导电聚合物又称导电高分子,是指通过掺杂等手段,能使得电导率在半导体和导体范围内的聚合物。通常指本征导电聚合物,这一类聚合物主链上含有交替的单键和双键,从而形成了大的共轭π体系。π电子的流动产生了导电的可能性。导电聚合物在电化学掺杂时伴随着颜色的变化,它可以用作电致变色显示材料和器件。这种器件不但可以用于军事上的伪装隐身,而且可以用作节能玻璃窗的涂层。 导电聚合物具有防静电的特性,因此可以用于电磁屏蔽。传统的电磁屏蔽材料多为铜或铝箔,虽然它们具有很好的屏蔽效率,但重量重,价格昂贵。导电聚合物在电磁屏蔽方面具有几乎同样的性能,并且有成本低、可以制成大面积器件、使用方便等优点,因此是传统电磁屏蔽材料的一种理想替代品,可以用在诸如计算机房、手机、电视机、电脑和心脏起搏器上。 导电聚合物的电导率依赖于温度、湿度、气体和杂质等因素,因此可作为传感器的感应材料。目前,人们正在开发用导电聚合物制备的温度传感器、湿度传感器、气体传感器、pH传感器和生物传感器等。 导电聚合物还可以用来制作二极管、晶体管和相关电子器件,如肖特基二极管、整流器、光电开关和场效应管等。 有些导电聚合物具有光导性,即在光的作用下,能引起光生载流子的形成和迁移,可以用作信息处理如静电复印和全息照相,也可以用于光电转换如太阳能电池。 导电聚合物之所以引人注目,不仅是因为它具有好的电性能,而且还在于它具有不寻常的光学特性。导电高聚物具有好的非线性光学性能,它的非线性光学系数大, 响应速度快。由于非线性光学材料具有波长变换、增大振幅和开关记忆等许多功能,因此作为21世纪信息处理和前所未有的光计算基本元件而特别令人关注。另外,导电聚合物还是光折变和光限幅材料。
导电聚合物又称导电高分子,是指通过掺杂等手段,能使得电导率在半导体和导体范围内的聚合物。通常指本征导电聚合物,这一类聚合物主链上含有交替的单键和双键,从而形成了大的共轭π体系。π电子的流动产生了导电的可能性。最初的导电聚合物(聚乙炔)是由日本科学家白川英树最先发现,美国科学家 Heeger 和 MacDiarmid 也是这一研究领域的先驱。因此这三人共同获得了2000年的诺贝尔化学奖。随后,大量的导电聚合物相应的开发出来。目前发现的有:聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙烯和聚双炔等。随着导电聚合物的热点研究,其机理也得到不断地完善,同时其不断应用于实际生活中,导电聚合物不仅具有较高的电导率,而且具有光导电性质、非线性光学性质、发光和磁性能等,它的柔韧性好,生产成本低,能效高。导电聚合物不仅在工业生产和军工方面具有广阔的应用前景,而且在日常生活和民用方面都具有极大的应用价值。 导电聚合物具有掺杂和脱掺杂特性、较高的室温电导率、较大的比表面积和比重轻等特点,因此可以用于可充放电的二次电池和电极材料。日本的精工电子公司和桥石公司联合研制的3伏钮扣式聚苯胺电池已在日本市场销售,德国的BASF公司研制的聚吡咯二次电池也在欧洲市场出现,日本关西电子和住友电气合作试制出高输出大容量的锂-聚合物二次电池。与普通的铅蓄电池相比,这种二次电池具有能量密度高、转换效率高和便于管理等特点。所以说结合的聚合物的多种优点,导电聚合物可以开发到生活的各个层面,比如二极管、晶体管和相关电子器件,如肖特基二极管、整流器、光电开关和场效应管等。导电聚合物的电导率依赖于温度、湿度、气体和杂质等因素,因此可作为传感器的感应材料。目前,人们正在开发用导电聚合物制备的温度传感器、湿度传感器、气体传感器、pH传感器和生物传感器等。导电聚合物具有防静电的特性,因此可以用于电磁屏蔽。传统的电磁屏蔽材料多为铜或铝箔,虽然它们具有很好的屏蔽效率,但重量重,价格昂贵。导电聚合物在电磁屏蔽方面具有几乎同样的性能,并且有成本低、可以制成大面积器件、使用方便等优点,因此是传统电磁屏蔽材料的一种理想替代品,可以用在诸如计算机房、手机、电视机、电脑和心脏起搏器上。
第一章 绪论1.1化学修饰电极的发展过程1.2IUPAC对化学修饰电极的命名和定义1.3有关化学修饰电极的几个方面1.4化学修饰电极的研究、理论和应用参考文献第二章 化学修饰电极的制备和类型2.1固体电极表面的清洁处理2.2共价键合法2.3吸附性2.4聚合物薄膜法2.5组合法2.6其他方法参考文献第三章 化学修饰电极的表征3.1电化学方法表征化学修饰电极3.2光谱法研究化学修饰电极3.3波谱法表征化学修饰电极——电子自旋共振(ESR)3.4表面分析能谱法表征化学修饰电极3.5现场X射线衍射法表征化学修饰电极3.6石英晶体微天平(QCM)表征化学修饰电极3.7显微学表征化学修饰电极参考文献第四章 单分子层化学修饰电极的电极过程动力学4.1等温吸附理论4.2单分子层化学修饰电极反应的总过程4.3理想单分子层化学修饰电极的电化学响应4.4非理想单分子层化学修饰电极的电化学响应4.5氧化还原型单分子层化学修饰电极表面反应异相动力学4.6单分子层化学修饰电极电催化动力学参考文献第五章 聚合物膜内的电荷传输5.1电解质溶液中的电荷传输5.2聚合物薄膜内的电荷传输5.3电子转移理论参考文献第六章 聚合物薄膜修饰电极的电极过程动力学6.1引言6.2聚合物膜修饰电极上的电极反应总过程6.3聚合物膜修饰电极的渗透过程6.4聚合物膜修饰电极的异相动力学过程6.5聚合物膜内电子转移过程动力学6.6氧化还原型聚合物膜修饰电极电催化动力学6.7非氧化还原型聚合物膜修饰电极电催化动力学参考文献第七章 化学修饰电极的功能与效应7.1化学修饰电极电催化7.2化学修饰电极的光电化学7.3化学修饰电极的电化学发光7.4化学修饰电极用于有机电合成7.5化学修饰电极的电色效应7.6化学修饰电极作为分子电子器件7.7化学修饰电极的电化学控制释放参考文献第八章 无机化合物薄膜修饰电极8.1多核过渡金属氰化物薄膜修饰电极8.2黏土类薄膜化学修饰电极8.3分子筛薄膜修饰电极8.4多酸化学修饰电极参考文献第九章 聚合物薄膜修饰电极9.1惰性薄膜9.2电活性(氧化还原)聚合物薄膜9.3离子交换聚合物薄膜9.4导电聚合物薄膜参考文献第十章 化学修饰电极在分析化学中的应用10.1用于分析的基本要求10.2选择性富集分离10.3电催化作用10.4选择性渗透10.5离子通道传感器10.6电位传感器参考文献第十一章 化学修饰电极在FIA和HPLC中的应用11.1基本原理11.2儿茶酚胺及其代谢产物11.3过氧化物、肼类化合物11.4碳水化合物和多羟基酚11.5巯基化合物、醇和α-酮酸11.6NADH和蛋白质11.7无机物质11.8非电活性离子11.9阳离子药物和局部麻醉剂11.10多组分分析参考文献第十二章 氧化还原蛋白质和酶的直接电化学12.1引言12.2细胞色素c在联吡啶类修饰金电极上的直接电化学12.3细胞色素c在其他电极上的直接电化学12.4其他氧化还原蛋白质的直接电化学12.5酶的直接电化学参考文献第十三章 化学修饰电极在生物传感器中的应用13.1引言13.2生物组分的固定化13.3电极响应的增强13.4干扰和电极玷污的防止13.5全化学法构成的生物传感器参考文献第十四章 化学修饰电极的展望14.1技术和方法14.2微结构和动力学14.3研究与应用参考文献第十五章 分子自组有序膜15.1基本问题15.2自组单层膜15.3有序多层膜15.4模拟生物膜(双层磷脂膜)15.5纳米有序膜参考文献
以下翻译请楼主费心审阅。The ionic conductivity of a polymer electrolyte depends on the concentration of the conducting species and their mobility. 聚合物电解质的离子电导率取决于导电物质的浓度和它们的迁移性。The low ionic conductivity in a polymer complex resulting from the crystalline phase that affects the mobility of ions could be overcome by blending, plasticizing, etc. 在一种由结晶相(这会影响离子的迁移性)产生的聚合物复合材料中的低离子电导率可以通过共混和增塑等方法来克服。In this work, blended polymer electrolytes with polymers PVC, PEG, and inorganic salt LiClO4 with different concentrations of ceramic filler (TiO2) were prepared.在本研究中, 我们用聚合物PVC(聚氯乙烯)、PEG(聚乙二醇)和无机盐LiClO4,以不同浓度陶瓷填充剂(TiO2)制备了共混的聚合物电解质。The weight ratios between PVC:PEG:LiClO4 were kept constant throughout, and the wt.% of TiO2 was varied (0, 5, 10,15, 20). PVC:PEG:LiClO4 之间的重量比始终保持不变,而TiO2的wt%(质量分数)则是变化的(0,5,10,15,20)。The polymer films so obtained were flexible, opaque, and free standing. 这样获得的聚合物薄膜是柔软而不透明的,而且是自支撑的。The ionic conductivity measurements have been carried out on these polymer electrolytes by employing variable frequency complex AC impedance technique (LCZ 3330 meter, Keithley, USA, in the frequency range 40–100 kHz).对这些聚合物电解质已进行了离子电导率的测量,采用的是可变频率复合交流阻抗技术(LCZ 3330仪表,美国Keithley公司,频率范围40-100kHz)。The thin films of the polymer complex were sandwiched between the two stainless steel electrodes attached to the conductivity jig specially designed for the ionic conductivity measurements. 这种聚合物复合材料的薄膜相三明治一样夹在两个不锈钢电极之间,不锈钢电极附着于专门设计用于离子电导率测量的电导率夹紧装置。The two SS electrodes act as blocking electrodes for Li+ ions under an applied electric field.这两个不锈钢电极的作用是在一个施加的电场下作为锂离子的阻塞电极。The conductivity values of the polymer complexes were calculated (using the formula σ=l/RbA) from the bulk resistance obtained from the intercepts of the Cole–Cole plot and are tabulated (Table 1). 这种聚合物复合材料的电导率数值由体电阻计算(用公式σ=l/RbA ),体电阻则由阻抗圆图的截距获得,电导率数值被列于表1中。The polymer electrolytes were also subjected to conductivity studies in the temperature range (300–373 K). The graphical plotting of the variation of Z′ and Z〃 for the polymer compositions are shown in Fig. 3. 该聚合物电解质还受到了(300-373K)温度范围的电导率研究。关于聚合物组分的Z′ and Z〃变化的图形绘制示于图3。Figure 4 depicts the Arrhenius plot of conductivity in PVC–PEG–LiClO4 polymer electrolyte in the form of thin films. 图4描绘了薄膜形式的PVC–PEG–LiClO4 聚合物电解质电导率的阿累尼乌斯图。The non-linearity in Fig. 4 indicates that ion transport in polymer electrolytes is dependent on polymer segmental motion.图4中的非线性现象表明, 在聚合物电解质中的离子输运取决于聚合物的链段运动。Thus, the result may be described by the VTF relation, which describes the transport properties in a viscous matrix.因此,其结果可以用VTF(Vogel-Tamman-Fulcher)关系来描述, 这一关系可以描述一种粘性母料中的输运性质。 It is also observed that as temperature increases, the conductivity values also increase for all the compositions. 我们还观察到,随着温度的升高,所有组分的电导率值也增加。At high temperature, thermal movement of polymer chain segments, and the dissociation of salts are improved, thereby increasing ionic conductivity. 在高温下,聚合物链段的热运动,以及盐的离解得到改善,从而使离子电导率提高。However, at low temperature, the presence of lithium salt leads to salt–polymer or cation–dipole interaction, which increases the cohesive energy of polymer networks. 可是在低温下,锂盐的存在导致了盐-聚合物或阳离子-偶极子的相互作用,这提高了聚合物网络的结合能。
离子导电聚合物电解质的依赖的浓度和机动性。进行物种在一个较低的离子电导率。对性能较好的聚合物复合而造成的影响结晶阶段的离子迁移可以克服塑化混,等等。在这部作品中,混聚合物电解质与polymersPVC、钉子、和无机盐LiClO4以不同浓度的陶瓷填料(二氧化钛)。重量比PVC:汇率:LiClO4之间始终不变的情况下进行的,wt.二氧化钛是多样的(0)、(五)、10,15、20)。聚合物膜进行了比较灵活,所以不透明的、独立的. 测量的离子电导率进行这些聚合物电解质利用变频复杂的交流阻抗法(LCZ 3330仪、吉时利、美国、频率40 - 100khz),薄膜的聚合物复合被夹在两个人之间的不锈钢焊条附有电导率夹具,专为离子电导率的测量方法。这两个学生电极作为阻断电极李+离子在电场电导率值的计算了聚合物复合体(公式σ= l / RbA)从体积电阻中获得的Cole-Cole截获并表情节(表1)。聚合物电解质 也受导学的温度范围内(300 - 373 K)。图形绘制的变化的Z轴和Z〃′对聚合物作品都显示在图3。图4描绘的阿伦尼斯阴谋在PVC-PEG-LiClO4导电聚合物电解质的薄膜。非线性,如图4表明离子聚合物电解质运输是依赖于聚合物节段性运动。因此,其结果可能是VTF关系描述,并给出了在粘性矩阵的性质。它也观察到作为温度的升高,也增加了电导率值为所有的曲子。在高温、热运动的聚合物链段,和分离的改进,从而提高盐离子电导率。然而,在较低的温度,在场的锂盐导致salt-polymer或cation-dipole互动,提高能源的聚合体网络的凝聚力。
细说电解质溶液的导电性电解质溶液导电是因为有自由移动的离子,所以总的说来,离子浓度越高,离子所带的电荷越多,其溶液的导电性就越强。一、强、弱电解质溶液导电性的比较1.物质浓度相同的强、弱电解质溶液,由于弱电解质是部分电离,离子浓度低,此时强电解质溶液的导电性强。因此在相同浓度、相同温度下,做导电能力的对比实验就可以判断强弱电解质。2.强电解质溶液的导电性不一定比弱电解质溶液的导电性强,如:常温下,10克醋酸与10克硫酸钡分别加入100克水中配成的溶液中,醋酸的导电性强。因为硫酸钡难溶于水,只有极小部分溶于水,但溶于水的部分全部发生电离,所以硫酸钡溶液的导电性差,但硫酸钡是强电解质。 3.电解质导电一般要溶于水,如固体氯化钠、纯硫酸是不能导电的。4.物质溶于水形成的溶液能导电,该物质不一定是电解质,如Cl2、SO2的水溶液导电,但SO2是非电解质,Cl2既不是电解质又不是非电解质。二、影响电解质溶液导电性的因素1.加其它电解质①一般来说,强电解质溶液中加强电解质,导电能力变化不大,如氯化钠溶液中加硝酸钾,但氢氧化钡溶液中加硫酸或硫酸铜时,在增加电解质的过程中会出现难导电的极点,因为它们能相互反应生成沉淀和难电离物质,出现极点后,继续增加电解质,溶液的导电性又会增强。②一般来说,弱电解质溶液中加弱电解质,导电能力变化不大,如醋酸溶液中冰醋酸,但氨水中加冰醋酸时,溶液的导电性会显著增强,因为它们相互反应生成强电解质醋酸铵;亚硫酸溶液中加入氢硫酸时,溶液的导电性会显著减弱,因为它们相互反应生成弱电解质水和单质硫。③强电解质溶液中加弱电解质,导电能力变化不大。④弱电解质溶液中加强电解质,导电能力显著增强。 2.加水稀释:一般来说,加水稀释电解质溶液的导电性是减弱的,但浓醋酸在加水稀释时,有一段时间内导电性会略为增强,因为浓醋酸的电离度很小,加水后的一段时间内,醋酸电离度的增加是主要变化,溶液体积增加是次要变化。3.升高温度:一般来说,电解质溶液升高温度时,导电能力增强,因为温度高离子运动速率大,其中弱电解质溶液如醋酸溶液变化尤为明显,但不会是温度越高,导电能力越强,因为高温时,弱电解质可能会挥发。值得注意的是,金属的导电性随着温度的升高而减弱,因为温度高时电阻大。4.亚硫酸溶液中通氯气,导电能力增强,亚硫酸溶液露置于空气中一段时间后,导电性也增强,因为亚硫酸具有还原性,与氯气、氧气反应生成硫酸等。
钠离子电池电解液主要成分:钠离子电池电解质按其存在状态讲有液态和固态两类之分。与锂离子电池相似,用于钠离子电池的液态电解质也是由钠盐溶于有机溶剂中,钠盐一般可以为:NaPF6,Na-ClO4,NaAIClh,NaFeClh,NaSO,CF3,NaBF4,NaBClh,NaNO3,NaPOFA,NaSCN,NaCN,NaAsF6,NaCF3CO2,NaSbF6,NaC6HsCO2,Na(CH3)C6H4SO3,NaHSO4,NaB(C6Hs)4等等;对有机溶剂则有以下要求:介电常数大,熔点低(常温时为液态),钠离子导电能力强。为满足前叙几点要求,电解质溶剂一般为无水二元组分,其成分可以是碳酸乙烯酯(EC),碳酸丙烯酯(PC),碳酸二乙酯(DEC),1,2-二甲氧基乙烷(DME),四氢呋喃(THF),2-甲基四氢呋喃(2-MTHF)等。在最终配制成的电解质中,Na+摩尔浓度以1mol/L左右为宜。 钠离子电池液态电解质配置要求高(无水)、易泄漏、不安全(如造成单质金属负极生成枝晶,导致电池内部短路而发生爆炸)。特别是以单质钠为电池负极材料时,它与液态电解质间的反应造成该类电池发展困难。使用合金负极是一种方案,但合金中钠离子扩散困难,而且在多次循环之后,其体积有显著变化。另外一种解决方案是改进电解质,即在选择适当溶剂的同时,加入添加剂。但人们也在寻找新型电解质材料,近年来发展较快的聚合物电解质就是一个典型的例子。一般来讲,所谓聚合物电解质就是将盐类物质以掺杂的形式混入聚合物制成导电(主要是离子导电)的高分子。 常见的用作钠离子电池固体聚合物电解质(Solid Polymer Electrolyte,SPE)的高聚物有聚氧化乙烯、聚苯胺、聚吡咯、乙烯丙烯酸共聚物、聚四氟物等,按高聚物的构型不同,它们可分别形成线形高分子电解质、梳状高分子电解质、交联网络高分子电解质等不同种类的聚合物电解质。 碱金属盐则有Nal、NaBH4、NaBF4以及聚磷酸钠等,它们一般都有带负电荷的大体积阴离子。将来开发新盐时可考虑:①有宽的电化学窗,②与聚合物基体形成低共熔复合材料,③阴离子结构对称或柔顺,有增塑作用。这类高分子复合材料的导电性可能是导电通道、隧道效应和场致发射三种机理作用的竞争结果。而已发现的PEO-NaBH4体系中,由于阴离子配对的阻碍作用,降低了离子导电性。为满足充电电池的导电需要,应要求SPE的离子导电性在10-3S/cm以上。然而在盐池的导电需要,应要求SPE的离子导电性在10-3S/cm以上。然而在盐类掺杂后所获得的固态聚合物电解质的离子导电性能尚不能达到这一水平。因此,今后这方面的研究工作应侧重于开发出对正、负极材料具有稳定性的同时又具有较高的离子导电性的固体聚合物电解质。 Nasicon也是近十几年发展起来的一种钠离子导体,它是由钠、错、硅、磷、氧5种元素构成的复合电解质。美国专利曾报导用Na3Zr2Si2PO12粉末与Teflon混合可制得极薄固体电解质。常见的硫酸钠基固体电解质与Na3x+2y+zPxOyClz(0≤x,y,z≤1;x,y,z中仅一个为0)也是中高温使用的快离子导体。要想用于新型二次钠离子电池,这类固态电解质应在常温下就具有较高的离子导电性,而且制备容易。SiO2骨架三维空间钠离子导体的研制成功已向这一目标靠近,但尚未在钠离子电池中得到应用。
1.1 锂钠同族,物化性质有类似之处
锂、钠、钾同属于元素周期表ⅠA 族碱金属元素,在物理和化学性质方面有相似之处,理论上都可以作为二次电池的金属离子载体。
锂的离子半径更小、标准电势更高、比容量远远高于钠和钾,因此在二次电池方面得到了更早以及更广泛的应用。
但锂资源的全球储量有限,随着新能源 汽车 的发展对电池的需求大幅上升,资源端的瓶颈逐渐显现,由此带来的锂盐供需的周期性波动对电池企业和主机厂的经营造成负面影响,因此行业内部加快了对资源储备更加丰富、成本更低的电池体系的研究和量产进程,钠作为锂的替代品的角色出现,在电池领域得到越来越广泛的关注。
1.2 综合性能优于铅酸电池,能量密度是短板
钠离子电池与锂离子电池工作原理类似。与其他二次电池相似,钠离子电池也遵循脱嵌式的工作原理,在充电过程中,钠离子从正极脱出并嵌入负极,嵌入负极的钠离子越多,充电容量越高;放电时过程相反,回到正极的钠离子越多,放电容量越高。
能量密度弱于锂电,强于铅酸。
在能量密度方面,钠离子电池的电芯能量密度为100-160Wh/kg,这一水平远高于铅酸电池的30-50Wh/kg,与磷酸铁锂电池的120-200Wh/kg相比也有重叠的范围。
而当前量产的三元电池的电芯能量密度普遍在200Wh/kg以上,高镍体系甚至超过 250Wh/kg,对于钠电池的领先优势比较显著。
在循环寿命方面,钠电池在3000次以上,这一水平也同样远远超出铅酸电池的300次左右。
因此,仅从能量密度和循环寿命考虑,钠电池有望首先替代铅酸和磷酸铁锂电池主打的启停、低速电动车、储能等市场,但较难应用于电动 汽车 和消费电子等领域,在这两大领域锂电仍将是主流选择。
安全性高,高低温性能优异。
钠离子电池的内阻比锂电池高,在短路的情况下瞬时发热量少,温升较低,热失控温度高于锂电池,具备更高的安全性。因此针对过 充过 放、短路、针刺、挤压等测试,钠电池能够做到不起火、不爆炸。
另一方面,钠离子电池可以在-40 到80 的温度区间正常工作,-20 的环境下容量保持率接近90%,高低温性能优于其他二次电池。
倍率性能好,快充具备优势。
依赖于开放式3D结构,钠离子电池具有较好的倍率性能,能够适应响应型储能和规模供电,是钠电在储能领域应用的又一大优势。
在快充能力方面,钠离子电池的充电时间只需要10分钟左右,相比较而言,目前量产的三元锂电池即使是在直流快充的加持下,将电量从20%充至80%通常需要30分钟的时间,磷酸铁锂需要45分钟左右。
2.1 资源端:克服锂电瓶颈
锂电池面临资源瓶颈,钠资源相对丰富。锂的地壳资源丰度仅为0.0065%。
根据美国地质调查局的报告,随着锂矿资源勘探力度增加,2020年全球锂矿储量提高到 2100万吨锂金属当量(折合碳酸锂1.12亿吨),同比增长23.5%;若按照每辆电动车使用50kg碳酸锂测算且不考虑碳酸锂的其他下游市场,当前锂储量仅能够满足20亿辆车的需求,因此存在资源端的瓶颈。
分区域看,全球主要锂矿资源国锂储量均有不同程度的提高,澳大利亚和中国增加较多,其中澳大利亚锂储量由2019年的280万吨提高到470万吨锂金属当量,而2020年中国锂储量则大幅提升50%至150万吨锂金属当量。
总体来看,智利和澳大利亚仍为全球前两大锂资源拥有国,2020年分别约占全球锂资源储量的43.8%和22.4%。
与之相比,钠资源的地壳丰度为2.74%,是锂资源的440倍,同时分布广泛,提炼简单,钠离子电池在资源端具有较强的优势。
锂价上涨带来企业成本端的扰动。
从短期来看,由于2021年开始锂的需求增长,而上游锂矿供给有所收缩以及去库存,锂矿以及锂盐价格在2020年见底,2021年上半年价格回升幅度较大;从长期来看,锂资源存在产能瓶颈引发市场对于锂价中枢上移的预期。
对于企业来说,长期稳定的原材料价格对于自身的正常经营意义重大,锂价的持续上涨可能加速企业寻找性价比更高的替代品的进程。
中国锂资源对外依存度较高。
中国锂矿主要分布在青海、西藏、新疆、四川、江西、湖南等省区,形态包括锂辉石、锂云母和盐湖卤水。
受制于提锂技术、地理环境、交通条件等客观因素,长期以来中国锂资源开发较慢,主要依赖进口;近年来随着下游需求增长以及技术进步,中国锂资源开发进度有所加速。
在不考虑库存下,2020年中国锂行业对外资源依赖度超70%,维持较高水平。
发展钠离子电池具备战略意义。
中国大力发展新能源 汽车 的目的除了降低碳排放、解决环境问题之外,减少对传统化石燃料的进口依赖也是重要原因之一。
因此,若不能有效解决资源瓶颈问题,发展电动车的意义就会打一定折扣。
除了锂资源外,锂电池其他环节如钴和镍也面临进口依赖以及价格大幅波动的难题,因此发展钠离子电池具备国家层面的战略意义。
2020年,美国能源部明确将钠离子电池作为储能电池的发展体系;欧盟储能计划“电池 2030”项目将钠离子电池列在非锂离子电池体系的首位,欧盟“地平线2020研究和创新计划”更是将钠离子材料作为制造用于非 汽车 应用耐久电池的核心组件重点发展项目;国内两部委《关于加快推动新型储能发展的指导意见》提出坚持储能技术多元化,加快飞轮储能、钠离子电池等技术开展规模化试验示范。
钠离子电池已经受到越来越多国家的关注和支持。
2.2 材料端:凸显成本优势
正极材料
正极材料使用钠离子活性材料,选择呈现多样化。
正极材料是决定钠离子电池能量密度的关键因素,目前研究和有量产潜力的材料包括过渡金属氧化物体系、聚阴离子(磷酸盐或硫酸盐)体系、普鲁士蓝(铁氰化物)体系三大类。
过渡金属氧化物为当前正极材料主流选择。
层状结构过渡金属氧化物2(M 为过渡金属元素)具有较高比容量以及其与锂电池的正极材料在合成以及电池制造方面的许多相似性,是钠离子电池正极材料有潜力得到商业化生产的主流材料之一。
然而,层状结构过渡金属氧化物在充放电过程中易发生结构相变,在长循环和大电流充放电中容量衰减严重,使其具有较低的可逆容量及较差的循环寿命。
常见的改善手段主要有体相掺杂、正极材料表面包覆等。
中科海钠采用了P2型铜基层状氧化物(P2-Na0.9Cu0.22Fe0.3Mn0.48O2),显著提升正极材料的容量水平,并且电池能量密度达到145Wh/kg;
钠创新能源采用的O3型铁酸钠基三元氧化物(O3-NaFe0.33Ni0.33Mn0.33O2)具有较高的克容量(超过130mAh/g)和良好的循环稳定性;
英国Faradion公司采用镍基层状氧化物材料,电池能量密度超过140Wh/kg。
磷酸钒钠是研究的主流方向之一。
聚阴离子型化合物 , Na[() ] (M 为可变价态的金属离子如Fe、V等,X为P、S等元素),具有较高电压、较高理论比容量、结构稳定等优点,但电子电导率低,限制了电池的比容量和倍率性能。
目前业界研究最多材料的主要包括磷酸铁钠、磷酸钒钠、硫酸铁钠等,并通过碳包覆以及参入氟元素提升导电性以及容量。
钠创新能源将磷酸钒钠作为重点研发的钠电池正极材料之一,中科院大连物化所已实现三氟磷酸钒钠的高效合成和应用。
普鲁士蓝材料具有更高的理论容量。
普鲁士蓝类材料,Na[()6] (为 Fe、Mn、Ni 等元素)具有开框架结构 , 有利于钠离子的快速迁移;理论上能够实现两电子反应,因此具有高的理论容量。
但在制备过程中存在结构水含量难以控制等问题,并且容易发生相变以及与电解质产生副反应导致循环性能变差。
辽宁星空钠电致力于 Na1.92FeFe(CN)6的产业化研究,理论容量高达170mAh/g; 宁德时代采用普鲁士白(Nan[Fe()6])材料,创新性地对材料体相结构进行电荷重排,解决了普鲁士白在循环过程中容量快速衰减这一核心难题。
钠离子电池在材料端拥有显著的成本优势。
由于碳酸钠价格远低于碳酸锂,并且钠离子电池正极材料通常使用铜、铁等大宗金属材料,因此正极材料成本低于锂电池。
根据中科海钠官网数据,使用NaCuFeMnO/软碳体系的钠电池的正极材料成本仅为磷酸铁锂/石墨体系的锂电池正极材料成本的40%,而电池总的材料成本较后者降低 30%-40%。
负极材料
钠离子电池负极材料主要包括碳基材料(硬碳、软碳)、合金类(Sn、Sb等)、过渡金属氧化物(钛基材料)和磷酸盐材料等。
钠离子半径大于锂离子,难以嵌入石墨类材料,因此锂电池传统的石墨负极并不适用于钠电池。
合金类普遍体积变化较大,循环性能较差,而金属氧化物和磷酸盐材料容量普遍较低。 无定形碳为钠电池主流材料。
在已报道的钠离子电池负极材料中,无定型碳材料以其相对较低的储钠电位,较高的储钠容量和良好的循环稳定性等优点而成为最具应用前景的钠离子电池负极材料。
无定型碳材料的前驱体可分为软碳和硬碳前驱体,前者价格低廉,在高温下可以完全石墨化,导电性能优良;后者价格较高(10-20万元/吨),在高温下不能完全石墨化,但其碳化后得到的碳材料储钠比容量和首周效率相对较高。
以亚烟煤、烟煤、无烟煤为代表的煤基材料具有资源丰富、廉价易得、产碳率高的特点,采用煤基前驱体制备出的钠离子电池负极材料,储钠容量约220mAh/g,首周效率可达80%,是目前最具性价比的钠离子电池碳基负极材料;但该类材料存在微粉多、振实密度低、形状不规则等特性,在电芯生产过程中不利于加工。
中科海钠以亚烟煤、褐煤、烟煤、无烟煤等煤基材料为主体,沥青、石油焦、针状焦等软碳前驱体为辅材,提出一种能够改善煤基钠离子电池负极材料的加工性能和电化学性能的方法,制备工艺简单、成本低廉,能够得到微粉含量低、振实密度高的电池负极材料。
宁德时代开发了具有独特孔隙结构的硬碳材料,其具有易脱嵌、优循环的特性;比容量高达350mAh/g,与动力类石墨水平相当。
电极集流体皆为铝箔,成本更低。
在石墨基锂离子电池中,锂可以与铝反应形成合金,因此铝不能用作负极的集流体,只能用铜替代。
钠离子电池的正负极集流体都为铝箔,价格更低;根据中科海钠官网数据,使用 NaCuFeMnO/软碳体系的钠电池的集流体(铝-铝)成本仅为磷酸铁锂/石墨体系的锂电池集流体(铝-铜)成本的20%-30%。
集流体是除正极外,材料成本与锂电池差异最大的环节。
电解液
和锂离子电池相似,钠离子电池电解质主要分为液体电解质、固液复合电解质和固体电解质三大类。
一般情况下 , 液体电解质的离子电导率高于固体电解质。
在溶剂层面,酯类和醚类电解液是最常用的两种有机电解液,其中酯类电解液是锂离子电池体系的主要选择,因为其可以有效地在石墨负极表面进行钝化且高电压稳定性优于醚类电解液。
对于钠离子电池:
首先,目前主流的研发机构依然沿用了酯类溶剂,如PC、EC、DMC、EMC等,针对不 同的正负极和功能配方有所不同,且 PC 的用量占比高于锂电池;
其次,由于在醚类电解液中钠离子和醚类溶剂分子可以高度可逆地发生共插层反应,且有效地在负极材料表面构建稳定的电极/电解液界面,所以受到越来越广泛的关注和研究;
最后,水系电解液也是新的研究领域之一,以水为电解液溶剂替代传统有机溶剂,更加环保安全且成本低。
在电解质层面,锂盐将换成钠盐,如高氯酸钠(NaClO4)、六氟磷酸钠(NaPF6)等。
在添加剂层面,传统通用添加剂体系没有发生明显变化,如FEC在钠离子电池中依然被广泛应用。
其他
隔膜方面,钠离子电池和锂电池技术类似,对孔隙率的要求或有一定差异。
外形封装方面,钠离子电池也包括圆柱、软包和方形三种路线。
根据各家官网显示,中科海钠主要为圆柱和软包路线,钠创新能源则三种技术路线都有。
设备工艺方面,与锂电池区别不大,有利于钠电池沿用现成设备和工艺快速投入商业化生产。
规模化生产后成本有望低于0.3元/Wh。
当前由于产业链缺乏配套、缺乏规模效应,钠离子电池的实际生产成本在1元/以上;政策的支持和龙头企业大力推广有望加速产业化进程,若达到当前锂电池的市场体量,成本有望降至0.2-0.3元/Wh,与锂电池相比具备优势。
3.1 钠离子电池重回舞台,研究热度升温
钠离子电池的研究始于1970年左右,最初与锂离子电池都是电池领域科学家研究的重点方向。
20世纪80年代,锂离子的正极材料研究首先取得突破,以钴酸锂为代表,和由石墨构成的负极材料组合,让锂电池获得了极佳的性能;让两者真正分野的是索尼在1991年成功将锂电池商用化并首先应用于消费电子领域。
锂电池商用化的顺利进行反向抑制了钠离子电池技术路线的发展,当时商用的锂离子电池循环寿命能达到钠离子电池的10倍左右,两种电池的产品性能表现相去甚远,锂离子电池获取了科学家和资本、产业的绝对关注。
2010年之后,由于大规模储能市场的场景逐渐清晰以及产业界对未来锂资源可能面临供给瓶颈的担忧,钠离子电池重新进入人们的视野。
之后十年时间,全球顶尖的国家实验室和大学先后大力开展钠离子电池的研发,部分企业也开始跟进。
包括国际代表Faradion公司、国内代表机构中科海钠和钠创新能源以及锂电池代表企业宁德时代等。
Faradion英国牛津大学主导的Faradion公司成立于2011年,是全球首家从事钠离子电池研究的公司,15年开发出电池系统,材料为层状金属氧化物和硬碳体系。
之后多个国家也成立了相关机构和公司,例如法国科学院从15年开始开发磷酸钒钠电池,夏普北美研究院几乎同时开发长循环寿命的钠电池。
中科海钠
中科海钠成立于2017年,是国内首家专注于钠离子电池研发的公司,公司团队主要来自于中科院物理化学研究所。
2017年底,中科海钠研制出48V/10Ah钠离子电池组应用于电动自行车;2018年9月,公司推出首辆钠离子电池低速电动车;
2019年3月,公司自主研发的30kW/100kWh钠离子电池储能电站在江苏省溧阳市成功示范运行;2020年9月,公司钠离子电池产品实现量产,产能可达30万只/月;
2021年3月,公司完成亿元级 A 轮融资,用于搭建年产能2000吨的钠离子电池正、负极材料生产线;2021年6月,公司全球首套1MWh钠离子电池储能系统在山西太原正式投入运营。
在材料体系方面,正负极材料分别选用成本低廉的钠铜铁锰氧化物和无烟煤基软碳,电芯能量密度已接近 150 Wh/kg, 循环寿命达4000次以上,产品主要包括钠电池以及负极、电解液等配套材料。
钠创新能源
钠创新能源诞生于2018年,由上海电化学能源器件工程技术研究中心、上海紫剑化工 科技 有限公司和浙江医药股份有限公司共同发起成立,技术团队主要来自于上海交通大学。
2019年4月,正极材料中试线建成并满负荷运行;2020年10月,公司二期生产规划基地建设;2021年7月,公司与爱玛电动车联合发布电动两轮车用钠离子电池系统。
在材料体系方面,公司在铁酸钠基三元氧化物方面研究较为深入,产品主要包括钠电池以及铁基三元前驱体、三元材料、钠电电解液等。
宁德时代
宁德时代从2015年开始研发钠离子电池,研发队伍迅速扩大;2020年6月,公司宣布成立21C创新实验室,中短期主要方向为锂金属电池、固态锂电池和钠离子电池;
2021年7月,公司推出第一代钠离子电池,采用普鲁士白/硬碳体系,单体能量密度高达 160Wh/kg;常温下充电15分钟,电量可达80%以上;
在-20 C低温环境中,也拥有90%以上的放电保持率;系统集成效率可达80%以上,热稳定性远超国家强标的安全要求;
公司表示下一代钠离子电池能量密度研发目标是200Wh/kg以上。
在系统创新方面,公司开发了 AB 电池系统解决方案,即钠离子电池与锂离子电池两种电池按一定比例进行混搭,集成到同一个电池系统里,通过BMS精准算法进行不同电池体系的均衡控制。
AB电池系统解决方案既弥补了钠离子电池在现阶段的能量密度短板,也发挥出了它高功率、低温性能好的优势;以此系统结构创新为基础,可为锂钠电池系统拓展更多应用场景。公司已启动相应的产业化布局,计划2023年形成基本产业链。
3.2 剑指储能和低速车市场,潜在市场空间大
预计2025年钠离子电池潜在市场空间超200GWh。
根据上文分析,钠离子电池有望率先在对能量密度要求不高、成本敏感性较强的储能、低速交通工具以及部分低续航乘用车领域实现替代和应用。
暂不考虑电池系统层面的改进(如锂钠混搭)对应用场景的拓展,2020年全球储能、两轮车和A00车型装机量分别为14/28/4.6GWh,预计到2025年三种场景下的电池装机量分别为180/39/31GWh,对应2025年钠离子电池潜在市场空间为250GWh。
钠离子电池作为二次电池重要的技术路线之一,在当前对上游资源紧缺度和制造成本的关注度逐步升温的情况下,凭借资源端和成本端的优势重新得到市场的广泛关注。
但由于钠离子电池本身能量密度较低且提升空间有限,因此在行业内更多地扮演新能源细分领域替代者的角色,有望率先在对能量密度要求不高、成本敏感性较强的储能、低速交通工具以及部分低续航乘用车领域实现替代和应用,对中高端乘用车市场影响十分有限。
在龙头企业的推动下,钠离子电池的产业化进程有望加速。
行业公司:
1)布局钠离子电池相关技术的传统电池和电池材料企业。
尽管技术路线有差异,但传统的锂电龙头企业在资金和研发方面优势明显,对各种技术路线具有较高的敏感性,对钠离子电池相关技术也多有布局。
宁德时代、鹏辉能源,公司在钠电领域皆保持长期的研发投入,后者预计21年年底电池量产;杉杉股份、璞泰来、新宙邦,关注欣旺达、容百 科技 、翔丰华,上述公司在钠电池或材料领域皆有专利或研发布局。
2)投资钠离子电池企业的公司。
华阳股份,公司间接持有中科海钠1.66%的股权;浙江医药,公司持有钠创新能源40%的股权。
3)产业链重塑带来的机会。
钠离子电池的起量将带动正负极、电解液锂盐技术路线的变更,新的优秀供应商将脱颖而出。
华阳股份,公司与中科海钠既有股权关系,又有业务合作,生产的无烟煤是海钠煤基负极的重要原料之一,并且与后者合资建设正负极材料项目;中盐化工、南风化工,公司具备上游钠盐储备。
1)钠离子电池技术进步或成本下降不及预期的风险:
钠离子电池的产业化还处于初期阶段,若技术进步或者成本改善的节奏慢于预期,将影响产业化进程,导致其失去竞争优势。
2)企业推广力度不及预期的风险:
当前由于规模较小、产业链缺乏配套,钠电池生产成本较高,其规模化生产离不开龙头企业的大力推广;若未来企业的态度软化,将影响钠电池产业化进程。
3)储能、低速车市场发展不及预期的风险:
钠离子电池主要应用于储能和低速车等领域,若下游市场发展速度低于预期,将影响钠电池的潜在市场空间。
——————————————————
请您关注,了解每日最新的行业分析报告!
报告属于原作者,我们不做任何投资建议!
作者:平安证券 朱栋 皮秀 陈建文 王霖 王子越
报告原名:《电力设备行业深度报告:巨头入场摇旗“钠”喊,技术路线面临分化 》
钠电池的缺点和不足有寿命短、放电快。
钠离子电池是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。2018年12月,南京理工大学夏晖教授与中外团队合作,首创结构设计和调控方法,在锰基正极材料研究方面取得重要进展。
钠离子电池研究最早开始于上世纪八十年代前后,早期被设计开发出来的电极材料如MoS2、TiS2以及NaxMO2电化学性能不理想,发展非常缓慢。寻找合适的钠离子电极材料是钠离子储能电池实现实际应用的关键之一。
2010年以来,根据钠离子电池特点设计开发了一系列正负极材料,在容量和循环寿命方面有很大提升,如作为负极的硬碳材料、过渡金属及其合金类化合物,作为正极的聚阴离子类、普鲁士蓝类、氧化物类材料。
特别是层状结构的NaxMO2(M= Fe、Mn、Co、V、Ti)及其二元、三元材料展现了很好的充放电比容量和循环稳定性。
摘 要 : 采用有机硅氧烷单体与聚醚、二羟甲基丙酸 (DMPA) 和甲苯二异氰酸酯 ( TD I) 反应制备水性聚氨酯涂料。研究结果表明采用后添加有机硅氧烷单体的合成工艺 , 可制备贮存稳定好的水性聚氨酯乳液 ; 凝胶渗透色谱 (GPC) 分析表明有机硅氧烷改性水性聚氨酯提高了聚氨酯的相对分子质量 ; 性能测试表明有机硅氧烷改性水性聚氨酯涂料具有明显的优点 : 涂膜硬度高 , 耐沾污性、耐水性好和耐溶剂性好。 关键词 : 水性聚氨酯 ; 有机硅氧烷 ; 改性 ; 二羟甲基丙酸 0 引 言 聚氨酯具有耐磨性、耐低温、柔韧性好及粘合强度大等特点 , 其在弹性体、泡沫塑料、涂料及黏合剂中已获得了广泛的应用。水性聚氨酯以水为分散介质 , 具有不燃、无毒、不污染环境、节省能源和易加工等优点 , 日益受到人们的青睐。然而常用线型水性聚氨酯存在耐水性、耐沾污性及热稳定性较差等缺点 , 因此 , 往往需要对其进行改性。常用的改性方法是采用丙烯酸酯或环氧树脂进行改性 , 提高水性聚氨酯的交联密度 , 从而提高其耐水性 , 但对提高水性聚氨酯的耐沾污性和热稳定性作用不大。有机硅氧烷是一种可用于乳液合成和水性涂料体系的有机功能性硅氧烷化合物。具有优良的耐水性、耐化学品性、耐温变性、介电性、耐候性、生理惰性和低表面能。常用的硅氧烷改性是采用聚硅氧烷树脂与水性聚氨酯乳液进行物理共混 , 但聚有机硅氧烷与聚氨酯链段的溶解度 1. 2 水性聚氨酯树脂的合成 在氮气保护下 , 将聚醚二醇加入到装有温度计、搅拌装置和回流冷凝器的 1 000 mL 四口烧瓶中 , 加热至 90 ℃ 脱除水分后降温 , 加入 TD I 在 70 ~ 80 ℃反应 3 h, 再加入丁二醇在 70 ~ 80 ℃ 反应 1 h, 用正丁胺滴定法判断反应终点。再加入 DMPA 与 NMP 的混合物和有机硅氧烷单体 , 在 60 ~ 65 ℃ 反应至— NCO 含量达到理论值 , 然后降温至 40 ℃ , 加入三乙胺中和 , 添加丙酮稀释 , 在常温水中乳化 , 用乙二胺扩链 , 最后真空脱去丙酮得到水性聚氨酯分散体 (WPU ) 。在实验过程中 n ( — NCO) ∶ n ( — OH) = 1 . 60 ∶ 1 。
聚氨酯主要是由聚乙二醇(PEG)Mn=2000g/mol;二异氰酸酯甲苯(TDI);1,4-丁二醇(BDO);二丁基锡二月桂酸酯(DBTDL)所合成。
但是按其所制得产品的物理形态可分为弹性体、泡沫、涂料、粘结剂等类。
主要合成工艺有:自乳化法和外乳化法、预聚体法、丙酮法、熔融分散法、二元胺直接扩链与酮亚胺—酮连氮法。
(1) 初聚体的制备: 在装有搅拌、温度计、冷凝管的三口瓶中,加入TDI 和脱水的聚醚二元醇,逐渐升温到60 "C .保持在60 "C -65C 下反应1.5小时左右,取样测定反应物中NCO 基团的含量,当达到规定值后,停止反应。(2) 初聚体的扩链: 加入亲水扩链剂DMPA. 升温到80'C 左右反应到NCO达到的规定值,继续加入小分子扩链剂在70'C 进行扩链反应,进一步提高预聚物的分子量.(3) 预聚物的中和 对预聚物进行降温,当温度达到40'C 左右时,加入计算好的中和剂,快速搅拌,得到中间休。((4) 乳化: 一定的去离子水缓慢加入中间体中,同时高速搅拌乳化,得到水性聚氨酯分散体.(5) 脱溶剂z 将乳化好的水性聚氨酶转移到带有真空冷凝装置的三口烧瓶中,在0.06MPa. 60 'C下脱溶剂(丙酮) 2-3h 。
预聚体的合成反应过程是一个聚醚多元醇与异氰酸酯的化学反应过程,业内人士都知道反应过程中选用的物料温度、反应时间对制成的预聚体性能有至关重要的影响。我们经过研究还发现,反应前投料方式的不同,对制成的预聚体性能也有很大影响。以聚丙二醇(PPG) 、异佛尔酮二异氰酸酯( IPDI) 、二羟甲基丙酸(DMPA) 、乙二胺( EDA) 为原料合成了固含量40 %的聚氨酯分散体。采用激光粒度分析仪测试了预聚体分散体胶粒形成和扩链过程中的平均粒径和粒径分布,透射电镜( TEM) 表征了胶粒的形态结构。结果表明,预聚体分散体中可能存在理想胶粒、活性胶粒、可再分散胶粒,理想胶粒中的NCO 处于胶粒内部,活性胶粒中的NCO 处于胶粒的内部和表面;分散和扩链反应中活性胶粒之间的反应使胶粒粗化和呈双峰分布;提高预聚体nNCO/ nOH、COOH % ,预聚体分散体中活性胶粒增加; TEM 显示聚氨酯分散体胶粒主要呈球形,部分呈不规则形态。想了解更多信息 请到环球聚氨酯网。
地质聚合物在软土固化中应用的研究意义是采用地聚合物土搅拌法处理软土地基,能够有效提升软土地基承载力。软土淤泥呈流塑状态,层厚变化较大,具有高灵敏度、高流变性、高触变性、高压缩性和低透水性,地基承载力低,地质聚合物的加入可以提高这种地基承载力弱的情况。
编译 | 冯维维
Nature , 31 March 2022, Volume 603 Issue 7903
《自然》 2022年3月31日,第603卷,7903期
物理学 Physics
A highly magnified star at redshift 6.2
一颗红移6.2的高度放大恒星
作者:Brian Welch, Dan Coe, Tom Broadhurst , etc.
链接:
摘要
星系团通过强引力透镜作用放大背景天体。透镜星系的典型放大倍数只有几倍,但也可以高达数十或数百倍,将星系拉伸成巨大的弧形。单个恒星可以获得更高的放大倍数,如果它们碰巧与透镜星团排列在一起。最近,人们发现了几颗红移在1到1.5之间的恒星,它们被放大了数千倍。
作者报告了一颗更遥远、更持久的放大恒星在大爆炸后红移6.2 0.1亿年后的观测结果。这颗恒星被前景星系团透镜WHL0137-08(红移0.566)放大了数千倍,这是由四个独立的透镜模型估计的。
他们将描述的这一天体称为埃兰迪尔(Earendel),来自一个意为“晨星”或“升起之光”的古英语词。引力透镜揭示出它可能是一个单星或双星系统。埃兰迪尔估计质量超过太阳的50倍。红移意为光在行进中的“拉伸”程度,可用于推断天体距离;数字越大,天体就越远(或在宇宙 历史 中越早)。过去观测到放大单星的红移较小,约为1-1.5。
该恒星的温度、质量和光谱性质的确切细节尚不明确,作者希望詹姆斯•韦布望远镜或能在未来提供这些信息。
Abstract
Galaxy clusters magnify background objects through strong gravitational lensing. Typical magnifications for lensed galaxies are factors of a few but can also be as high as tens or hundreds, stretching galaxies into giant arcs. Inpidual stars can attain even higher magnifications given fortuitous alignment with the lensing cluster. Recently, several inpidual stars at redshifts between approximately 1 and 1.5 have been discovered, magnified by factors of thousands, temporarily boosted by microlensing. Here we report observations of a more distant and persistent magnified star at a redshift of 6.2 0.1, 900 million years after the Big Bang. This star is magnified by a factor of thousands by the foreground galaxy cluster lens WHL0137–08 (redshift 0.566), as estimated by four independent lens models. Unlike previous lensed stars, the magnification and observed brightness (AB magnitude, 27.2) have remained roughly constant over 3.5 years of imaging and follow-up. The delensed absolute UV magnitude, 10 2, is consistent with a star of mass greater than 50 times the mass of the Sun. Confirmation and spectral classification are forthcoming from approved observations with the James Webb Space Telescope.
Orbital-resolved visualization of single-molecule photocurrent channels
单分子光电流通道的轨道分辨显示
作者:Miyabi Imai-Imada, Hiroshi Imada, Kuniyuki Miwa, Yusuke Tanaka, Kensuke Kimura, Inhae Zoh, Rafael B. Jaculbia, Hiroko Yoshino, Atsuya Muranaka, Masanobu Uchiyama & Yousoo Kim
链接:
摘要
光诱导电子转移(PET)因在光能利用方面的核心作用,已被广泛研究。尽管显微光电流测量方法使其过程效率与局部特征联系起来成为可能,但局部分辨率不足以在分子水平上解决这一问题。最近的工作表明,将扫描隧道显微镜(STM)与可调谐激光驱动的局部等离子体场相结合,可以有效地激发和探测单个分子。
作者通过探测电子从第一激发态穿过STM尖端的隧穿,直接以原子尺度分辨率可视化光电流通道通过一个自由基酞菁(FBPc)分子轨道。
他们发现光电流的方向和空间分布对偏压非常敏感,即使在平均光电流接近零的电压下也能探测到反向流动的光电流通道。相关观测结果表明,通过将耦合调节到激发态分子轨道,可以促进或抑制特定的光电流通道,从而为通过分子界面的原子尺度电子和几何工程提高能量转换效率提供了新的前景。
Abstract
Given its central role in utilizing light energy, photoinduced electron transfer (PET) from an excited molecule has been widely studied. However, even though microscopic photocurrent measurement methods have made it possible to correlate the efficiency of the process with local features, spatial resolution has been insufficient to resolve it at the molecular level. Recent work has, however, shown that single molecules can be efficiently excited and probed when combining a scanning tunnelling microscope (STM) with localized plasmon fields driven by a tunable laser. Here we use that approach to directly visualize with atomic-scale resolution the photocurrent channels through the molecular orbitals of a single free-base phthalocyanine (FBPc) molecule, by detecting electrons from its first excited state tunnelling through the STM tip. We find that the direction and the spatial distribution of the photocurrent depend sensitively on the bias voltage, and detect counter-flowing photocurrent channels even at a voltage where the averaged photocurrent is near zero. These observations suggest that specific photocurrent channels can be promoted or suppressed by tuning the coupling to excited-state molecular orbitals, and thus provide new perspectives for improving energy-conversion efficiencies by atomic-scale electronic and geometric engineering of molecular interfaces.
化学 Chemistry
Catalogue of flat-band stoichiometric materials
平带化学计量材料宝库
作者:Nicolas Regnault, Yuanfeng Xu, Ming-Rui Li, Da-Shuai Ma, Milena Jovanovic, Ali Yazdani, Stuart S. P. Parkin, Claudia Felser, Leslie M. Schoop, N. Phuan Ong, Robert J. Cava, Luis Elcoro, Zhi-Da Song & B. Andrei Bernevig
链接:
摘要
费米能级附近或相当水平的拓扑电子扁平带是通向非常规超导和相关绝缘态的一条很有前途的途径。然而,相关的实验大多局限于工程材料,如摩尔系统。
作者提出了在费米水平附近的平坦带自然发生的三维化学计量材料的目录。他们将拓扑量子化学网站收录的55206种无机晶体结构数据库材料纳入考量,其中提供了它们的结构参数、空间群、能带结构、态密度和拓扑表征。
他们创建了Materials Flatband数据库网站,为未来的理论和实验研究提供了一个强大的搜索引擎,并利用数据库提取了2379种高质量平带材料的列表,从中确定了345种有希望的候选材料,这些材料可能拥有平面带,但电荷中心并不强烈地定位在原子位置上。
最终作者展示了五种具有代表性的材料,并利用平行工作中引入的S矩阵方法对它们在费米能附近的平坦带的起源提供了理论解释。
Abstract
Topological electronic flattened bands near or at the Fermi level are a promising route towards unconventional superconductivity and correlated insulating states. However, the related experiments are mostly limited to engineered materials, such as moiré systems. Here we present a catalogue of the naturally occuring three-dimensional stoichiometric materials with flat bands around the Fermi level. We consider 55,206 materials from the Inorganic Crystal Structure Database catalogued using the Topological Quantum Chemistry website, which provides their structural parameters, space group, band structure, density of states and topological characterization. We combine several direct signatures and properties of band flatness with a high-throughput analysis of all crystal structures. In particular, we identify materials hosting line-graph or bipartite sublattices—in either two or three dimensions—that probably lead to flat bands. From this trove of information, we create the Materials Flatband Database website, a powerful search engine for future theoretical and experimental studies. We use the database to extract a curated list of 2,379 high-quality flat-band materials, from which we identify 345 promising candidates that potentially host flat bands with charge centres that are not strongly localized on the atomic sites. We showcase five representative materials and provide a theoretical explanation for the origin of their flat bands close to the Fermi energy using the S-matrix method introduced in a parallel work.
Observing polymerization in 2D dynamic covalent polymers
观察二维动态共价聚合物的聚合
作者:Gaolei Zhan, Zhen-Feng Cai, Karol Strutyński, Lihua Yu, Niklas Herrmann, Marta Martínez-Abadía, Manuel Melle-Franco, Aurelio Mateo-Alonso & Steven De Feyter
链接:
摘要:
结晶二维聚合物的质量与难以捉摸的聚合和结晶过程密切相关。在(亚)分子水平上理解这些过程的机理,对于改进预测合成和定制材料性能,以应用于催化和(光电子)等领域至关重要。
作者利用原位扫描隧道显微镜,对一种模型硼氧辛二维动态共价聚合物进行了表征,以实时和环境条件下揭示成核延伸过程的定性和定量细节。
序列数据分析可以观察到非晶向结晶的转变、核的时间依赖性演化、“非经典”结晶路径的存在,重要的是,可以通过实验精确地确定必要的结晶参数,包括临界核的大小,成核速率和生长速率。
Abstract
The quality of crystalline two-dimensional (2D) polymers is intimately related to the elusive polymerization and crystallization processes. Understanding the mechanism of such processes at the (sub)molecular level is crucial to improve predictive synthesis and to tailor material properties for applications in catalysis and (opto)electronics, among others. We characterize a model boroxine 2D dynamic covalent polymer, by using in situ scanning tunnelling microscopy, to unveil both qualitative and quantitative details of the nucleation–elongation processes in real time and under ambient conditions. Sequential data analysis enables observation of the amorphous-to-crystalline transition, the time-dependent evolution of nuclei, the existence of ‘non-classical’ crystallization pathways and, importantly, the experimental determination of essential crystallization parameters with excellent accuracy, including critical nucleus size, nucleation rate and growth rate.
生物和地球物理学 Biophysics & Geophysics
The colloidal nature of complex fluids enhances bacterial motility
复合液体的胶体性质增强了细菌的运动
作者:Shashank Kamdar, Seunghwan Shin, Premkumar Leishangthem, Lorraine F. Francis, Xinliang Xu & Xiang Cheng
链接:
摘要
在人类微生物群落、海洋和土壤生态系统中,微生物的自然栖息地充满了胶体和大分子。这种环境表现出非牛顿流体性质,极大地影响微生物的运动。
作者发现鞭毛细菌在稀释的胶体悬浮液中表现出与稀释的聚合物溶液中显示出定量相似的运动行为,特别是普遍的颗粒大小相关的运动增强高达80%,并伴有对细菌摆动的强烈抑制。
由于胶体的硬球性质,其大小和体积分数在不同的实验中有所不同,该结果阐明了长期以来关于复杂流体中细菌运动性增强的争议,并表明聚合物动力学或非捕获这种现象的必要条件。
Abstract:
The natural habitats of microorganisms in the human microbiome, ocean and soil ecosystems are full of colloids and macromolecules. Such environments exhibit non-Newtonian flow properties, drastically affecting the locomotion of microorganisms. Here we show that flagellated bacteria in dilute colloidal suspensions display quantitatively similar motile behaviours to those in dilute polymer solutions, in particular a universal particle-size-dependent motility enhancement up to 80% accompanied by a strong suppression of bacterial wobbling. By virtue of the hard-sphere nature of colloids, whose size and volume fraction we vary across experiments, our results shed light on the long-standing controversy over bacterial motility enhancement in complex fluids and suggest that polymer dynamics may not be essential for capturing the phenomenon.
Assembly of the basal mantle structure beneath Africa
非洲地幔基底结构的组合
作者:Nicolas Flament, Ömer F. Bodur, Simon E. Williams & Andrew S. Merdith
链接:
摘要
板块构造塑造了地球表面,并与地球内部深处的运动有关。寒冷的海洋岩石圈下沉到地幔中,热的地幔柱从地球深处升起,导致火山活动。过去3.2亿年间的火山爆发与目前位于非洲和太平洋下面的地幔底部的两个大型结构有关。这导致了一种假设,即这些基底地幔结构在地质年代中一直是静止的。
与此相反的是,观测和模型表明,构造板块、俯冲带和地幔柱一直是活动的,而基底地幔结构目前正在变形。
作者重建了10亿年前到现在的地幔流动,以表明火山活动的 历史 在统计上与固定的基底地幔结构一致。在重建过程中,寒冷的岩石圈在740年到5亿年前深入非洲半球,从4亿年前开始,在冈瓦纳前后板块的推动下,非洲下面的结构逐渐组装起来,直到6000万年前才成为一个连贯的结构。
作者称地幔流动模型表明,基底地幔结构是可移动的,随着时间的推移会聚集和分散,类似于地球表面的大陆。其模型还预测了非洲地幔中大陆物质的存在,这与地球化学数据一致。
Abstract
Plate tectonics shapes Earth’s surface, and is linked to motions within its deep interior. Cold oceanic lithosphere sinks into the mantle, and hot mantle plumes rise from the deep Earth, leading to volcanism. Volcanic eruptions over the past 320 million years have been linked to two large structures at the base of the mantle presently under Africa and the Pacific Ocean. This has led to the hypothesis that these basal mantle structures have been stationary over geological time, in contrast to observations and models suggesting that tectonic plates, subduction zones and mantle plume have been mobile, and that basal mantle structures are presently deforming. Here we reconstruct mantle flow from one billion years ago to the present day to show that the history of volcanism is statistically as consistent with mobile basal mantle structures as with fixed ones. In our reconstructions, cold lithosphere sank deep into the African hemisphere between 740 and 500 million years ago, and from 400 million years ago the structure beneath Africa progressively assembled, pushed by peri-Gondwana slabs, to become a coherent structure as recently as 60 million years ago. Our mantle flow models suggest that basal mantle structures are mobile, and aggregate and disperse over time, similarly to continents at Earth’s surface. Our models also predict the presence of continental material in the mantle beneath Africa, consistent with geochemical data