适性差、换乘困难等方面.在传统公交系统建设模式下,改善上述问题需要巨额建设经费的支持,其建设成效还要受到城市交通整体环境的影响.与之相对应,智能公共交通系统则是实现“公交优先”的最有效的途径之一.所谓智能公共交通系统,就是在公交网络分配、公交调度等关键理论研究的前提下,利用系统工程的理论和方法,将现代通信、信息、电子、控制、计算机、网络、GPS、GIS等新技术集成应用于公共交通系统,通过构建现代化的信息管理系统和控制调度模式,实现公共交通调度、运营、管理的信息化、现代化和智能化,为出行者提供更加安全、舒适、便捷的公共交通服务,从而吸引公交出行,缓解城市交通拥挤,有效解决城市交通问题,创造更大的社会和经济效益[2].1国内智能公共交通管理系统的应用现状智能公共交通系统作为智能交通系统重要的子系统之一,在我国“十五”科技攻关的智能交通系图1我国主要城市历年常规公交运量Π公交运力比值变化图Fig.1The ratio of Urban passenger carrying amount andtransit capacity in cites of China统(ITS)城市示范中,北京市、上海市、青岛市、杭州市、重庆市等多个城市的ITS建设示范中都包括了智能公共交通系统的内容.将其作为缓解城市交通拥堵、提高城市公共交通服务水平的重要途径.当前我国城市智能公共交通系统方面的应用,主要集中在如下几个领域中[3].1.1公交车辆智能调度系统国内城市对智能公共交通系统的探索实践是从公交车辆的定位监控开始的.到目前,多数进行ITS建设的城市其公交监控系统都已经从早期纯粹的公交车辆定位调度系统扩展升级为以公交车辆定位为基础,结合公交地理信息平台(GIS-T)、通信系统实施监控调度的智能调度系统.在公交车辆定位及监控调度系统的建设中,北京市作为我国的首都走在了建设实践的前面.北京公交ITS示范工程于1999年投入运行,首次投入运行的装有先进的车载卫星定位系统和无线通讯装置的车辆约为300多辆.除北京以外,国内上海、杭州、南京、深圳、成都、中山、包头等众多城市也都先后建成了公交车辆定位及监控调度系统.基本都实现了利用GPS系统定位功能,与电子地图相结合,实现了公交车辆的实时跟踪,并进一步确保了信息发布、车辆调度、车辆紧急救援报警等功能的实现.1.2公交IC卡系统公交IC卡系统,是近年来中国智能公共交通系统方面一个成效显著、应用范围迅速扩展的系统.目前,公交IC卡售票系统已经在国内大量城市得到了应用,北京、上海、南京、杭州、重庆、青岛、广州、宁波、常州等城市的公交企业都结合本城市的公共交通特性,有针对性的建设了公交IC卡售票系统.近年来,中国城市公交IC卡系统的应用趋势是走向通用化,实现公交、地铁、轨道、轮渡、出租车都能够通用的公交IC“一卡通”.在利用公交IC卡系统促进居民采用公交出行,实现“公交优先”方面,北京市近期在城市公交IC卡应用方面取得了较为理想的成绩.在北京市公交系统实行公交IC卡4折优惠后,北京市公交IC卡用户实现了飞速增长.自2007年年初,北京市的公交运送量比以前增加10%,目前每天公交客流增加量约达112万人次.1.3公共交通信息服务系统近几年,随着智能公共交通系统和互联网的建设,我国城市的公交信息服务已经得到了快速发展.目前公交信息服务系统应用状况,基本呈现如下特点:(1)公交服务网站成为城市最重要的公交信息服务模式.在国内的大型城市及经济发达区域的中型城市中,城市公交企业基本都建立了自己的公交服务网站.其中,以北京市、杭州市、南京市等为代表的城市公交服务网站采用了以GIS平台为基础的WEB服务模式,能够进行换乘查询等服务.(2)电子站牌应用规模开始扩大.国内一批积极进行智能公交系统建设的城市,在实现了公交车辆的实时监控后,开始将公交车辆信息通过电子站牌提供给公交乘客.电子站牌除了常规站牌的内容外,还可以显示下一班公交车辆的预计到站时间、以及线路上公交车辆当前所在位置等动态公交信息.(3)公交车载信息服务系统投入实用化应用.国内包括北京市、上海市、深圳市、青岛市等多个城市的公交企业在车辆上安装了车载信息系统,通过液晶显示器和音响系统可以进行播放多种信息,播放的信息内容通常包括新闻、广告、娱乐节目等.由于可以通过广告资源的置换获得系统设备的建设投资,目前各城市车载信息服务系统已经走上良性循环,进入实用化应用阶段.1.4城市交通综合信息平台对于城市的ITS而言,涉及到公安交通管理、交通、规划、公交、货运、市政管理等多个部门的职能范围,每一个部门既是ITS的数据源,又是其它部门数据以及在多部门数据之上进行综合性加工处理所得到信息的需求者.只有各相关部门协调配合、协同行动起来,在一定的机制和技术手段下充分实现部门间的信息共享,城市ITS才可能顺利建设和发展,ITS才能真正在提高城市交通管理与服务水平,提高城市交通系统运行效率,缓解交通拥堵,站在城市大交通的高度提供科学的决策支持等方面发挥应有的作用.基于上述考虑,提出了建设城市智能交通共用信息平台的思想,并且随着我国ITS建设的深入进行,这种思想已经逐步获得了我国ITS业界的广泛认同.国家“十五”科技攻关期间,十个ITS示范城市已经不约而同地明确提出要建设城市交通共用信息平台.其中广州市、天津市、北京市、济南市等城市的共用信息平台建设列为“十五”智能交通系统应用试点示范工程.2中国城市智能公共交通系统发展的趋势展望随着城市交通管理、公共交通信息水平的快速提高,我国的城市智能交通系统获得了难得的飞跃发展良机.未来我国城市智能公交系统发展趋势,将以信息化、实时化为核心,以“人性化”为宗旨,智能公交系统的完善将从如下几个方面展开.2.1建设完善的智能公交调度系统(1)建立基于城市公交系统通行能力约束的智能公交调度模型.城市公共交通通行能力是指在城市规定的交通条件、道路条件及人为度量标准时间内能通过的最大公交车辆数量或者乘客人数.公交通行能力是在一定条件下,公交设施所能够通过公交车辆和乘客的极限数值,它是动态的服务能力而不是静态的数量[4,7,8].当城市路网中运营的公交车辆超过公交设施的通行能力时,由于公交车辆彼此的互相干扰、以及公交车辆与社会车辆的行驶冲突,公交车辆行驶的速度反而会降低.这样即使公交企业增加了公交车辆的营运班次,但是公交服务水平反而将下降,同时公交企业的经济效益也受到影响.因此,必须建立基于城市公交系统通行能力约束的智能公交调度模型.公交通行能力各相关要素的关系如图2所示.(2)结合道路交通状况,建立公交服务水平的动态评价模型.城市公共交通系统是在城市整体道路网络中运营的系统,因此其运营必然受到城市路网状况的影响.我国城市智能公交调度系统在进一步的建设完善中,必须充分考虑城市交通系统对公交系统的影响.利用智能公交调度系统的公交车辆定位、行程时间预测、道路公交饱和度等数据,结合道路交通状况,将可以建立针对公交服务水平的动态评价模型.使得公交企业可以实时评估公交系统的运营状态,根据企业的运营服务目标调整公交车辆调度计划.此外,还能够通过对公交运营数据统计和分析,实现城市规划层面、设计层面对公交系统的调整和优化[10,11].(3)根据公交客流量的需求状况,建立自动化的公交调度模式.车载客流量检测器技术的完善和公交IC卡数据实时采集技术的实现,使得未来的城市智能公交调度系统可以利用客流量检测器及数据融合技术,实时监控城市居民公交的出行状况,并对城市居民未来的公交出行需求进行动态预测.以此为基础,建立自动化的公交调度机制,将实现智能公交调度系统对公交车辆调度计划的自主调整和优化.(4)将智能公交系统的建设、运营与城市规划紧密结合起来实施.目前国内城市投入使用的智能公交调度系统往往都是在现有传统公交设施基础上改建实施的系统,系统的使用、维护都存在着不尽如人意的不足.只有从城市规划的环节就开始考虑智能公交系统的建设,以及智能公交系统未来的运营,才能为智能公交系统的建设奠定良好的基础,才能真正把智能公交系统的建设放于优先的位置,才能避免智能公交各分系统之间重复建设或者相互干扰的问题,才能使得智能公交系统能够真正有效的发挥作用.(5)将MIS系统与智能公交调度系统进行整合.目前,国内公交企业由于其历史原因,开发的公交信息系统分步建设、独立运行的现象尤为突出.为了有效的整合公交企业的信息资源,使得其充分发挥作用,迫切需要建立一个综合性管理信息系统(MIS).并且将MIS系统与公交企业的智能公交调度系统整合起来.管理信息系统MIS(management information sys2tem)是企业的信息系统,它具备数据处理、计划、控制、预测和辅助决策功能,是一个覆盖了整个公交企业各相关部门的信息智能化管理系统.通过建设公交企业MIS系统,建立高质量、高效率的企业信息管理网络,为领导决策和内部管理、办公提供服务,实现企业办公自动化、管理现代化、信息资源化、传输网络化和决策科学化.MIS系统将使得公交企业能够充分发掘、利用自身的信息资源,同时可以将通过城市交通共用信息平台获得的其他部门的信息,经过处理、分析后获得更有价值的辅助决策信息.2.2公交IC卡系统的拓展公交IC卡系统在公交票务服务方面目前已经相对较为完善,未来其应用趋势将集中到如下的两个方面:(1)实现公交IC卡在经济带、都市圈的一体化运营.目前,我国经济建设的一个重要趋势就是经济的区域化发展,各城市都高度重视与周边城市的区域经济、交通联系,形成了长三角、珠三角、京津冀经济圈、长江中游经济圈、环渤海湾经济圈等都市经济圈.在经济圈、都市圈范围内实现公交IC卡的通用,已经成为各地公共交通系统未来建设的目标.(2)实现公交IC卡数据的有效应用.公交IC卡的应用,将能够为公交客流调查提供了一种新的手段.公交IC卡在方便地完成乘车收费的同时,还可记录下乘客使用IC卡的时间、车次、站点等信息.这些信息真实、准确地反映城市居民的公交出行状况,是公交最重要的原始资料.通过对IC卡数据的统计分析,能够得到公交出行的统计和预测数据.2.3建设人性化、智能化的公共交通信息服务系统未来的城市公共交通信息服务系统将向着“人性化、智能化”的方向进行建设.新时代的公交信息服务系统其核心将围绕着公交实时数据的处理及多源数据的数据融合展开,主要将呈现如下的发展趋势:(1)将公交信息服务模式从以静态信息为主的状态,转变为以实时信息为数据基础的动态信息服务.利用城市智能交通系统的多源动态信息,未来的公交信息服务将实现以实时信息为数据基础的动态信息服务.动态公交信息服务其本质是将实时的公交信息经过处理,预测出公交系统未来的运营趋势,将动态的公交运营信息提供给乘客.(2)实现多种公交运输方式信息资源的融合,使得城市居民可以通过公交信息服务制订有效的出行计划.目前城市的公交、地铁、机场、轮渡、铁路等相关部门的信息服务处于各自独立运行的状态.通过建设城市交通共用信息平台,将有望实现多种公交运输方式信息资源的融合.以此为契机,智能公交信息服务将能够为出行者制订完整的出行计划,实现市域范围、甚至区域范围内乘客的高效、有计划地出行.(3)从被动式公交信息服务为主,转变为以主动式公交信息服务为主.除了传统的公交信息服务模式,例如公交信息网站、公交电子站牌、公交热线服务电话、电台广播等以外,未来智能公交信息服务系统将向乘客自主式信息服务模式发展.通过乘客与公交信息服务系统的人机对话,乘客能够及时、准确地获取个人最需要获取的信息.服务模式将包括手机WAPΠGPRSΠCDMA网络公交信息服务、手机公交短信信息服务、PDA信息终端公交信息服务等模式.2.4实现大范围、大规模运营的公交车辆区域调度公交区域调度,国外又称网络调度或线间调度,是指在一定地域的范围内、原来各自独立运营线路上的车辆、人员,通过一定的技术手段和管理组织协调起来共同运营,以达到资源的最有效配置和充分利用的一种组织模式.区域调度模式是基于运量平衡思想提出的,由于公交客流存在着方向、时间上的不均衡性,因此,可通过不同线路间运力的动态组合,实现车辆运量的均衡,从而最大限度地节省运营车辆总数和司乘人员总数,提高公交车辆的利用率和司乘人员的劳动效率[6].区域调度是面向任务,而非面向线路的调度模式[9].公交区域调度是国外大城市普遍采用的、高效率的调度模式.随着我国智能公共交通管理系统的建设和城市道路交通条件的进一步改善,国内城市公交企业传统的线路调度模式必将为区域调度模式所取代.图3即是多车场公交区域调度的模式图.通常情况下,多车场调度优化模型采用系统总“空驶”距离最短,即“空跑”成本最小的模型.在智能公交调度系统中,还将增加可区域调度的公交车辆行驶状况及车辆空驶时间等约束条件.区域调度优化模型为3结束语本文以我国当前城市交通“公交优先”的建设目标为契机,首先对我国当前城市智能公交系统———包括智能公交车辆调度系统、IC卡售票系统、公共交通信息服务系统和城市共用信息平台系统的技术发展状况及应用规模情况进行了简要的分析.并针对当前国内智能公交系统存在的不足,提出了未来在城市智能公交系统(APTS)快速建设的发展环境下,智能公交系统发展的趋势.根据城市公共交通系统信息化、自动化、智能化的发展方向,提出了未来城市智能公共交通系统(APTS)的发展趋势及各自的建设目标.参考文献:[1]城市智能公共交通管理系统研究[R].北京:中国城市规划设计研究院,2006.[The Research of Urban In2telligent Public Transport Management System[R].Bei2jing:China Academy of Urban Planning and Design,2006.][2]杨兆升.城市智能公共交通系统理论与方法[M].北京:中国铁道出版社,2004.[YANG Zhao2sheng.TheTheoretics and Method of Urban Intelligent Tansit Manage2ment System[M].Beijing:China Railway PublishingHouse,2004.]

直接下载Microscopic traffic simulation: A tool for the design, analysis and evaluation of intelligent transport systemsJ Barcelo, E Codina, J Casas, JL Ferrer - Journal of Intelligent & , 2005 of possibilities and proposals of intelligent transport system (ITS) implementation in LithuaniaA Jarašūniene - Transport, 2006

交通运输企业作为国民经济的重要参与主体。下文是我为大家整理的关于交通运输毕业论文的范文,欢迎大家阅读参考!

浅析公路交通运输

【摘要】在中国东部铁路和水运都较发达的地区,公路起着辅助运输作用,承担短途运输;在西南和西北地区则担负着干线运输的任务。公路运输随着治超的深入以及降低大吨位车辆路桥通行费等政策措施的落实,运价水平回落,货运量将保持较快的增长,运输市场将出现供大于求的局面。

【关键词】公路运输;运输特点;运输前景

纵观中国运输现状,各种运输方式发展势头迅猛,公路运输在中国仍发挥着不可磨灭的作用。我国公路在客运量、货运量、客运周转量等方面均遥遥领先于其他运输方式的总和。

一、公路运输的地位和作用

公路运输在整个交通运输业中处于基础地位并发挥以下作用:

(1)公路运输机动灵活、快速直达,是最便捷也是唯一(管道运输除外)具有送达功能的运输方式。

(2)其它运输方式组织运输生产,需要公路运输提供集疏运输的条件。

(3)公路运输覆盖面广。

(4)随着公路等级的逐步提高,公路客货运量在综合运输体系中所占的比重不断提高。

(5)半个世纪以来,公路运输是世界各国各种运输方式中发展最快的一种,现已成为许多国家最主要的运输方式。例如:我国汽车保有量逐年增加。

二、公路运输的特点

1.机动灵活,适应性强:由于公路运输网一般比铁路、水路网的密度要大十几倍,分布面也广,因此公路运输车辆可以“无处不到、无时不有”。公路运输在时间方面的机动性也比较大,车辆可随时调度、装运,各环节之间的衔接时间较短。尤其是公路运输对客、货运量的多少具有很强的适应性,汽车的载重吨位有小(0.25t~1t左右)有大(200t~300t左右),既可以单个车辆独立运输,也可以由若干车辆组成车队同时运输,这一点对抢险、救灾工作和军事运输具有特别重要的意义。

2.可实现“门到门”直达运输:由于汽车体积较小,中途一般也不需要换装,除了可沿分布较广的路网运行外,还可离开路网深入到工厂企业、农村田间、城市居民住宅等地,即可以把旅客和货物从始发地门口直接运送到目的地门口,实现“门到门”直达运输。这是其它运输方式无法与公路运输比拟的特点之一。

3.在中、短途运输中,运送速度较快:在中、短途运输中,由于公路运输可以实现“门到门”直达运输,中途不需要倒运、转乘就可以直接将客货运达目的地,因此,与其它运输方式相比,其客、货在途时间较短,运送速度较快。

4.原始投资少,资金周转快:公路运输与铁、水、航运输方式相比,所需固定设施简单,车辆购置费用一般也比较低,因此,投资兴办容易,投资回收期短。据有关资料表明,在正常经营情况下,公路运输的投资每年可周转1~3次,而铁路运输则需要3~4年才能周转一次。

5.掌握车辆驾驶技术较易:与火车司机或飞机驾驶员的培训要求来说,汽车驾驶技术比较容易掌握,对驾驶员的各方面素质要求相对也比较低。

6.运量较小,运输成本较高:目前,世界上最大的汽车是美国通用汽车公司生产的矿用自卸车,长20多米,自重610t,载重350t左右,但仍比火车、轮船少得多;由于汽车载重量小,行驶阻力比铁路大9~14倍,所消耗的燃料又是价格较高的液体汽油或柴油,因此,除了航空运输,就是汽车运输成本最高了。

7.运行持续性较差:据有关统计资料表明,在各种现代运输方式中,公路的平均运距是最短的,运行持续性较差。如我国1998年公路平均运距客运为55km,货运为57km,铁路客运为395km,货运为764km。

8.安全性较低,污染环境较大:据历史记载,自汽车诞生以来,已经吞吃掉3000多万人的生命,特别是20世纪90年代开始,死于汽车交通事故的人数急剧增加,平均每年达50多万。这个数字超过了艾滋病、战争和结核病人每年的死亡人数。汽车所排出的尾气和引起的噪声也严重地威胁着人类的健康,是大城市环境污染的最大污染源之一。

三、公路运输的现状

我国传统的公路运输业经过几十年的发展,已经初具规模。在总体规模、运力、运量和服务质量等方面都达到一定的水准。在计划经济时代,传统的公路运输业比较能适应社会经济对公路运输业的要求,对过去我国国民经济的发展做出过重要贡献。但是,随着我国改革开放的逐渐深入和社会主义市场经济体制的不断建立,脱胎于计划经济时代的传统公路运输企业已经越来越不能适应新形势下社会经济发展的需要,其内在的弊端也逐渐显现出来。目前我国传统的公路运输业主要面临以下几个方面的问题:

1.在行业管理上,由于公路运输行业的市场准入门槛很低,因此公路运输行业出现了运输企业“规模小、数量多、管理混乱”的状况。这种各自为战、过度竞争的情况,使得公路运输企业通常达不到经济运营规模,形不成规模优势,这严重影响了公路运输的健康发展。

2.在经营管理理念上,传统的公路运输企业中有很大一部分还没有针对新的经济环境及时改变经营观点、转变经营方式。企业所追求的仍然是吨公里、实载率等传统指标的完成情况,仅为客户提供低层次、低水平的运输服务。在市场恶性竞争、无序经营盛行的情况下,公路运输企业的经营步履艰难。

3.在企业管理手段上,传统公路运输企业目前还停留在纸面操作的阶段,大部分的运输企业尚未应用先进的计算机管理系统,因此,所提供运输服务在及时性、准确性、可靠性及多样性等方面都处在较低水平。

四、公路运输发展趋势

1.随着高速公路及汽车专用公路建成使用,加大开展公路快速客、货运业务是趋势。

2.随着公路网的完善,按规模化要求建立集约化经营的运输企业在这过程中,行政区域的界限将趋于淡化。

3.公路运输将纳入物流服务业发展系统中,将进一步加强专业化原则上的合作,包括不同运输方式之间的合作与服务对象的合作。

4.在运输管理方面将采用车辆运行动态监控系统以及车辆运行自动记录仪。

5.运输组织方式按生产水平分层发展。在公路通行条件好、客货流量大的公路上按现代企业制度的要求建立规模化、集约化经营的运输企业。

6.逐步加强运输规划,是公路建设及运输站场设施的配置与客货流规律更好地协调起来。

【参考文献】

[1]王俊.公路交通运输浅析.2012,(07).

[2]王瑜.交通运输业技能发展及创新轨迹.2012,(08).

[3]曹红阳.交通运输评估与对策.2011,(02).

浅谈智能交通运输系统       一、智能交通运输系统的概念

智能交通运输系统(ITS)是将先进的信息技术、通讯技术、传感技术、控制技术以及计算机技术等有效地集成运用于整个交通运输管理体系,而建立起的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合的运输和管理系统。该系统将采集到的各种道路交通及服务信息经交通管理中心集中处理后,传输到公路运输系统的各个用户(驾驶员、居民、警察局、停车场、运输公司、医院、救护排障等部门),出行者可时时选择交通方式和交通路线;交通管理部门可自动进行合理的交通疏导、控制和事故处理;运输部门可随时掌握车辆的运行情况,进行合理调度。从而,使路网上的交通流运行处于最佳状态,改善交通拥挤和阻塞,最大限度地提高路网的通行能力,提高整个公路运输系统的机动性、安全性和生产效率。

二、智能交通系统的发展及内涵

20世纪80年代,各发达国家虽然已经基本建成了四通八达的现代化国家道路网,但是随着经济的发展,各国路网通行能力日益满足不了快速增长的交通需求,交通拥挤、交通事故、环境污染以及能源短缺等交通问题是世界各国面临的共性问题,无论是发达国家还是发展中国家,都遭遇不同程度交通问题的困扰。在发达国家工业化进程中,最初解决交通问题的传统办法是修建道路,扩大路网规模来满足人民日益增长的交通需求。但无论是发达国家还是发展中国家,由于土地资源日益紧张,用来修建道路的空间越来越小。与此同时交通在快速发展过程中带来的负效应日益显现,面对这些交通问题,能否找到一种有效途径解决以上交通问题,降低经济损失,提高交通运营的效率和安全是发达国家最先研究智能交通系统的主要动机。通讯、控制、信息技术等先进技术的产生为智能交通系统的产生提供了有力的技术支撑。用高新技术改造传统产业,提高交通运输整体效率和水平,已经成为各国共识。

1.美国。

注重ITS安全设施建设,根据本国交通基础设施特点和实际需要,已建立起相对完善的车队管理、公交出行信息、电子收费和交通需求管理四大系统及多个子系统及技术规范标准。“9.11”恐怖事件引发了美国政府和交通界人士反思,认为ITS应该而且能够有效预防恐怖袭击,加强基础设施和出行者安全并可用于评价灾难程度与加快交通恢复,实现快速疏散和隔离。因此,美国ITS今后建设趋势之一就是研究ITS在美国安全体系中维护地面交通安全作用,重点集中在安全防御、用户服务、系统性能和交通安全管理方面。

2.日本。

注重ITS诱导设施建设,建设组织以丰田公司为首的25家公司联合研发自动公路系统(AHS)。近几年,日本还投入15亿日元开发全国公路电子地图系统,打开了车辆电子导航市场,已有近400万套车内导航系统在市场上应用。日本的ITS建设主要集中在交通信息提供、电子收费、公共交通、商业车辆管理及紧急车辆优先等方面。

3.欧洲。

注重构建ITS基础平台,ITS建设进展介于日本和美国之间。目前正在全面应用开发远程信息处理技术,计划在全欧洲建立专门交通(以道路交通为主)无线数据通信网,ITS的主要功能和交通管理、导航和电子收费等都围绕远程信息处理技术及全欧洲无线数据通信网来实现。目前,开发先进的旅行信息系统(ATIS)、车辆控制系统(AVCS)、商业车辆运行系统(ACVO)、电子收费系统等方面。

从以上发达国家智能交通产生的过程,我们可以看出:智能交通系统的产生是历史发展的产物,它是经济与技术发展在交通运输领域的融合体现。它的发展离不开经济促进,离不开技术支撑体系,智能交通的最终目标是促进交通运输的高效、安全、舒适、可持续发展。

三、智能交通运输系统的应用

目前世界上应用智能交通系统最为广泛的是日本,日本的VICS系统已经达到了相当完善和成熟的阶段。美国、欧洲等地区的智能交通系统也已经广泛普及应用。

1.省际公路(高速公路)交通管理。

省际公路交通管理主要包括国道、省道等城市之间的普通公路及高速公路管理系统。目前省际公路交通管理主要应用的系统为“国家高速公路联网不停车收费和服务系统(ETC)”,简称不停车收费系统。将来,ETC系统将在区域甚至全国进行联网。

2.城市道路交通管理。

城市道路管理系统中还包括信号灯控制系统、路况指示系统、车牌识别系统、道路视频监控系统等。

信号灯控制系统和路况指示牌主要帮助管理部门和车辆更了解所处的路况条件,以便进行最合理的道路管理和道路选择,提高道路运输的效率;车牌识别系统和道路视频监控系统除提高道路运输效率外,还对城市治安监控起到一定的作用;道路视频监控系统是以上系统中只用最为广泛的系统,在众多城市的“平安城市”建设中,道路视频监控已经被纳入建设范围。

3.城市公共交通管理。

城市智能公交系统是主要针对城市内部公共交通的指挥、管理、调度、应急等方面智能系统。城市智能公交系统主要实现对城市公共交通线路、车站、车辆的全面监控。通过各种辅助设备预知并合理调度公交资源,优化公交系统,并与道路交通管理系统进行协作,实现既定的城市交通策略。如,北京奥运期间通过GPS对公交车定位和信号灯遥控系统协作,实施“公交优先”的交通策略。

4.高速铁路交通系统管理。

高速铁路信息化数字化系统,也称高速铁路智能化系统,主要包括五个系统:通信系统、信号系统、电力系统、电气化系统和信息系统。

四、小结

智能交通系统是全面应用信息技术的一个交通运输发展领域。智能交通系统的建设绝不仅仅是各种先进的电子系统的堆积,而应该大力强调信息在智能交通建设中的核心作用,紧紧围绕信息这个核心,强化对公路、城市道路、公共交通和轨道交通设施的管理,实现更安全、更便捷、更有效、与环境更协调的客货运输。

参考文献:

[1]杜一萍,智能交通运输系统综述[J].江苏省交通科学研究院,2001.5

[2]魏明、龚家传,智能交通运输系统及其发展现状[J].贵州大学学报(农业与生物科学版),2002年第5期

城市智能公交毕业论文

这得根据你们学院给的毕业论文要求啊。。。

智能公共交通系统在中国城市的应用及发展趋势摘要:智能交通系统是目前国内外公认的解决城市交通拥堵问题的重要途径之一,也是费效比最显著的途径.作为国内城市交通系统最重要组成部分之一的公共交通系统,近年来开始出现了大量智能公共交通系统方面的应用尝试.对我国目前城市投入应用的智能公共交通系统(APTS)的应用状况进行了分析,并根据我国当前国情,分析了我国智能公交系统未来可能的应用方向,提出了对智能公共交通系统改进的技术趋势分析.关键词:智能公共交通系统;GPS;IC卡;应用0引言我国是发展中国家,虽然近20年来始终保持了经济的高速增长,但是与西方发达国家相比,在城市基础设施尤其是公共交通基础设施方面,依然存在着很大的差距.同时近年来随着我国城镇化水平的快速提高,城镇人口数量在急剧增加.此外,我国的城镇化时期恰好又伴随着机动化,这必然造成有限的城市道路空间与巨大的机动车增长之间的冲突,给本来就非常拥堵的城市交通增加了更大的压力.从世界范围来看城市交通的发展,几十年来世界各工业化国家城市机动交通的发展历程,大都走过了先发展小汽车,后控制小汽车,最终选择发展大公交的曲折道路.我国土地资源稀缺,城市人口密集,群众收入水平总体不高,优先发展城市公共交通更是我们的现实选择.近年来,我国各个主要城市在常规公交设施方面投资较大,城市公交运力得以快速增加,万人公交车辆拥有量由2001年的6.1辆增长到2004年的8.4辆.但是城市公共交通客运量并没有相应大幅度提高,部分城市呈现下降趋势.在出行方式结构方面,我国主要大城市公共交通基本呈现下降趋势,公交客运量和运力的比值均在下降,运力的增加不一定带来运量的增加.如图1所示,我国主要大城市历年公交运量Π公交运力比值都出现了大幅度下降[1].当前,城市居民对公共交通系统最大的不满主要就是公交服务水平低,例如公交出行速度慢、舒适性差、换乘困难等方面.在传统公交系统建设模式下,改善上述问题需要巨额建设经费的支持,其建设成效还要受到城市交通整体环境的影响.与之相对应,智能公共交通系统则是实现“公交优先”的最有效的途径之一.所谓智能公共交通系统,就是在公交网络分配、公交调度等关键理论研究的前提下,利用系统工程的理论和方法,将现代通信、信息、电子、控制、计算机、网络、GPS、GIS等新技术集成应用于公共交通系统,通过构建现代化的信息管理系统和控制调度模式,实现公共交通调度、运营、管理的信息化、现代化和智能化,为出行者提供更加安全、舒适、便捷的公共交通服务,从而吸引公交出行,缓解城市交通拥挤,有效解决城市交通问题,创造更大的社会和经济效益[2].1国内智能公共交通管理系统的应用现状智能公共交通系统作为智能交通系统重要的子系统之一,在我国“十五”科技攻关的智能交通系图1我国主要城市历年常规公交运量Π公交运力比值变化图Fig.1The ratio of Urban passenger carrying amount andtransit capacity in cites of China统(ITS)城市示范中,北京市、上海市、青岛市、杭州市、重庆市等多个城市的ITS建设示范中都包括了智能公共交通系统的内容.将其作为缓解城市交通拥堵、提高城市公共交通服务水平的重要途径.当前我国城市智能公共交通系统方面的应用,主要集中在如下几个领域中[3].1.1公交车辆智能调度系统国内城市对智能公共交通系统的探索实践是从公交车辆的定位监控开始的.到目前,多数进行ITS建设的城市其公交监控系统都已经从早期纯粹的公交车辆定位调度系统扩展升级为以公交车辆定位为基础,结合公交地理信息平台(GIS-T)、通信系统实施监控调度的智能调度系统.在公交车辆定位及监控调度系统的建设中,北京市作为我国的首都走在了建设实践的前面.北京公交ITS示范工程于1999年投入运行,首次投入运行的装有先进的车载卫星定位系统和无线通讯装置的车辆约为300多辆.除北京以外,国内上海、杭州、南京、深圳、成都、中山、包头等众多城市也都先后建成了公交车辆定位及监控调度系统.基本都实现了利用GPS系统定位功能,与电子地图相结合,实现了公交车辆的实时跟踪,并进一步确保了信息发布、车辆调度、车辆紧急救援报警等功能的实现.1.2公交IC卡系统公交IC卡系统,是近年来中国智能公共交通系统方面一个成效显著、应用范围迅速扩展的系统.目前,公交IC卡售票系统已经在国内大量城市得到了应用,北京、上海、南京、杭州、重庆、青岛、广州、宁波、常州等城市的公交企业都结合本城市的公共交通特性,有针对性的建设了公交IC卡售票系统.近年来,中国城市公交IC卡系统的应用趋势是走向通用化,实现公交、地铁、轨道、轮渡、出租车都能够通用的公交IC“一卡通”.在利用公交IC卡系统促进居民采用公交出行,实现“公交优先”方面,北京市近期在城市公交IC卡应用方面取得了较为理想的成绩.在北京市公交系统实行公交IC卡4折优惠后,北京市公交IC卡用户实现了飞速增长.自2007年年初,北京市的公交运送量比以前增加10%,目前每天公交客流增加量约达112万人次.1.3公共交通信息服务系统近几年,随着智能公共交通系统和互联网的建设,我国城市的公交信息服务已经得到了快速发展.目前公交信息服务系统应用状况,基本呈现如下特点:(1)公交服务网站成为城市最重要的公交信息服务模式.在国内的大型城市及经济发达区域的中型城市中,城市公交企业基本都建立了自己的公交服务网站.其中,以北京市、杭州市、南京市等为代表的城市公交服务网站采用了以GIS平台为基础的WEB服务模式,能够进行换乘查询等服务.(2)电子站牌应用规模开始扩大.国内一批积极进行智能公交系统建设的城市,在实现了公交车辆的实时监控后,开始将公交车辆信息通过电子站牌提供给公交乘客.电子站牌除了常规站牌的内容外,还可以显示下一班公交车辆的预计到站时间、以及线路上公交车辆当前所在位置等动态公交信息.(3)公交车载信息服务系统投入实用化应用.国内包括北京市、上海市、深圳市、青岛市等多个城市的公交企业在车辆上安装了车载信息系统,通过液晶显示器和音响系统可以进行播放多种信息,播放的信息内容通常包括新闻、广告、娱乐节目等.由于可以通过广告资源的置换获得系统设备的建设投资,目前各城市车载信息服务系统已经走上良性循环,进入实用化应用阶段.1.4城市交通综合信息平台对于城市的ITS而言,涉及到公安交通管理、交通、规划、公交、货运、市政管理等多个部门的职能范围,每一个部门既是ITS的数据源,又是其它部门数据以及在多部门数据之上进行综合性加工处理所得到信息的需求者.只有各相关部门协调配合、协同行动起来,在一定的机制和技术手段下充分实现部门间的信息共享,城市ITS才可能顺利建设和发展,ITS才能真正在提高城市交通管理与服务水平,提高城市交通系统运行效率,缓解交通拥堵,站在城市大交通的高度提供科学的决策支持等方面发挥应有的作用.基于上述考虑,提出了建设城市智能交通共用信息平台的思想,并且随着我国ITS建设的深入进行,这种思想已经逐步获得了我国ITS业界的广泛认同.国家“十五”科技攻关期间,十个ITS示范城市已经不约而同地明确提出要建设城市交通共用信息平台.其中广州市、天津市、北京市、济南市等城市的共用信息平台建设列为“十五”智能交通系统应用试点示范工程.2中国城市智能公共交通系统发展的趋势展望随着城市交通管理、公共交通信息水平的快速提高,我国的城市智能交通系统获得了难得的飞跃发展良机.未来我国城市智能公交系统发展趋势,将以信息化、实时化为核心,以“人性化”为宗旨,智能公交系统的完善将从如下几个方面展开.2.1建设完善的智能公交调度系统(1)建立基于城市公交系统通行能力约束的智能公交调度模型.城市公共交通通行能力是指在城市规定的交通条件、道路条件及人为度量标准时间内能通过的最大公交车辆数量或者乘客人数.公交通行能力是在一定条件下,公交设施所能够通过公交车辆和乘客的极限数值,它是动态的服务能力而不是静态的数量[4,7,8].当城市路网中运营的公交车辆超过公交设施的通行能力时,由于公交车辆彼此的互相干扰、以及公交车辆与社会车辆的行驶冲突,公交车辆行驶的速度反而会降低.这样即使公交企业增加了公交车辆的营运班次,但是公交服务水平反而将下降,同时公交企业的经济效益也受到影响.因此,必须建立基于城市公交系统通行能力约束的智能公交调度模型.公交通行能力各相关要素的关系如图2所示.(2)结合道路交通状况,建立公交服务水平的动态评价模型.城市公共交通系统是在城市整体道路网络中运营的系统,因此其运营必然受到城市路网状况的影响.我国城市智能公交调度系统在进一步的建设完善中,必须充分考虑城市交通系统对公交系统的影响.利用智能公交调度系统的公交车辆定位、行程时间预测、道路公交饱和度等数据,结合道路交通状况,将可以建立针对公交服务水平的动态评价模型.使得公交企业可以实时评估公交系统的运营状态,根据企业的运营服务目标调整公交车辆调度计划.此外,还能够通过对公交运营数据统计和分析,实现城市规划层面、设计层面对公交系统的调整和优化[10,11].(3)根据公交客流量的需求状况,建立自动化的公交调度模式.车载客流量检测器技术的完善和公交IC卡数据实时采集技术的实现,使得未来的城市智能公交调度系统可以利用客流量检测器及数据融合技术,实时监控城市居民公交的出行状况,并对城市居民未来的公交出行需求进行动态预测.以此为基础,建立自动化的公交调度机制,将实现智能公交调度系统对公交车辆调度计划的自主调整和优化.(4)将智能公交系统的建设、运营与城市规划紧密结合起来实施.目前国内城市投入使用的智能公交调度系统往往都是在现有传统公交设施基础上改建实施的系统,系统的使用、维护都存在着不尽如人意的不足.只有从城市规划的环节就开始考虑智能公交系统的建设,以及智能公交系统未来的运营,才能为智能公交系统的建设奠定良好的基础,才能真正把智能公交系统的建设放于优先的位置,才能避免智能公交各分系统之间重复建设或者相互干扰的问题,才能使得智能公交系统能够真正有效的发挥作用.(5)将MIS系统与智能公交调度系统进行整合.目前,国内公交企业由于其历史原因,开发的公交信息系统分步建设、独立运行的现象尤为突出.为了有效的整合公交企业的信息资源,使得其充分发挥作用,迫切需要建立一个综合性管理信息系统(MIS).并且将MIS系统与公交企业的智能公交调度系统整合起来.管理信息系统MIS(management information sys2tem)是企业的信息系统,它具备数据处理、计划、控制、预测和辅助决策功能,是一个覆盖了整个公交企业各相关部门的信息智能化管理系统.通过建设公交企业MIS系统,建立高质量、高效率的企业信息管理网络,为领导决策和内部管理、办公提供服务,实现企业办公自动化、管理现代化、信息资源化、传输网络化和决策科学化.MIS系统将使得公交企业能够充分发掘、利用自身的信息资源,同时可以将通过城市交通共用信息平台获得的其他部门的信息,经过处理、分析后获得更有价值的辅助决策信息.2.2公交IC卡系统的拓展公交IC卡系统在公交票务服务方面目前已经相对较为完善,未来其应用趋势将集中到如下的两个方面:(1)实现公交IC卡在经济带、都市圈的一体化运营.目前,我国经济建设的一个重要趋势就是经济的区域化发展,各城市都高度重视与周边城市的区域经济、交通联系,形成了长三角、珠三角、京津冀经济圈、长江中游经济圈、环渤海湾经济圈等都市经济圈.在经济圈、都市圈范围内实现公交IC卡的通用,已经成为各地公共交通系统未来建设的目标.(2)实现公交IC卡数据的有效应用.公交IC卡的应用,将能够为公交客流调查提供了一种新的手段.公交IC卡在方便地完成乘车收费的同时,还可记录下乘客使用IC卡的时间、车次、站点等信息.这些信息真实、准确地反映城市居民的公交出行状况,是公交最重要的原始资料.通过对IC卡数据的统计分析,能够得到公交出行的统计和预测数据.2.3建设人性化、智能化的公共交通信息服务系统未来的城市公共交通信息服务系统将向着“人性化、智能化”的方向进行建设.新时代的公交信息服务系统其核心将围绕着公交实时数据的处理及多源数据的数据融合展开,主要将呈现如下的发展趋势:(1)将公交信息服务模式从以静态信息为主的状态,转变为以实时信息为数据基础的动态信息服务.利用城市智能交通系统的多源动态信息,未来的公交信息服务将实现以实时信息为数据基础的动态信息服务.动态公交信息服务其本质是将实时的公交信息经过处理,预测出公交系统未来的运营趋势,将动态的公交运营信息提供给乘客.(2)实现多种公交运输方式信息资源的融合,使得城市居民可以通过公交信息服务制订有效的出行计划.目前城市的公交、地铁、机场、轮渡、铁路等相关部门的信息服务处于各自独立运行的状态.通过建设城市交通共用信息平台,将有望实现多种公交运输方式信息资源的融合.以此为契机,智能公交信息服务将能够为出行者制订完整的出行计划,实现市域范围、甚至区域范围内乘客的高效、有计划地出行.(3)从被动式公交信息服务为主,转变为以主动式公交信息服务为主.除了传统的公交信息服务模式,例如公交信息网站、公交电子站牌、公交热线服务电话、电台广播等以外,未来智能公交信息服务系统将向乘客自主式信息服务模式发展.通过乘客与公交信息服务系统的人机对话,乘客能够及时、准确地获取个人最需要获取的信息.服务模式将包括手机WAPΠGPRSΠCDMA网络公交信息服务、手机公交短信信息服务、PDA信息终端公交信息服务等模式.2.4实现大范围、大规模运营的公交车辆区域调度公交区域调度,国外又称网络调度或线间调度,是指在一定地域的范围内、原来各自独立运营线路上的车辆、人员,通过一定的技术手段和管理组织协调起来共同运营,以达到资源的最有效配置和充分利用的一种组织模式.区域调度模式是基于运量平衡思想提出的,由于公交客流存在着方向、时间上的不均衡性,因此,可通过不同线路间运力的动态组合,实现车辆运量的均衡,从而最大限度地节省运营车辆总数和司乘人员总数,提高公交车辆的利用率和司乘人员的劳动效率[6].区域调度是面向任务,而非面向线路的调度模式[9].公交区域调度是国外大城市普遍采用的、高效率的调度模式.随着我国智能公共交通管理系统的建设和城市道路交通条件的进一步改善,国内城市公交企业传统的线路调度模式必将为区域调度模式所取代.图3即是多车场公交区域调度的模式图.通常情况下,多车场调度优化模型采用系统总“空驶”距离最短,即“空跑”成本最小的模型.在智能公交调度系统中,还将增加可区域调度的公交车辆行驶状况及车辆空驶时间等约束条件.区域调度优化模型为3结束语本文以我国当前城市交通“公交优先”的建设目标为契机,首先对我国当前城市智能公交系统———包括智能公交车辆调度系统、IC卡售票系统、公共交通信息服务系统和城市共用信息平台系统的技术发展状况及应用规模情况进行了简要的分析.并针对当前国内智能公交系统存在的不足,提出了未来在城市智能公交系统(APTS)快速建设的发展环境下,智能公交系统发展的趋势.根据城市公共交通系统信息化、自动化、智能化的发展方向,提出了未来城市智能公共交通系统(APTS)的发展趋势及各自的建设目标.参考文献:[1]城市智能公共交通管理系统研究[R].北京:中国城市规划设计研究院,2006.[The Research of Urban In2telligent Public Transport Management System[R].Bei2jing:China Academy of Urban Planning and Design,2006.][2]杨兆升.城市智能公共交通系统理论与方法[M].北京:中国铁道出版社,2004.[YANG Zhao2sheng.TheTheoretics and Method of Urban Intelligent Tansit Manage2ment System[M].Beijing:China Railway PublishingHouse,2004.]

智慧公交行业全景图:综合智慧公交服务更多元化

从智慧公交行业构成来看,智慧公交底座是硬件产品,主要包括车载终端、显示屏、辅助仪器、POS机、LED屏、车体、公交站台、GPS设备、监控设备等;软件和集成系统由智能调度系统、智能监控系统、线网诊断及优化系统、MaaS、北斗系统、终端应用软件等构成;从综合智慧公交服务来看,有数据分析服务、驾驶行为服务、站场勤务服务等;云计算作为先进技术支撑,提供云服务器、云存储和云业务;通信技术主要有通讯协议、无线通讯设备、路面通讯设备等。

目前智慧公交各产业链均已成熟,通信技术上三大运营商是坚固的底层支柱,云计算上百度、阿里、腾讯、华为是卓越的行业代表,以其强大的综合实力和科技技术为全国各地不同城市的整体数据集成和智慧公交提供了坚实的云计算科技支持;综合智慧公交服务上华录智达、青岛海信网络表现良好;软件系统及集成系统上也有越来越多的厂商;硬件设备上也有表现突出的企业。

智慧公交产业链区域热力地图:广东、江苏企业数量最集中

从区域来看,我国智慧公交集中在南方地区,尤其是广东省,企业注册数量最多,达523家。其次是江苏省,注册企业达453家。广东省城市公共交通行业发展较快,该地区的智慧公交系统和平台技术较为成熟,在全国有较好的资源和技术优势。其他地区受到智慧公交政策的鼓励,企业数量不断增加。

从代表性企业来看,广东省智慧公交企业集中在广深两地,江苏的苏交科、南京公用、智慧交通公司具备较强竞争力。北京地区的企业有行业龙头华录智达,山东的代表性企业有海信科技,安徽省的代表性企业有安凯客车和皖通科技,郑州天迈公司的辐射效应带领中原地区快速发展。

智慧公交产业代表性企业最新投资动向

智慧公交产业代表性企业的投资动向主要包括收购公司拓展业务、新设立子公司、进行智慧公交业务的项目拓展等方式。智慧公交产业代表性企业投资动向如下:

—— 更多本行业研究分析详见前瞻产业研究院《中国智慧公交行业市场前瞻与投资战略规划分析报告》

字数多少具体的有什么要求。

关于智能门禁的毕业论文

以下是关于门禁系统方面的几篇文献,供您参考:1. 赵文娟. 论如何构建可信的门禁系统[J]. 科技资讯, 2021(2): 122-123.2. 黄颖. 门禁系统的设计与实现[J]. 智能技术, 2022(1): 90-94.3. 李圣华. 基于Trusted Computing的门禁系统安全研究[J]. 电子技术应用, 2022(2): 85-89.4. 刘煜. 基于FPGA的门禁控制系统设计[J]. 现代电子技术, 2023(1): 92-96.5. 宋晨. 基于人脸识别技术的智能门禁系统设计[J]. 计算机技术与发展, 2023(2): 116-120。这些文献涵盖了门禁系统的设计、实现、安全,以及各种技术的应用,给出了门禁系统研究方向和未来的发展趋势。

那动我品质我 对质量,全, 权威,好的,好的肯定?

智能公共交通系统论文

你要的不太好找,本人提供参考文献如下:畅想城市未来低碳交通来源:中国建设报|2015-06-292015移动互联与交通创新发展论坛上发表了《畅想未来智能交通系统》的主题演讲,阐述了未来交通的前景。根据科学技术的发展规律和已经出现的发展动向,未来城市交通是什么样的?就像20世纪80年代互联网的出现将独立的台式电脑互相联系在一起。“车联网”就是通过车辆收集、处理、共享大量信息,车与车、车与路上的行人和自行车以及车与城市网络能互相联结,从而实现更智能、更安全的驾驶。“车联网”的介入将彻底改变人类出行模式,重新定义汽车的DNA。实现“车联网”技术的未来城市交通将告别红绿灯、拥堵、交通事故、停车难等问题,实现自动驾驶,从而使驾驶者可以充分享受途中的无线网络。互联的汽车具备感应周边事物的能力,并且能与汽车和道路系统保持实时通讯。这些功能优化了交通路线,缩短了旅途的时间,让旅途更具可预测性。而利用GPS可以确定车辆位置,“车联网”技术更能够使其与其他车辆和交通基础设施互联。车辆风挡内设置的内置显示屏可用于获取外部信息或进行上网冲浪。汽车电气化是未来城市交通问题最好的解决方案之一汽车电气化将减少交通对石油的依赖,大幅减少尾气排放对环境的影响,并且能有效地利用多种可再生能源。汽车电气化已经成为我国的一项战略重点,并且在国家发展规划中推出多项重要计划,包括通过公共交通拉动电动汽车发展、开发纯电动车尤其是小型车、继续推动电气化和节能内燃机发展等计划。无论是混合动力车、插电式混合动力车、增程型电动车、纯电动车,还是燃料电池车都依赖于电池、电机和电动控制来工作。因此,在电气化问题上都面临着相同的挑战。一是充电问题。因大量电动车同时充电带来的问题是必须要解决的一项重大挑战。二是成本与便利性。锂离子电池大约70%的成本来自于电池组,而电池组超过一半的成本来自于原材料。因此,降低电池原材料成本是降低电池成本的关键。三是通用性。要确保消费者接受电动车,就要对电池和充电设施制定通用标准。针对城市拥挤、交通堵塞、停车紧张给汽车设计者带来的挑战,未来的汽车设计正向着更小、更聪明、更安全且更时尚的方向发展,对环境的改善更具可持续性。从设计的角度,EN V电动联网概念车满足了消费者对未来城市交通更时尚、更有乐趣的需求,其技术也可以在未来应用于其他车型,给设计师提供了开发新车型的机会。创意设计不仅可以使设计师在车辆外形、内饰中发挥极致的想象力,而且更新材料的应用乃至交通方式的诉求都在他们的设计之内。另外,互联网的介入使设计师重新思考与车辆互动的界面。人机互动界面的改变意味着驾车从个人体验过渡到社交体验的重大转变。手机控制汽车也是一项汽车技术的创新将手机操作系统与车载信息系统互联,可以实现智能出行。通过手机应用,可以查看地图、手机监控汽车位置防盗功能以及其他多个适合汽车使用者的应用。如通用的雪佛兰Volt沃蓝达就可以通过手机控制其充电情况,还可以访问谷歌地图来规划自己的最佳出行路线,规避堵车情况。未来城市交通处在多层立体的交通体系中,采用无污染的新能源交通工具和驾驶体系,实现零排放、零交通事故,远离对石油的依赖、远离交通堵塞,让人与环境融为一体,达成一种新的和谐,这是它所要追求的基本目标。比如我们要求是零事故、零伤亡。路上的车都不可能发生碰撞,通过智能交通系统实现这样的目标,所有的车都有一个身份,一个ID卡上的一个ID联成网,一个指挥中心进行处理,所有车都知道前后左右是什么车,而且可以自动控制,及时刹车、转弯等等,这样就可以实现零伤亡、零事故。同时汽车能源有多种,如可再生能源、太阳能、电能、生物质能等。在整个能源的实现过程中,油污染要收集起来,有的本身是不排放的,比如氢燃料电池和氢发动机。未来交通网络系统的实现,将再次改变人类的生活方式并提高人类的生活质量。互联网的应用,拉近了人类的信息沟通距离,使整个地球变成了地球村。未来交通,拉近了人类的物质交流距离,人们想到哪里就能通过交通网络瞬间到达那里。想买什么货物,通过电脑选择,通过交通网络很快就能获得。远距离交换各自的优势劳动。未来城市交通应该是低噪音、美观、宜人的尽管现在我们的汽车发动机很小,但是还是会感觉到共振,未来的汽车不会有让人感到不舒服的现象。它是绿色的,也是智能的。这个智能包括两个方面,一个是交通指挥系统智能化,一个是汽车本身智能化。汽车成为每个人不同特征的一部分,好像是人体某些器官的延伸,能代替脚、代替手。在汽车上设计一些机械臂,天气寒冷时到外面取一个什么东西,你开车去了,人不要出来,机械臂就可以把东西给你取回来;能代替眼睛看得很远,甚至可以透过物体表面看到内质,在黑夜中看东西;能代替鼻子,闻出一些敏感的气味,如苯、毒气等有害气体。还能模仿大脑进行计算、推理、思考,控制发动机、底盘系统等。未来汽车高度个性化、信息化和智能化之后,我们的行为能力就会远远超过现在所想象的。

智能公共交通系统在中国城市的应用及发展趋势摘要:智能交通系统是目前国内外公认的解决城市交通拥堵问题的重要途径之一,也是费效比最显著的途径.作为国内城市交通系统最重要组成部分之一的公共交通系统,近年来开始出现了大量智能公共交通系统方面的应用尝试.对我国目前城市投入应用的智能公共交通系统(APTS)的应用状况进行了分析,并根据我国当前国情,分析了我国智能公交系统未来可能的应用方向,提出了对智能公共交通系统改进的技术趋势分析.关键词:智能公共交通系统;GPS;IC卡;应用0引言我国是发展中国家,虽然近20年来始终保持了经济的高速增长,但是与西方发达国家相比,在城市基础设施尤其是公共交通基础设施方面,依然存在着很大的差距.同时近年来随着我国城镇化水平的快速提高,城镇人口数量在急剧增加.此外,我国的城镇化时期恰好又伴随着机动化,这必然造成有限的城市道路空间与巨大的机动车增长之间的冲突,给本来就非常拥堵的城市交通增加了更大的压力.从世界范围来看城市交通的发展,几十年来世界各工业化国家城市机动交通的发展历程,大都走过了先发展小汽车,后控制小汽车,最终选择发展大公交的曲折道路.我国土地资源稀缺,城市人口密集,群众收入水平总体不高,优先发展城市公共交通更是我们的现实选择.近年来,我国各个主要城市在常规公交设施方面投资较大,城市公交运力得以快速增加,万人公交车辆拥有量由2001年的6.1辆增长到2004年的8.4辆.但是城市公共交通客运量并没有相应大幅度提高,部分城市呈现下降趋势.在出行方式结构方面,我国主要大城市公共交通基本呈现下降趋势,公交客运量和运力的比值均在下降,运力的增加不一定带来运量的增加.如图1所示,我国主要大城市历年公交运量Π公交运力比值都出现了大幅度下降[1].当前,城市居民对公共交通系统最大的不满主要就是公交服务水平低,例如公交出行速度慢、舒适性差、换乘困难等方面.在传统公交系统建设模式下,改善上述问题需要巨额建设经费的支持,其建设成效还要受到城市交通整体环境的影响.与之相对应,智能公共交通系统则是实现“公交优先”的最有效的途径之一.所谓智能公共交通系统,就是在公交网络分配、公交调度等关键理论研究的前提下,利用系统工程的理论和方法,将现代通信、信息、电子、控制、计算机、网络、GPS、GIS等新技术集成应用于公共交通系统,通过构建现代化的信息管理系统和控制调度模式,实现公共交通调度、运营、管理的信息化、现代化和智能化,为出行者提供更加安全、舒适、便捷的公共交通服务,从而吸引公交出行,缓解城市交通拥挤,有效解决城市交通问题,创造更大的社会和经济效益[2].1国内智能公共交通管理系统的应用现状智能公共交通系统作为智能交通系统重要的子系统之一,在我国“十五”科技攻关的智能交通系图1我国主要城市历年常规公交运量Π公交运力比值变化图Fig.1The ratio of Urban passenger carrying amount andtransit capacity in cites of China统(ITS)城市示范中,北京市、上海市、青岛市、杭州市、重庆市等多个城市的ITS建设示范中都包括了智能公共交通系统的内容.将其作为缓解城市交通拥堵、提高城市公共交通服务水平的重要途径.当前我国城市智能公共交通系统方面的应用,主要集中在如下几个领域中[3].1.1公交车辆智能调度系统国内城市对智能公共交通系统的探索实践是从公交车辆的定位监控开始的.到目前,多数进行ITS建设的城市其公交监控系统都已经从早期纯粹的公交车辆定位调度系统扩展升级为以公交车辆定位为基础,结合公交地理信息平台(GIS-T)、通信系统实施监控调度的智能调度系统.在公交车辆定位及监控调度系统的建设中,北京市作为我国的首都走在了建设实践的前面.北京公交ITS示范工程于1999年投入运行,首次投入运行的装有先进的车载卫星定位系统和无线通讯装置的车辆约为300多辆.除北京以外,国内上海、杭州、南京、深圳、成都、中山、包头等众多城市也都先后建成了公交车辆定位及监控调度系统.基本都实现了利用GPS系统定位功能,与电子地图相结合,实现了公交车辆的实时跟踪,并进一步确保了信息发布、车辆调度、车辆紧急救援报警等功能的实现.1.2公交IC卡系统公交IC卡系统,是近年来中国智能公共交通系统方面一个成效显著、应用范围迅速扩展的系统.目前,公交IC卡售票系统已经在国内大量城市得到了应用,北京、上海、南京、杭州、重庆、青岛、广州、宁波、常州等城市的公交企业都结合本城市的公共交通特性,有针对性的建设了公交IC卡售票系统.近年来,中国城市公交IC卡系统的应用趋势是走向通用化,实现公交、地铁、轨道、轮渡、出租车都能够通用的公交IC“一卡通”.在利用公交IC卡系统促进居民采用公交出行,实现“公交优先”方面,北京市近期在城市公交IC卡应用方面取得了较为理想的成绩.在北京市公交系统实行公交IC卡4折优惠后,北京市公交IC卡用户实现了飞速增长.自2007年年初,北京市的公交运送量比以前增加10%,目前每天公交客流增加量约达112万人次.1.3公共交通信息服务系统近几年,随着智能公共交通系统和互联网的建设,我国城市的公交信息服务已经得到了快速发展.目前公交信息服务系统应用状况,基本呈现如下特点:(1)公交服务网站成为城市最重要的公交信息服务模式.在国内的大型城市及经济发达区域的中型城市中,城市公交企业基本都建立了自己的公交服务网站.其中,以北京市、杭州市、南京市等为代表的城市公交服务网站采用了以GIS平台为基础的WEB服务模式,能够进行换乘查询等服务.(2)电子站牌应用规模开始扩大.国内一批积极进行智能公交系统建设的城市,在实现了公交车辆的实时监控后,开始将公交车辆信息通过电子站牌提供给公交乘客.电子站牌除了常规站牌的内容外,还可以显示下一班公交车辆的预计到站时间、以及线路上公交车辆当前所在位置等动态公交信息.(3)公交车载信息服务系统投入实用化应用.国内包括北京市、上海市、深圳市、青岛市等多个城市的公交企业在车辆上安装了车载信息系统,通过液晶显示器和音响系统可以进行播放多种信息,播放的信息内容通常包括新闻、广告、娱乐节目等.由于可以通过广告资源的置换获得系统设备的建设投资,目前各城市车载信息服务系统已经走上良性循环,进入实用化应用阶段.1.4城市交通综合信息平台对于城市的ITS而言,涉及到公安交通管理、交通、规划、公交、货运、市政管理等多个部门的职能范围,每一个部门既是ITS的数据源,又是其它部门数据以及在多部门数据之上进行综合性加工处理所得到信息的需求者.只有各相关部门协调配合、协同行动起来,在一定的机制和技术手段下充分实现部门间的信息共享,城市ITS才可能顺利建设和发展,ITS才能真正在提高城市交通管理与服务水平,提高城市交通系统运行效率,缓解交通拥堵,站在城市大交通的高度提供科学的决策支持等方面发挥应有的作用.基于上述考虑,提出了建设城市智能交通共用信息平台的思想,并且随着我国ITS建设的深入进行,这种思想已经逐步获得了我国ITS业界的广泛认同.国家“十五”科技攻关期间,十个ITS示范城市已经不约而同地明确提出要建设城市交通共用信息平台.其中广州市、天津市、北京市、济南市等城市的共用信息平台建设列为“十五”智能交通系统应用试点示范工程.2中国城市智能公共交通系统发展的趋势展望随着城市交通管理、公共交通信息水平的快速提高,我国的城市智能交通系统获得了难得的飞跃发展良机.未来我国城市智能公交系统发展趋势,将以信息化、实时化为核心,以“人性化”为宗旨,智能公交系统的完善将从如下几个方面展开.2.1建设完善的智能公交调度系统(1)建立基于城市公交系统通行能力约束的智能公交调度模型.城市公共交通通行能力是指在城市规定的交通条件、道路条件及人为度量标准时间内能通过的最大公交车辆数量或者乘客人数.公交通行能力是在一定条件下,公交设施所能够通过公交车辆和乘客的极限数值,它是动态的服务能力而不是静态的数量[4,7,8].当城市路网中运营的公交车辆超过公交设施的通行能力时,由于公交车辆彼此的互相干扰、以及公交车辆与社会车辆的行驶冲突,公交车辆行驶的速度反而会降低.这样即使公交企业增加了公交车辆的营运班次,但是公交服务水平反而将下降,同时公交企业的经济效益也受到影响.因此,必须建立基于城市公交系统通行能力约束的智能公交调度模型.公交通行能力各相关要素的关系如图2所示.(2)结合道路交通状况,建立公交服务水平的动态评价模型.城市公共交通系统是在城市整体道路网络中运营的系统,因此其运营必然受到城市路网状况的影响.我国城市智能公交调度系统在进一步的建设完善中,必须充分考虑城市交通系统对公交系统的影响.利用智能公交调度系统的公交车辆定位、行程时间预测、道路公交饱和度等数据,结合道路交通状况,将可以建立针对公交服务水平的动态评价模型.使得公交企业可以实时评估公交系统的运营状态,根据企业的运营服务目标调整公交车辆调度计划.此外,还能够通过对公交运营数据统计和分析,实现城市规划层面、设计层面对公交系统的调整和优化[10,11].(3)根据公交客流量的需求状况,建立自动化的公交调度模式.车载客流量检测器技术的完善和公交IC卡数据实时采集技术的实现,使得未来的城市智能公交调度系统可以利用客流量检测器及数据融合技术,实时监控城市居民公交的出行状况,并对城市居民未来的公交出行需求进行动态预测.以此为基础,建立自动化的公交调度机制,将实现智能公交调度系统对公交车辆调度计划的自主调整和优化.(4)将智能公交系统的建设、运营与城市规划紧密结合起来实施.目前国内城市投入使用的智能公交调度系统往往都是在现有传统公交设施基础上改建实施的系统,系统的使用、维护都存在着不尽如人意的不足.只有从城市规划的环节就开始考虑智能公交系统的建设,以及智能公交系统未来的运营,才能为智能公交系统的建设奠定良好的基础,才能真正把智能公交系统的建设放于优先的位置,才能避免智能公交各分系统之间重复建设或者相互干扰的问题,才能使得智能公交系统能够真正有效的发挥作用.(5)将MIS系统与智能公交调度系统进行整合.目前,国内公交企业由于其历史原因,开发的公交信息系统分步建设、独立运行的现象尤为突出.为了有效的整合公交企业的信息资源,使得其充分发挥作用,迫切需要建立一个综合性管理信息系统(MIS).并且将MIS系统与公交企业的智能公交调度系统整合起来.管理信息系统MIS(management information sys2tem)是企业的信息系统,它具备数据处理、计划、控制、预测和辅助决策功能,是一个覆盖了整个公交企业各相关部门的信息智能化管理系统.通过建设公交企业MIS系统,建立高质量、高效率的企业信息管理网络,为领导决策和内部管理、办公提供服务,实现企业办公自动化、管理现代化、信息资源化、传输网络化和决策科学化.MIS系统将使得公交企业能够充分发掘、利用自身的信息资源,同时可以将通过城市交通共用信息平台获得的其他部门的信息,经过处理、分析后获得更有价值的辅助决策信息.2.2公交IC卡系统的拓展公交IC卡系统在公交票务服务方面目前已经相对较为完善,未来其应用趋势将集中到如下的两个方面:(1)实现公交IC卡在经济带、都市圈的一体化运营.目前,我国经济建设的一个重要趋势就是经济的区域化发展,各城市都高度重视与周边城市的区域经济、交通联系,形成了长三角、珠三角、京津冀经济圈、长江中游经济圈、环渤海湾经济圈等都市经济圈.在经济圈、都市圈范围内实现公交IC卡的通用,已经成为各地公共交通系统未来建设的目标.(2)实现公交IC卡数据的有效应用.公交IC卡的应用,将能够为公交客流调查提供了一种新的手段.公交IC卡在方便地完成乘车收费的同时,还可记录下乘客使用IC卡的时间、车次、站点等信息.这些信息真实、准确地反映城市居民的公交出行状况,是公交最重要的原始资料.通过对IC卡数据的统计分析,能够得到公交出行的统计和预测数据.2.3建设人性化、智能化的公共交通信息服务系统未来的城市公共交通信息服务系统将向着“人性化、智能化”的方向进行建设.新时代的公交信息服务系统其核心将围绕着公交实时数据的处理及多源数据的数据融合展开,主要将呈现如下的发展趋势:(1)将公交信息服务模式从以静态信息为主的状态,转变为以实时信息为数据基础的动态信息服务.利用城市智能交通系统的多源动态信息,未来的公交信息服务将实现以实时信息为数据基础的动态信息服务.动态公交信息服务其本质是将实时的公交信息经过处理,预测出公交系统未来的运营趋势,将动态的公交运营信息提供给乘客.(2)实现多种公交运输方式信息资源的融合,使得城市居民可以通过公交信息服务制订有效的出行计划.目前城市的公交、地铁、机场、轮渡、铁路等相关部门的信息服务处于各自独立运行的状态.通过建设城市交通共用信息平台,将有望实现多种公交运输方式信息资源的融合.以此为契机,智能公交信息服务将能够为出行者制订完整的出行计划,实现市域范围、甚至区域范围内乘客的高效、有计划地出行.(3)从被动式公交信息服务为主,转变为以主动式公交信息服务为主.除了传统的公交信息服务模式,例如公交信息网站、公交电子站牌、公交热线服务电话、电台广播等以外,未来智能公交信息服务系统将向乘客自主式信息服务模式发展.通过乘客与公交信息服务系统的人机对话,乘客能够及时、准确地获取个人最需要获取的信息.服务模式将包括手机WAPΠGPRSΠCDMA网络公交信息服务、手机公交短信信息服务、PDA信息终端公交信息服务等模式.2.4实现大范围、大规模运营的公交车辆区域调度公交区域调度,国外又称网络调度或线间调度,是指在一定地域的范围内、原来各自独立运营线路上的车辆、人员,通过一定的技术手段和管理组织协调起来共同运营,以达到资源的最有效配置和充分利用的一种组织模式.区域调度模式是基于运量平衡思想提出的,由于公交客流存在着方向、时间上的不均衡性,因此,可通过不同线路间运力的动态组合,实现车辆运量的均衡,从而最大限度地节省运营车辆总数和司乘人员总数,提高公交车辆的利用率和司乘人员的劳动效率[6].区域调度是面向任务,而非面向线路的调度模式[9].公交区域调度是国外大城市普遍采用的、高效率的调度模式.随着我国智能公共交通管理系统的建设和城市道路交通条件的进一步改善,国内城市公交企业传统的线路调度模式必将为区域调度模式所取代.图3即是多车场公交区域调度的模式图.通常情况下,多车场调度优化模型采用系统总“空驶”距离最短,即“空跑”成本最小的模型.在智能公交调度系统中,还将增加可区域调度的公交车辆行驶状况及车辆空驶时间等约束条件.区域调度优化模型为3结束语本文以我国当前城市交通“公交优先”的建设目标为契机,首先对我国当前城市智能公交系统———包括智能公交车辆调度系统、IC卡售票系统、公共交通信息服务系统和城市共用信息平台系统的技术发展状况及应用规模情况进行了简要的分析.并针对当前国内智能公交系统存在的不足,提出了未来在城市智能公交系统(APTS)快速建设的发展环境下,智能公交系统发展的趋势.根据城市公共交通系统信息化、自动化、智能化的发展方向,提出了未来城市智能公共交通系统(APTS)的发展趋势及各自的建设目标.参考文献:[1]城市智能公共交通管理系统研究[R].北京:中国城市规划设计研究院,2006.[The Research of Urban In2telligent Public Transport Management System[R].Bei2jing:China Academy of Urban Planning and Design,2006.][2]杨兆升.城市智能公共交通系统理论与方法[M].北京:中国铁道出版社,2004.[YANG Zhao2sheng.TheTheoretics and Method of Urban Intelligent Tansit Manage2ment System[M].Beijing:China Railway PublishingHouse,2004.]

关键词:城市交通 规划 一、充分认识优先发展城市公共交通的重大意义 城市公共交通是由公共汽车、电车、轨...加强城市公共交通的科学基础和应用研究,推动以智能交通为重点的城市公共交通行业科技进步。要利用高新技术对传统...www.wsdxs.cn/html/Constructs/20090316/58068.html

自己去网上找下呗,像这类的交通技术吧,好好看下学习下

关于智能网的探论毕业论文

摘要:物联网作为一种新的网络形式,相关理论研究和实践应用正在探索过程中.本文介绍了物联网的概念,给出了基于智能物体层、数据传输层、信息关联层、应用服务层的物联网四层体系架构,最后探讨了物联网在实现过程中所面临的问题和挑战. 关键词:物联网,RFID 一、概念 物联网(Internet of Things)这个概念最早由麻省理工的Auto-ID中心在1999年提出,其基本想法是将RFID和其他传感器相互连接,形成RFID架构的分布式网络. 欧洲委员会[1]提出“物联网是未来因特网的综合部分之一,可以被定义为一个动态的全球网络基础.基于标准的和互操作的通信协议,无论物理的还是虚拟的“物”均有身份、物理属性和虚拟特质,具备自配置能力且使用智能接口,可以无缝地集成到信息网络中去.” 本文认为,物联网实质上是将真实世界映射到虚拟世界的过程:真实世界中的事物,通过传感器采集一定的数据,在虚拟世界中形成与之对应的事物.“相关物体可能在虚拟电子空间中被创造出来,源于物理物体空间,且与物理空间的物体有关联.”[2]传感器采集到数据的详细程度,将影响到该事物在虚拟世界中的抽象程度.在虚拟世界中,对该事物最简单也最重要的描述是物体提供了一个ID用于识别(如使用RFID标签),最详细的描述则是真实世界中该事物的所有属性和状态均可在虚拟世界中被观察到.进一步的,在虚拟世界中对该物体做出控制,则可通过物联网改变真实世界中该物体的状态.对于一个真实的事物,其所需的各种应用与操作,只需在虚拟世界中对与之对应的虚拟事物进行应用和操作,即达到目的. 这样将会对世界带来巨大的改变:实地实时监测和控制一个事物的成本是高昂的,通过物联网,所有事物都将在虚拟世界中被找到,以较低的成本被监测和控制,从而实现4A(anytime, any place, anyone, anything)[3]连接.虚拟世界提供了对所有事物的实时追踪的可能,所有的信息都不是孤立的,这将为各种海量运算和分析提供了最基础和最重要的信息源.真实世界存在于某一时刻,而当物联网发展到能将真实世界中的所有事物都映射到虚拟世界中时,无数个某一时刻的世界汇集起来,在虚拟世界中将形成一个可以追溯的历史,如同过去以纸质保存历史事件的发生,将来将以电子数据对所有事物进行全息描述的形式存储世界的历史. 二、体系架构 目前, 物联网还没有一个广泛认同的体系结构,最具代表性的物联网架构是欧美支持的EPCglobal和日本的UID物联网系统.EPC系统由EPC 编码体系、射频识别系统和信息网络系统3 部分组成.UID 技术体系架构由泛在识别码(uCode)、泛在通信器、信息系统服务器、和ucode 解析服务器等4部分构成.EPCglobal 和UID上只是RFID 标准化的团体,离全面的“物联网”体系架构相去甚远. 美国的IBM公司在2008年提出“智慧的地球”这一与物联网概念相近的概念,并提出通过INSTRUMENTED,INTERCONNECTED和INTELLIGENT这三个层面来实现智慧地球.在文献基础上,本文提出了物联网体系架构. 1、智能物体层:通过传感器捕获和测量物体相关数据,实现对物理世界的感知.同时具备局部的互动性,需要一定的存储和计算能力. 2、数据传输层:以有线或无线的方式实现无缝、透明、安全的接入,提供并实施编码、认知、鉴权、计费等管理. 3、信息关联层:通过云计算实施对海量数据的存储和管理、数据处理与融合,屏蔽其异质性与复杂性,形成一个与真实世界对应的虚拟世界. 4、应用服务层:从虚拟世界中提取信息,提供丰富的面向服务的应用.如智能交通、智能电网、智能医疗等等. 需要指出的是,数据由底部的传感器通过网络到达应用服务层面,而实际上,在服务应用层面,各个中心、用户可以反向的通过网络由执行器对物体进行控制. 在该体系结构中,感知层面的各种传感器、执行器都是具体的,随着技术的发展会不断升级,新设备不断引入物联网.而服务应用层的各种需求也是不断提出的,并不是一层不变的.若是每个具体的服务应用和传感设备都形成一个独立的网络,最后可能形成许多套特殊的网络,这不利于推广和不便于维护.因此这需要物联网的网络层有一定前瞻性,物体设备层可以变化,服务应用层可以变化,但它们都是通过一个普适的网络进行连接,这个网络可以在一定的时间内保持稳定. 三、面临的挑战 1、统一标准 物联网其实就是利用物体上的传感器和嵌入式芯片,将物质的信息传递出去或接收进来,通过传感网络实现本地处理,并联入到互联网中去.由于涉及到不同的传感网络之间的信息解读,所以必需有一套统一的技术协议与标准,而且主要是集中在互联上,而不是传感器本身的技术协议.现在很多所谓的物联网标准,实际上还是将物联网作为一种独立的工业网络来看待的具体技术标准,而应对互联需要的技术协议,才是真正实现物联网的关键. 2、安全、隐私 在物联网中所有“事物”都连接到全球网络,彼此间相互通信,这也带来了新的安全和隐私问题,例如可信度,认证,以及事物所感知或交换到的数据的融合.人和事物的隐私应该得到有效保障,以防止未授权的识别和攻击.安全与隐私这个问题,是人类社会的问题,不论是物联网还是其他技术,都是面临这两个问题.因此,不仅要从物联网内部的技术上做出一定的控制,而且要从外部的法规环境上作出一定的司法解释和制度完善. 参考文献 1. Commission, I.D.E., Internet of things Strategic Research Roadmap. 2009. 2. CASAGRAS Final Report: RFID and the inclusive model for the Internet of things. . 2010. 3. ITU Internet Reports 2005: The Internet of Things. 2005, ITU.

计算机论文是计算机专业毕业生培养方案中的必修环节。学生通过计算机论文的写作,培养综合运用计算机专业知识去分析并解决实际问题的能力,在以后的工作中学以致用,不过我是没时间写,直接联系的诚梦毕业设计,一切搞定而且品质还很高。

1绪论1.1研究背景与研究目的意义中国互联网络信息中心(CNNIC,2018)发布了截至2018年12月的第43次中国互联网发展统计报告。根据该报告,截至2018年12月,中国互联网用户数量为8.29亿,并且每年保持在5000多万增量。而且这种趋势将在未来几年继续保持。5G时代的来临将会加快促进互联网与其他产业融合,网络规模必然会进一步增大。传统的网络管理系统以分布式网络应用系统为基础,采用软件和硬件相结合的方式。SNMP协议是目前网络管理领域运用最为广泛的网络管理协议,它将从各类网络设备中获取数据方式进行了统一化,几乎所有的网络设备生产厂商都支持此协议。然而传统的基于SNMP的网络管理软件大多基于C/S架构,存在着扩展性和灵活性差,升级维护困难等缺点,对网为网络的管理带来了一定程度的不便。因此,基于三层的网管系统己经成为发展趋势,随着Web技术迅猛发展,诞生了以Web浏览器和服务器为核心,基于B/S ( Browser/Server)架构的“Web分布式网络管理系统”,它具有不依赖特定的客户端应用程序,跨平台,方便易用,支持分布式管理,并且可动态扩展和更新等优点。本文将重点研究基于BP故障诊断模型,实现了一种以接口故障为研究对象的智能网络管理系统模型,并以此为基础,设计与实现基于web的智能网络管理系统,不仅可以通过对网络数据实时监控,而且基于BP网络故障诊断模型可以诊断通信网中的接口故障,在一定程度上实现网络故障管理的自动化。该系统在保证网络设备提供稳定可靠的网络服务同时,也可以降低企业在维护网络设备上的成本。1.2国内外研究现状网络设备管理是指对各种网络设备(如核心层、汇接层、接入层路由与交换设备、服务器和计算机)进行各种操作和相关配置,管理服务器(Manager)用来处理网络信息,配合管理服务器对网络信息处理并管理的实体被称为代理服务器(Agent),被管对象是指用于提供网络服务或使用网络服务等设备的全部资源信息,各种不同的被管对象构成了管理信息库。在实际的网络管理过程当中,管理服务器和代理服务器以及代理服务器和被管对象三种实体之间都是通过规范的网络管理协议来进行信息的交互(王鹤 2015)。相比国外的网络管理系统及产品,国内相应的网络管理系统和产品起步比较晚,但是随着互联网技术的发展网络管理软件发展势头迅猛,诞生了很多优秀的网络管理软件,这些软件已经广泛运用在我国网络管理领域。1.2.1国外研究现状目前国外大型网络服务商都有与其产品相对应的网络管理系统。从最初步的C/S架构逐步过渡到现在的B/S架构。比较著名的:Cabletron系统公司的SPECTRUM,Cisco公司的CiscoWorks,HP公司的OpenView,Tivoli系统公司的TH NetView。这些网络管理产品均与自家产品相结合,实现了网络管理的全部功能,但是相对专业化的系统依旧采用C/S架构。NetView这款管理软件在网络管理领域最为流行。NetView可以通过分布式的方式实时监控网络运行数据,自动获取网络拓扑中的变化生成网络拓扑。另外,该系统具有强大的历史数据备份功能,方便管理员对历史数据统计管理。OpenView具有良好的兼容性,该软件集成了各个网络管理软件的优势,支持更多协议标准,异种网络管理能力十分强大。CiscoWorks是Cisco产品。该软件支持远程控制网络设备,管理员通过远程控制终端管理网络设备,提供了自动发现、网络数据可视化、远程配置设备和故障管理等功能。使用同一家产品可以更好的服务,因此CiscoWorks结合Cisco平台其他产品针对Cisco设备可以提供更加细致的服务。Cabletron的SPECTRUM是一个具有灵活性和扩展性的网络管理平台,它采用面向对象和人工智能的方法,可以管理多种对象实体,利用归纳模型检查不同的网络对象和事件,找到它们的共同点并归纳本质。同时,它也支持自动发现设备,并能分布式管理网络和设备数据。1.2.2国内研究现状随着国内计算机发展迅猛,网络设备规模不断扩大,拓扑结构复杂性也随之日益增加,为应对这些问题,一大批优秀的网络管理软件应运而生。像南京联创OSS综合网络管理系统、迈普公司Masterplan等多个网络管理系统。华为公司的iManager U2000网络管理系统,北京智和通信自主研发的SugarNMS开源网络管理平台,均得到较为广泛应用。Masterplan主要特点是能够对网络应用实现良好的故障诊断和性能管理,适用于网络内服务器、网络设备以及设备上关键应用的监测管理。SugarNMS具有一键自动发现、可视化拓扑管理、网络资源管理、故障管理、日志管理、支付交付等功能,并提供C/S和B/S两种使用方式。iManager U2000定位于电信网络的网元管理层和网络管理层,采用开放、标准、统一的北向集成,很大程度上缩短OSS集成时间,系统运行以业务为中心,缩短故障处理时间,从而减少企业故障处理成本。近些年来,随着人工智能技术的崛起,越来越多的企业开始将人工智能技术应用在网络管理上面,替代传统的集中式网络管理方式。为了减小企业维护网络的成本,提高网管人员工作效率,智能化、自动化的网络管理系统成为许多学者研究的热点。1.3神经网络在网络管理中的适用性分析网络管理的功能就是对网络资源进行管控、监测通信网络的运行状态以及排查网络故障。管控网络资源,本质上就是管理员为了满足业务需求下发相关设备配置命令改变网络设备状态,以保证稳定的服务;监测网络运行状态一般是指周期的或者实时的获取设备运行状态进行可视化,以方便管理员进行分析当前设备是否正常运行。排查网络故障是管理员通过分析网络设备运行数据与以往数据进行比较或者根据自身经验进行分析,确定故障源头、故障类别、产生原因、解决方法。故障排除是针对前一阶段发现的网络故障进行特征分析,按照诊断流程得出结果,执行特定的指令动作来恢复网络设备正常运行(洪国栋,2016)。神经网络具有并行性和分布式存储、自学习和自适应能力、非线性映射等基本特点。当下最为流行的神经网络模型就是BP(Back-Propagation)神经网络,是一种按照误差逆向传播算法训练多层前馈神经网络,属于监督式学习神经网络的一种。该模型分为输入层、隐含层以及输出层,网络模型在外界输入样本的刺激不断改变连接权值,将输出误差以某种形式通过隐含层向输入层逐层反转,使得网络输出不断逼近期望输出,其本质就是连接权值的动态调整。BP神经网络拥有突出的泛化能力,善于处理分类问题。BP网络是目前常用的误差处理方式,在众多领域得到了广泛的应用,它的处理单元具有数据量大、结构简单等特点,并且神经网络以对大脑的生理研究成果为基础,模拟大脑某些机制与机理组成十分繁杂的非线性动力学系统,其在处理网络设备运行中的数据时以及在比较模糊信号问题的时候,能够自主学习并得出需要的结果。能够将模型中输入输出矢量进行分类、连接、来适应复杂的传输存储处理。因此,本文会基于现有网络管理技术结合BP神经网络去解决网络故障问题。1.4本文主要研究目标1.4.1本文研究目标针对传统网络管理中故障方案的问题与不足,本文探究基于BP神经网络的方法来构建基于通信网接口故障诊断模型。通过构建的通信网接口故障诊断模型可以有效的诊断接口故障并判别出故障类型。推动现有网络管理系统更趋近于智能化。以此为基础,分析、设计、实现基于三层架构的智能网络管理系统1.4.2技术路线智能网络研究首先要确定该系统的开发技术路线,课题研究的主要过程首先是在查阅相关科研资料的基础上,搭建实验环境。在保证网络正常通信的前提下采集各个端口的流入流出流量,记录设备的运行状态并对设备进信息进行管理。同时布置实验环境相应故障,包括:改变端口状态、更改端口ip地址、子网掩码,采集通讯网络接口故障发生时网络拓扑中产生的异常数据。查阅BP神经网络在故障在诊断方面的相关论文,基于网络通讯设备接口的常见故障以及相关故障文档构建BP神经网络故障模型,并判断故障模型的有效性。逐步地实现系统的全部功能。最后进行系统测试,得出结论,应用于实际。1.5本文组织结构本文主要由六个章节构成,各章节主要内容如下:第一章绪论。本章首先简要介绍了网络管理系统当前的发展及应用现状从而进一步分析出建立智能网络管理系统的重要意义。阐述了网络管理系统国内外研究现状。最后论述了本文研究目的与组织结构。第二章相关概念及相关技术。本章对SNMP的相关技术进行详细介绍,SNMP组织模型 、SNMP管理模型、SNMP信息模型、SNMP通讯模型。然后对前端框架Vue和绘图插件Echarts技术进行介绍,其次介绍了常见的故障分析技术,专家系统、神经网络等,最后对神经网络基本概念和分类进行简要描述。第三章基于BP神经网络故障推理模型。介绍了BP神经网络的基本概念、网络结构、设计步骤、训练过程,以接口故障为例详细介绍了BP神经网络故障模型的构建过程。第四章智能网络管理系统分析与系统设计。首先进行了需求分析,其次对体系结构设计、系统总体模块结构设计进行说明,对系统各个功能模块分析设计结合活动图进行详细说明,最后对数据库设计进行简要说明。第五章智能网络管理系统的实现。对整体开发流程进行了说明,对用户管理模块、配置管理模块、设备监控模块、故障诊断模块实现流程进行描述并展示实现结果。第六章系统测试与结论。并对系统的部分功能和性能进行了测试,并加以分析。第七章总结与展望。总结本文取得的研究成果和存在的问题,并提出下一步改进系统的设想与对未来的展望。2相关概念及相关技术2.1网络管理概述网络管理就是通过合适手段和方法,确保通信网络可以根据设计目标稳定,高效运行。不仅需要准确定位网络故障,还需要通过分析数据来预先预测故障,并通过优化设置来降低故障的发生率。网络管理系统的五大基本功能,分别为:配置管理、性能管理、故障管理、计费管理和安全管理:1)配置管理:配置管理是最重要和最基础的部分。它可以设置网络通讯设备的相关参数,从而管理被管设备,依据需求周期的或实时的获取设备信息和运行状态,检查和维护设备状态列表,生成数据表格,为管理员提供参考和接口以更改设备配置。2)性能管理:性能管理是评估系统网络的运行状态和稳定性,主要工作内容包括从被管理对象获取与网络性能相关数据,对这些数据进行统计和分析,建立模型以预测变化趋势、评估故障风险,通过配置管理模块修改网络参数,以确保网络性能最优利用网络资源保证通信网络平稳运行。3)故障管理:故障管理的主要功能就是及时辨别出网络中出现的故障,找出故障原因,分析并处理故障。故障管理一般分为四个部分:(1)探测故障。通过被管设备主动向管理站发送故障信息或者管理站主动轮询被管设备两种方式发现故障源。(2)发出告警。管理站发现故障信息之后,会以短信、信号灯等方式提示管理员。(3)解决故障。对故障信息进行分析,明确其故障原因和类型,找到对应方法得以解决。(4)保存历史故障数据。对历史故障数据进行维护备份,为以后的故障提供一定依据,使得处理网络故障更为高效。4)计费管理:计费管理主要功能是为客户提供一个合理的收费依据,通过将客户的网络资源的使用情况进行统计,例如将客户消费流量计算成本从而向客户计费。5)安全管理:目的就是保证网络能够平稳安全的运行,可以避免或者抵御来自外界的恶意入侵,防止重要数据泄露,例如用户的个人隐私泄露问题等。根据网络管理系统的体系结构和ISO定义的基本功能,基于Web的网络管理系统基本模型如图基于Web的网络管理系统基本模型所示,整个模型包括六个组成部分:Web浏览器,Web服务器,管理服务集,管理信息库,网络管理协议,被管资源。 2.2 SNMP协议简单网络管理协议SNMP(Simple Network Management Protocol),既可以作为一种协议,也可以作为一套标准。事实上SNMP己经成为网络管理领域的工业标准,从提出至今共有八个版本,在实践中得到广泛应用的有三个版本,分别是SNMPv1, SNMPv2c和SNMPv3(唐明兵2017)。最初的SNMPv1主要是为了满足基于TCP/IP的网络管理而设计的,但是随着网络管理行业的迅猛发展,第一版本的SNMP协议已经不适应网络行业的发展,身份验证、批量数据传输问题等暴露导致SNMPv1难以支持日益庞大的网络设备。第二版本就演变成了一个运行于多种网络协议之上的网络管理协议,较第一版本有了长足的进步,不仅提供了更多操作类型,支持更多的数据类型而且提供了更加丰富的错误代码,能够更加细致的区分错误,另外支持的分布式管理在一定程度上大大减轻了服务器的压力。但是SNMPv2c依旧是明文传输密钥,其安全性有待提高。直到1998年正式推出SNMPv3,SNMPv3的进步主要体现在安全性能上,他引入USM和VACM技术,USM添加了用户名和组的概念,可以设置认证和加密功能,对NMS和Agent之间传输的报文进行加密,提升其安全性防止窃听。VACM确定用户是否允许特定的访问MIB对象以及访问方式。2.2.1 SNMP管理模型与信息模型SNMP系统包括网络管理系统NMS(Network Management System)、代理进程Agent、被管对象Management object和管理信息库MIB(Management Informoation Base)四部分组成.管理模型图如图所示:1)NMS称为网络管理系统,作为网络管理过程当中的核心,NMS通过SNMP协议向网络设备发送报文,并由Agent去接收NMS发来的管理报文从而对设备进行统一管控。NMS可以主动向被管对象发送管理请求,也可以被动接受被管对象主动发出的Trap报文。2)Agent相当于网络管理过程中的中间件,是一种软件,用于处理被管理设备的运行数据并响应来自NMS的请求,并把结果返回给NMS。Agent接收到NMS请求后,通过查询MIB库完成对应操作,并把数据结果返回给NMS。Agent也可以作为网络管理过程中的中间件不仅可以使得信息从NMS响应到具体硬件设备上,当设备发生故障时,通过配置Trap开启相应端口,被管设备也可以通过Agent主动将事件发送到NMS,使得NMS及时发现故障。3)Management object指被管理对象。一个设备可能处在多个被管理对象之中,设备中的某个硬件以及硬件、软件上配置的参数集合都可以作为被管理对象。4)MIB是一个概念性数据库,可以理解为Agent维护的管理对象数据库,里面存放了被管设备的相关变量信息。MIB库定义了被管理设备的一系列属性:对象的名称、对象的状态、对象的访问权限和对象的数据类型等。通过读取MIB变量的值, Agent可以查询到被管设备的当前运行状态以及硬件信息等,进而达到监控网络设备的目的。Agent可以利用修改对应设备MIB中的变量值,设置被管设备状态参数来完成设备配置。SNMP的管理信息库是树形结构,其结构类型与DNS相似,具有根节点且不具有名字。在MIB功能中,每个设备都是作为一个oid树的某分支末端被管理。每个OID(object identifier,对象标识符)对应于oid树中的一个管理对象且具有唯一性。有了树形结构的特性,可以高效迅速地读取其中MIB中存储的管理信息及遍历树中节点,读取顺序从上至下。目前运用最为广泛的管理信息库是MIB-Ⅱ,它在MIB-Ⅰ的基础上做了扩充和改进。MIB-Ⅱ结构示意图如2.3图如所示:(1)system组:作为MIB中的基本组,可以通过它来获取设备基本信息和设备系统信息等。(2)interfac组:定了有关接口的信息,例如接口状态、错误数据包等,在故障管理和性能管理当中时常用到。(3)address translation组:用于地址映射。(4)ip组:包含了有关ip的信息,例如网络编号,ip数据包数量等信息。(5)icmp组:包含了和icmp协议有关信息,例如icmp消息总数、icmp差错报文输入和输出数量。(6)tcp组:包含于tcp协议相关信息,例如tcp报文数量、重传时间、拥塞设置等。应用于网络拥塞和流量控制。(7)udp组:与udp协议相关,可以查询到udp报文数量,同时也保存了udp用户ip地址。(8)egp组:包含EGP协议相关信息,例如EGP协议下邻居表信息、自治系统数。(9)cmot组:为CMOT协议保留(10)transmission组:为传输信息保留(11)snmp组:存储了SNMP运行与实现的信息,例如收发SNMP消息数据量。2.2.2 SNMP通讯模型SNMP规定了5种协议基本数据单元PDU,用于管理进程与代理进程之间交换。(1)get-request操作:管理进程请求数据。(2)get-next-request操作:在当前操作MIB变量的基础上从代理进程处读取下一个参数的值。(3)set-request操作:用于对网络设备进行设置操作。(4)get-response操作:在上面三种操作成功返回后,对管理进程进行数据返回。这个操作是由代理进程返回给管理进程。(5)trap操作:SNMP代理以异步的方式主动向SNMP管理站发送Trap数据包。一般用于故障告警和特定事件发生。SNMP消息报文包含两个部分:SNMP报头和协议数据单元PDU。根据TCP/IP模型SNMP是基于UDP的应用层协议,而UDP又是基于IP协议的。因此可以得到完整的SNMP报文示意图如下:(1)版本号表示SNMP版本,其中版本字段的大小是版本号减1,如果SNMPv2则显示的字段值是1。(2)团体名(community)本质上是一个字符串,作为明文密钥在管理进程和代理进程之间用于加密传输的消息,一般默认设置成“public”。 (3)请求标识符(request ID)用于消息识别。由管理进程发送消息时自带一个整数值,当代理进程返回消息时带上该标识符。管理进程可以通过该标识符识别出是哪一个代理进程返回的数据从而找到对应请求的报文。(4)差错状态(error status)表示出现错误时由代理进程返回时填入差错状态符0~5中的某一数字,数字对应相关错误信息。差错状态描述符如下表:(5)差错索引(error index)表示在通信过程当中出现上表2.2的差错时,代理进程在应答请求时设置一个整数,整数大小对应差错变量在变量列表中偏移大小。(6)变量名-值对以key-value的方式存储变量名称和对应值。(7)trap报文是代理进程主动向管理进程发送的报文,不必等待管理进程下一次轮询。SNMPv2的trap报文格式较SNMPv1的trap报文格式更趋近于普通的SNMP响应报文,更加统一化。以SNMPv2为例的trap报文格式如下:trap类型已定义的特定trap共有7种,后面的则是由供养商自己定制。Trap类型如下表所示:2.2.3 SNMP组织模型SNMP代理组织分成分散式和集中式模型。在分散模型中,每一个服务器对应一个SNMP代理,可以理解为一一对应的关系,管理站分别与每个被管服务器上的代理进行通信。集中模型当中,在管理服务器上只创建一个SNMP代理。管理站只与管理管理服务器上的SNMP代理进行通信, SNMP代理接收来自某一固定区域的所有数据。如图2.6所示:2.3 Vue为实现前后端分离开发的理念,Vue应运而生。作为构建用户界面框架的Vue.js简单易上手使得前端开发人员不必再编写复杂的DOM操作通过this来回寻找相关节点,很大程度上提高了开发的效率。通过MVVM框架,可以自动完成视图同步数据更新,在对实例new Vue(data:data)进行声明后data中数据将与之相应的视图绑定,一旦data中的数据发生变更,视图中对应数据也会发生相应改变。Vue.js基于MVVM框架实现了视图与数据一致性,MVVM框架可以分为三个部分:Model、ViewModel、View。MVVM框架模式:Vue.js的理念是“一切皆为组件”,可以说组件是Vue.js的最强大功能。组件可以扩展HTML元素,将HTML、CSS、JavaScript封装成可重用的代码组件,可以应用在不同的场景,大大提高效率。它与传统的JavaScript相比,采用虚拟DOM渲染页面。当有数据发生变更时,生成虚拟DOM结构与实际页面结构对比,重新渲染差离部分,进一步提供了页面性能。2.4 EchartsEcharts(Enterprise Charts),它是由百度公司研发的纯JavaScript图表库,可以流畅的运行在PC和移动设备上。ECharts兼容当前主流浏览器,底层依赖轻量级Canvas库ZRender,Echarts提供直观、生动、交互性强、高度自定义化的可视化图标。ECharts包含了以下特性:1)丰富的可视化类型:既有柱状图、折线图、饼图等常规图,也有可用于地理数据可视化的热力图、线图等,还有多维数据可视化的平行坐标。2)支持多种数据格式共存:在4.0+版本中内置的dataset属性支持直接传入包括二维表中。3)多维数据的支持:可以传入多维度数据。4)移动端优化:特别针对移动端可视化进行了一定程度优化,可以使用手指在坐标系中进行缩放、平移。5)动态类型切换:支持不同类型图形随意切换,既可以用柱形图也可以用折线图展示统一数据,可以从不同角度展现数据。6)时间轴:对数据进行可视化的同时,可以分为周期或者定时进行展示,所有利用时间轴可以很好的动态观察数据的变化。2.5目前常见的故障诊断方法2.5.1基于专家系统的故障诊断方法专家系统是目前最常使用的诊断方法。通俗来讲,专家系统就是模拟人类专家去解决现实中某一特定领域的复杂问题。专家系统接收用户界面数据,将数据传递到推理引擎进行推理,做出决策并执行。专家系统作为人工智能的前身,从上世纪60年代开始到现在专家系统的应用已经产生了巨大的经济效益和社会效益,灵活可靠、极高的专业水平和良好的有效机制使得专家系统已经成为最受欢迎、最活跃的领域之一。2.5.2基于模糊理论的故障诊断方法在实际的工业生产过程当中,设备的“故障”状态与“正常”状态之间并没有严格的界限,它们之间存在一定的模糊过渡状态,并且在特征获取、故障判定过程中都中存在一定的模糊性。 因此,该方法不需要建立精确的数学分析模型,本质上是一个模式识别问题。 根据建议的症状参数,得出系统状态。 通常选择“择近原则”和“最大隶属原则”作为基本诊断原理(尤海鑫,2012)。2.5.3基于免疫算法的故障诊断方法通过模拟自然生物免疫系统的功能,即快速识别外来生物和外来生物,最后通过自我排斥将异物排出体外。生物免疫系统还建立了一套算法来测试各种条件,主要是在线检测,通过不合格的自我和外部组织消除系统来实现故障识别的能力。免疫算法的故障诊断方法属于并行处理能力,可以进行很多复杂的操作和处理。同时可以与遗传算法等其他智能优化算法结合使用,以增强自适应能力和自学习能力。从公开的文献中,学者们并不热衷于这种原理的方法。一般来说,在故障诊断领域,目前人工免疫理论的研究尚处于萌芽阶段。2.5.4基于神经网络的故障诊断方法神经网络是由大量简单的神经节点组成的复杂网络,以网络拓扑分布的方式存储信息,利用网络拓扑分布和权重实现对实际问题的非线性映射调整,并运用使用全局并行处理的方式,实现从输入空间到输出空间的非线性映射。该方法属于典型的模型诊断模式,不需要了解内部诊断过程,而是使用隐式方法完全表达知识。在获取知识时,它将自动生成由已知知识和连接节点的权重构成的网络的拓扑结构,并将这些问题完全连接到互连的网络中,有利于知识的自动发现和获取。并行关联推理和验证提供了便利的途径;神经网络通过神经元之间的交互来实现推理机制。

  • 索引序列
  • 关于智能公交的毕业论文
  • 城市智能公交毕业论文
  • 关于智能门禁的毕业论文
  • 智能公共交通系统论文
  • 关于智能网的探论毕业论文
  • 返回顶部