这也找人帮?
我有,想要找我聊.
楼主您好。现在一般毕业论文现在大多是收费的,我建议你去浅论天下 看下,我的论文也是在那写的,或者你自己写,在这问,得不到论文的 。
铜线直径1.2毫米导线截面1平方毫米的导线100米电阻1.5欧姆,双股接出50米总电阻1.5欧姆。铜线直径1.6毫米导线截面2平方毫米的导线100米电阻0.8欧姆,双股接出50米总电阻0.8欧姆。8芯的网络线,铜芯有粗有细,有的有4根镀铜铁芯线,就算每根铜芯直径0.3毫米,导线截面积0.07548平方毫米,100米电阻23欧姆,以4根并联成一股,双股接出50米总电阻5.8欧姆。接出10米总电阻1.16欧姆。这要看什么样的充电机,要看是否为固定输出电压的,还是三段式智能的,对于固定电压输出的充电器,输出侧直流电阻可以大一些,也就在1欧姆以内,最多可以到5欧姆。对于三段式,导线直流电阻要更小些,导线长了,无非就是电池充电超过10个小时也充不满。对于专门设计的充电器,采用中压供电,可以对100米外的电动车充电,导线电阻可以10欧姆,而采用小截面导线,还可以对每个12V电池单独充电,充电结束后,自动降低充电电压,可以遥测每个电池的充电状态。这就是功夫了。 跪求24V30A充电机电路图现在有许多这样的产品出售呀。自己做要定制大功率变压器,一般地说,是输出交流电压24伏特到33伏特,功率是1千瓦(应该是伏安),注意要在次级24伏特到33伏特之间抽多几个头。简单的方法,是将次级输出用全波整流,直接输出到电池,要串联电流表,要并联电压表,用工业电器的开关(浙江省一带盛产)人工调节输出电压和输出电流,根据充电的进程人工调节。至于自动稳压、自动稳流的充电机,在35年前,可控硅的控制方式资料是公开出版印刷的。简单应急的方法,是用功率足够的行灯变压器(36伏特安全电压输出)、隔离变压器、电焊机变压器,对其次级加绕几圈,正向串联或者反向串联,调整输出电压和充电电流到合适的范围。电动自行车刚换了新电瓶,昨晚充了一晚上充电器灯还是红的,是电瓶问题还是充电器问题?我昨天刚换了新电瓶,昨晚充了一晚上充电器灯还是红的,是电瓶问题还是充电器问题?原先我的旧电瓶也是无论充多久都是红灯,电池发热很严重,所以才换了电瓶,可现在充电器还是不变绿。原先电池是10A的,现在换12A电瓶,充电器是1.8A的,能够冲12A的电瓶? 问题补充:原先我的电瓶就是被充得变形非常严重才换新的,每天都充12个小时,这就有两个方面要讨论;首先是要用电压表测量充电器不接电池,空载状态下的输出电压,再测量充电十多个小时后的充电电压和充电电流,你还是自己购买一个普通的指针式三用表为稳妥,平时就接在充电器的输出端两边测量电压,经常留意观察其电压的变化。俺是购买了通用的、单一用途的指针电压表并联在充电机上,连续观察充电电压的变化过程。至于充电电压的正常范围,网络上有许多网页连篇累牍地介绍,请自行检索为盼。以上的工作就是判断充电器的输出电压是否失控。因为蒋胡述军卓强迫本人下岗,下列的内容是简单介绍;即使是符合国内各个工厂出厂标准的充电器、即使是那些三段式智能充电器,哪怕是计算机控制的充电器,都是将几节电池串联起来充电,再新、性能再一致的几节电池,经过若干充放电循环,各节电池的电压和容量的差异会越来越大,通常的故障现象就是其中部分电池鼓胀。如果是新旧电池搭配使用,这种故障的发生几率就更高、更频繁。所以,有条件的情况下,要采取每节电池一个单独的充电器。这对于从高层住宅上向楼下的电动自行车电池充电是综合能力的考量!特别是对各节电池充电过程单独遥控、遥测。 本人在此有长期的经验。例如楼上有通用的充电器,电动自行车上另外有用分立元器件搭建的超低压降差充电控制器。你应当去要那些高考状元、集成电路设计研究生、博士导师为你解决实际需要,他们的工资月薪起点万元人民币以上,俺是领取社会救济地。高层楼宇对楼下蓄电池充电、远程充电设计,采用中压、低压输电传输,采用完全分立元器件搭建超低压降差电路、遥控、遥测电路,尽量不采用单片机才能体现高素质设计能力,而且实现时序控制、充电电压自动调节、充电电流自动调节。电动车48V1.8A的充电器,延长输出端30米线后,可否用48V2.5A或者48V3A的充电器?因为住五楼、电动车在一楼,所以充电很不方便。如果用原配充电器,延长充电器输出端后电池经常充不满(延长220V端的话不是很安全)!这是要专门设计的充电器。本人的一个做法,是将现有充电器输出电压调高,在自行车上另外有一个协调电路。因为实际上有充电末期降压的要求,完善的电路要专门设计,具体设计细节和完整的图纸、测试数据,可能要5年到10年后才公布。现在已经积累了过百张图纸,都可以使用,各有优缺点,其正规的设计对于电路理解要十分深刻,把握极其准确。本人实际上的测试到达120米距离,安全电压范围的中压输电,末端再调整。现在也使用带遥测充电电压、充电电流的线路,这是对每个电池单独充电的完善方式。市场上完全没有相关的产品。俺是长期从高层楼宇,向楼下电动自行车充电地,经验丰富。要保证有利于电池的寿命,保障传输安全,要使用超低压降充电器,本人既使用全分立元器件组装的超低压降线性稳定保障线路,也使用进口超低压降线性集成电路,也使用开关调制集成电路。你所表述的问题,是因为一般电动自行车充电器设计水平低、对成本限制压力大而导致地。对于高能电池,强调要持续检测电池温升;而对于铅酸电池,其耐受能力强的多,如果铅酸电池充电状态下温升过高,已经过充电十分严重啦。充电器不能自动跳灯的反映十分普遍,最简单地方法,是*****,人工监控,根据实际情况,适时*******的浮充电电压;障碍是现在充电器生产企业都对线路保密,要花费几天时间目力慢慢详细判读线路的装配分布,以逆工程的方法重新绘制电路图,方可制定改装措施。更大的困难是现在将几个额定电压12伏特电池串联起来充电的方法有严重缺陷,电池经过几十个充放电循环后,各个电池的容量、各个电池的电压相差越来越大,即使人工干预充电,也是杯水车薪、无助于事、干着急、无法施以援手。彻底解决的方法是每个电池一个充电器,每个电池都有*******连续监测,这种充电器不是现在的三段式充电器或者企业所宣传的“计算机智能”充电器。本人一直想全面无偿公开相关设计和大量测试数据,你们要叶勤、胡军、蒋述卓开放免费教学网络吧,还有他们掌管的出版社呀。 什么牌子的电动车充电器质量好,本人想做这方面的代理告诉你吧,牌子响的没有一家能达到以下全国最高功能、性能、指标,而且那些大品牌是暴利产品!他们的产品售价,按照正常的利润空间,就能达到以下效果,已经向某高校科技服务公司提出,他们无法意识到其技术创新和市场潜力,尤其是开创了新的市场空间。现在不生产,不销售,冻结。你有需要,可以通过网管来联系,也许可以授权生产,与经济利益诉求没有直接和必然的联系,没有先决的条件,从法律上来表达,就是可以考虑免费。下面也不是正面回答,是几个其他答案的汇编,你慢慢去理解吧,如果国内外有类似功能的产品,你再来抨击吧,如果你发掘不到,那就要抨击大品牌充电机,尤其是那些不给线路图、不给装配图、又是贴片安装,不可维修、不给配件、不公开测试条件和测试结果、不公开故障特征与处理维修方法的生产企业、用户不可以调整、不可以改装的电动自行车充电器,电动车充电器电源间歇震荡怎么回事一般是输出短路啦!就相当于打嗝的效果,这是洋人设计的安全保护措施。具体要看是否电压等级错误不匹配,输出电流是否小而电池容量太大(这个可能性小,因为正常的充电器限制最大输出电流),是否过载。
“ABS”中文译为“防锁死刹车系统”.它是一种具有防滑、防锁死等优点的汽车安全控制系统。ABS是常规刹车装置基础上的改进型技术,可分机械式和电子式两种。 现代汽车上大量安装防抱死制动系统,ABS既有普通制动系统的制动功能,又能防止车轮锁死,使汽车在制动状态下仍能转向,保证汽车的制动方向稳定性,防止产生侧滑和跑偏,是目前汽车上最先进、制动效果最佳的制动装置。
以前消费者买车,都把有没有ABS作为一个重要指标。随着技术的发展,目前,我国绝大部分轿车已经将ABS作为标准配置。但对于ABS的认识以及如何正确使用,很多驾驶员还不是很清楚,甚至还出现了一些对ABS的误解。一些驾驶员认为ABS就是缩短制动距离的装置,装备ABS的车辆在任何路面的制动距离肯定比未装备ABS的制动距离要短,甚至有人错误地认为在冰雪路面上的制动距离能与在沥青路面上的制动距离相当;还有一些驾驶员认为只要配备了ABS,即使在雨天或冰雪路面上高速行驶,也不会出现车辆失控现象。 ABS并不是如有些人所想的那样,大大提高汽车物理性能的极限。严格来说,ABS的功能主要在物理极限的性能内,保证制动时车辆本身的操纵性及稳定性。
ABS的应用
ABS的全名是Anti-lock Brake System(防锁死制动系统)或Anti-skid Braking System(防滑移制动系统),它能有效控制车轮保持在转动状态,提高制动时汽车的稳定性及较差路面条件下的汽车制动性能。ABS通过安装在各车轮或传动轴上的转速传感器不断检测各车轮的转速,由计算机算出当时的车轮滑移率,并与理想的滑移率相比较,做出增大或减小制动器制动压力的决定,命令执行机构及时调整制动压力,以保持车轮处于理想制动状态。
1906年ABS首次被授予专利,1936年博世注册了一项防止机动车辆车轮抱死的“机械”专利。所有的早期设计都有着同样的问题:因过于复杂而容易导致失败,并且它们运作太慢。1947年世界上第一套ABS系统首次应用于B-47轰炸机上。Teldix公司在1964年开始研究这个项目,其ABS研究很快被博世全部接管。两年内,首批ABS测试车辆已具有缩短制动距离的功能。转弯时车辆转向性和稳定性也被保证,但当时应用的大约1000个模拟部件和安全开关,这意味着被称为ABS 1系统的电子控制单元的可靠性和耐久性还不能够满足大规模生产的要求,需要改进。博世在电子发动机管理的发展过程中获得的技术,数字技术和集成电路(ICs)的到来使电子部件的数量降低到140个。
1968年ABS开始研究应用于汽车上。1975年由于美国联邦机动车安全标准121款的通过,许多重型卡车和公共汽车装备了ABS,但由于制动系统的许多技术问题和卡车行业的反对,在1978年撤消了这一标准。同年博世作为世界上首家推出电子控制功能的ABS系统的公司,将这套ABS 2的系统开始安装作为选配配置,并装配在梅赛德斯-奔驰S级车上,然后很快又配备在了宝马7系列豪华轿车上。在这一时期之后美国对ABS的进一步研究和设计工作减少了,可是欧洲和日本的制造厂家继续精心研制ABS。
进入20世纪80年代以后,由于进口美国的汽车装备有ABS,美国汽车制造厂对美国汽车市场上的ABS显示出新的兴趣。随着微电子技术的飞速发展和人们对汽车行车安全的强烈要求,ABS装置在世界汽车行业进一步得到广泛应用。1987年美国大约3%的汽车装备有非常可靠的ABS。在随后的时间里,研发者集中于简化系统。在1989年,博世的工程师成功地将一个混合的控制单元直接附在了液压模块上。这样他们就无需连接控制单元和液压模块的线束,也无需接插件,所以显著地减轻了ABS 2E的整体重量。
博世的工程师在1993年,使用新的电磁阀创造了ABS 5.0,并且在后来的几年研发了5.3 和5.7 版。新一代的ABS 8的主要特性是再次极大地减轻了重量、减少了体积、增大了内存,同时增加了更多功能,如电子分配制动压力,从而取代了减轻后轴制动压力的机械机构。当年有些汽车工业分析专家预言得到了证实:到20世纪90年代中期以后,世界市场上的大多数汽车和卡车将装备ABS。
编辑本段ABS的功用
ABS的主要作用是改善整车的制动性能,提高行车安全性,防止在制动过程中车轮抱死(即停止滚动),从而保证驾驶员在制动时还能控制方向,并防止后轴侧滑。其工作原理为:紧急制动时,依靠装在各车轮上高灵敏度的车轮转速传感器,一旦发现某个车轮抱死,计算机立即控制压力调节器使该轮的制动分泵泄压,使车轮恢复转动,达到防止车轮抱死的目的。ABS的工作过程实际上是“抱死—松开—抱死—松开”的循环工作过程,使车辆始终处于临界抱死的间隙滚动状态,有效克服紧急制动时由车轮抱死产生的车辆跑偏现象,防止车身失控等情况的发生。
ABS的种类可分机械式和电子式两种。机械式ABS结构简单,主要利用其自身内部结构达到简单调节制动力的效果。该装置工作原理简单,没有传感器来反馈路面摩擦力和轮速等信号,完全依靠预先设定的数据来工作,不管是积水路面、结冰路面或是泥泞路面和良好的水泥沥青路面,它的工作方式都是一样的。严格地说,这种ABS只能叫做 “高级制动系统(Advanced Brake System)”。目前,国内只有一些低端的皮卡等车型仍在使用机械式ABS。
机械式ABS只是用部件的物理特性去机械的动作,而电子式ABS是运用电脑对各种数据进行分析运算从而得出结果的。电子式ABS由轮速传感器、线束、电脑、ABS液压泵、指示灯等部件构成。能根据每个车轮的轮速传感器的信号,电脑对每个车轮分别施加不同的制动力,从而达到科学合理分配制动力的效果。
最早的ABS系统为二轮系统。所谓二轮系统就是将ABS装在汽车的两个后轮上。由于两后轮公用一条制动液压管路和一个控制阀,所以又称做“单通道控制系统”。这种系统是根据两个后车轮中附着力较小的车轮状态来选定制动压力,这被称为“低选原则”。也就是说,采用低选原则的ABS车辆的一个后轮有抱死趋势时,系统只能给两个后轮同时泄压。又由于前轮没有防抱死功能,因而,二轮系统难以达到最佳制动效果。
随着相关技术的发展,后来出现了“三通道控制系统”,该系统是在二轮系统基础上,将两前轮由两条单独的管路独立控制。虽然后轮还是采用“低选原则”,但由于实现了紧急制动时的转向功能及防止后轴侧滑的功能,所以这种系统具备了现代ABS的主要特点。至今,市面上还有车辆采用这种三通道控制的ABS系统。
目前,装备在车辆上最常见的是四传感器四通道ABS系统,每个车轮都由独立的液压管路和电磁阀控制,可以对单个车轮实现独立控制。这种结构能实现良好的防抱死功能。
编辑本段走出ABS误区
开篇中那些对ABS的误解,需要解释一下。如果汽车车轮在制动时抱死,汽车能得到的侧向附着力是最小的。这时,由于路面附着系数的不平衡、汽车本身制动力的不平衡、悬架的不平衡、汽车轮胎气压、路面弯度、颠簸或坡度等因素都可能会使汽车发生侧滑、甩尾或失控。另外,由于车辆前轮抱死,汽车会失去转向能力。一个性能优良的汽车防抱死制动系统,在制动时能够将汽车车轮的滑移率控制在20%~30%之间,车轮在这种状态下,能兼顾相对最大的纵向制动力和横向抓地力,有效地保证车辆不会发生失控状况。另外,在前轮不抱死的情况下,由于有一定的抓地力,汽车还可以按照驾驶员的意愿进行转向,从而控制车辆。为了将车轮滑移率控制在理想状态下,追求车辆的稳定性,可能会牺牲一些纵向的制动力。所以,ABS起作用时,不是在所有路面上制动距离都会缩短。
在冰雪路面上,由于地面提供的附着力比一般路面要小很多。ABS只能在这种附着力的基础上调节汽车的制动力,不会产生外加的制动因素。所以,在冰雪路面上的制动距离只能说比车轮抱死时短一些,比在一般路面上的制动距离还是长很多。
实际道路其实是很复杂的,诸如:路面附着系数不平衡、道路弯度或路面横向坡度、甚至汽车轮胎气压等汽车自身的原因,有很多因素能使汽车在制动时产生侧滑的运动趋势,这些因素都不是ABS本身能够克服的。所以,如果在冰雪路面上车速过快时紧急制动,遇到上述因素之一,当车辆离心力大于地面能够提供的最大侧向力时,就会使车辆形成失控趋势,这是非常危险的。
总之,任何装备都不是万能的,驾驶员必须通过自己的主观能动性实现安全驾驶。即使是性能优良的ABS在工作状态下稳定车辆的效果也是有限的,尤其是行驶在砂石路或冰雪路面上,更应保持充分的车距,减速慢行,不要完全依赖ABS系统。
编辑本段ABS使用常识
现在基本上所有的乘用车都加装了ABS系统,对提升车辆的主动安全性能起到了很大的作用,但若使用不当,效果也会大打折扣。在这里,我们对ABS的使用原则归纳为“四要、七不要”。
四要
1.要始终踩住制动踏板不放松,这样才能保证足够和持续的制动力,使ABS有效地发挥作用。
2.要保持足够的安全车距。一般情况下,最小车距不应低于50m,当车速超过50km/h时,最小车距与车速数值相同,如100km/h时最小车距为100m,120km/h时,最小车距为120m。
3.要事先熟悉ABS,使自己对ABS工作时的制动踏板抖动有准备和适应能力。
4.要事先阅读汽车驾驶员手册,从而进一步地理解安装ABS的汽车生产厂提供的各种操作说明。
七不要
1.不要认为有了ABS就可以随心所欲地驾驶。ABS也不是绝对保险的,在车速过高和转弯过急的情况下,若车辆制动得过急过猛,则汽车仍然会产生侧滑。因此,即使你的汽车装有ABS,你也仍然需要谨慎驾驶。
2.不要采用“点刹”制动。未装有ABS的车辆在湿滑路面及车速较高情况下实施制动时,需要采用“点刹”的办法达到安全制动的目的。而装上ABS后,由于ABS能自动调整制动力,因此在实施紧急制动时,可一脚将踏板踩到底而不松开,不要担心车轮抱死打滑,否则将大大延长制动距离。
3.不要被ABS的抖动吓住。ABS在起作用时,会听到它发出的噪音,该噪音是由液压控制系统中的电磁阀和液压泵工作时产生的,不要以为制动系统出了毛病而惊慌失措,更不可将脚从制动踏板上移开,这时仍然要将制动踏板踩死而不去管它。
4.不可忽视ABS指示灯的检查。正常情况下,按通点火开关后,此灯应亮;大约3秒后自动熄灭。这一过程,实质上是电子控制装置在按自检程序对车轮传感器、液压调节器的控制阀进行通电检查,若此灯一直不亮,说明ABS有故障。
5.ABS指示灯不熄灭时不必恐慌。当行车中ABS出现故障时,防抱死制动系统自动将原制动系统的油路接通,汽车上的原制动系统仍然工作,只是没有了ABS,注意检修就可以了。
6.不可私自拆换ABS的电脑单元。如果电脑发现故障,应更换整个ABS单元。
7.对于装配了ABS,但是希望改装的车辆,请勿拆装制动管路与ABS单元连接的螺母。
ABS又分电子式ABS和机械式ABS
1、电子式ABS是根据不同的车型所设计的,它的安装需要专业的技术力量,如果换装至另一辆车就必须改变它的线路设计和电瓶容量,没有通用性;机械式ABS的通用性强,只要是液压刹车装置的车辆都可使用,可以从一辆车换装到另一辆车上,而且安装只要30分钟。
2、电子式ABS的体积大,而成品车不一定有足够的空间安装电子ABS,相比之下,机械式的ABS的体积较小,占用空间少。
3、电子式ABS是在车轮锁死的刹那开始作用,每秒钟作用6~12次;机械式ABS在踩刹车时就开始工作,根据不同的车速,每秒钟可作用60~120次。
机械式ABS的适用特性需要事先设定,在积水路面、冰雪路面、沙石路面、沥青路面上,轮胎的摩擦系数不同,车速不同,需要的制动力也不相同。没有即时的测量回馈系统,只依靠预先设定的阕值,适用范围较窄,制动效果会有所降低。
在选购机械式ABS防抱死系统时应非常小心。仿造的ABS产品在外观上与真品大同小异,结构也一样,但劣质产品却难以长期承受刹车油的腐蚀与高压,时间一长橡胶还会老化变形,丧失应有的性能。
真品的橡胶阀囊浸泡在刹车油中可承受每平方英寸11000磅的高压且长期不会发生变形。进口机械式ABS的价格在2000元左右,国产的只要200多元。
编辑本段ABS函数
【C 】
函数名: abs
功 能: 求整数的绝对值
用 法: int abs(int i);
程序例:
#include
#include
int main(void)
{
int number = -1234;
printf("number: %d absolute value: %d\n", number, abs(number));
return 0;
}
【Pascal 】
Function Abs( X : Real ) : Longint;
功 能: 求数的绝对值
例:
Begin
{ 语句; { ( X数据类型 ) 输出结果 } }
Writeln( Abs(84.23) ); {(Real) 8.42300000000000E+0001 }
Writeln( Abs(-111222333) ); {(Longint) 111222333 }
Writeln( Abs(-1112223334324445556) ); {(Int64) 1112223334324445556 }
End.
编辑本段ABS塑料
ABS塑料
化学名称:丙烯腈-丁二烯-苯乙烯共聚物
英文名称:Acrylonitrile Butadiene Styrene(ABS)
用途:汽车配件(仪表板、工具舱门、车轮盖、反光镜盒等),收音机壳,电话手柄、大强度工具(吸尘器,头发烘干机,搅拌器,割草机等),打字机键盘,娱乐用车辆如高尔夫球手推车以及喷气式雪橇车等
比重:1.05克/立方厘米
燃烧鉴别方法:连续燃烧、蓝底黄火焰、黑烟、浅金盏草味
溶剂实验:环已酮可软化,芳香溶剂无作用
干燥条件:80-90℃ 2小时
成型收缩率:0.4-0.7%
模具温度:25-70℃(模具温度将影响塑件光洁度,温度较低则导致光洁度较低)
融化温度:210-280℃(建议温度:245℃)
成型温度:200-240℃
注射速度:中高速度
注射压力:500-1000bar
特点:
1、综合性能较好,冲击强度较高,化学稳定性,电性能良好.
2、与372有机玻璃的熔接性良好,制成双色塑件,且可表面镀铬,喷漆处理.
3、有高抗冲、高耐热、阻燃、增强、透明等级别。
4、流动性比HIPS差一点,比PMMA、PC等好,柔韧性好。
5、用途:适于制作一般机械零件,减磨耐磨零件,传动零件和电讯零件.
6、同PVC(聚氯乙烯)一样在屈折处会出现白化现象。
成型特性:
1.无定形料,流动性中等,吸湿大,必须充分干燥,表面要求光泽的塑件须长时间预热干燥80-90度,3小时.
2.宜取高料温,高模温,但料温过高易分解(分解温度为>270度).对精度较高的塑件,模温宜取50-60度,对高光泽.耐热塑件,模温宜取60-80度.
3、如需解决夹水纹,需提高材料的流动性,采取高料温、高模温,或者改变入水位等方法。
4、如成形耐热级或阻燃级材料,生产3-7天后模具表面会残存塑料分解物,导致模具表面发亮,需对模具及时进行清理,同时模具表面需增加排气位置。
ABS树脂是目前产量最大,应用最广泛的聚合物,它将PS,SAN,BS的各种性能有机地统一起来,兼具韧,硬,刚相均衡的优良力学性能。ABS是丙烯腈、丁二烯和苯乙烯的三元共聚物,A代表丙烯腈,B代表丁二烯,S代表苯乙烯。
ABS工程塑料一般是不透明的,外观呈浅象牙色、无毒、无味,兼有韧、硬、刚的特性,燃烧缓慢,火焰呈黄色,有黑烟,燃烧后塑料软化、烧焦,发出特殊的肉桂气味,但无熔融滴落现象。
ABS工程塑料具有优良的综合性能,有极好的冲击强度、尺寸稳定性好、电性能、耐磨性、抗化学药品性、染色性,成型加工和机械加工较好。ABS树脂耐水、无机盐、碱和酸类,不溶于大部分醇类和烃类溶剂,而容易溶于醛、酮、酯和某些氯代烃中。
ABS工程塑料的缺点:热变形温度较低,可燃,耐候性较差。
ABS船级社认证图标
ABS:美国船级社缩写。
编辑本段资产支持证券
ABS :资产支持证券(也叫资产担保证券或资产支撑证券,英文:Asset-backed security)由银行、信用卡公司或者其他信用提供者的贷款协议或者应收帐款作为担保基础发行的债券或票据;它与抵押有所不同。
ABS是以非住房抵押贷款资产为支撑的证券化融资方式,它实际上是MBS技术在其他资产上的推广和应运。由于证券化融资的基本条件之一是基础资产能够产生可预期的、稳定的现金流,除了住房抵押贷款外,还有很多资产也具有这种特征,因此它们也可以证券化。随着证券化技术的不断发展和证券化市场的不断扩大,ABS的种类也日趋繁多,具体可以细分为以下品种:(1)汽车消费贷款、学生贷款证券化;(2)商用、农用、医用房产抵押贷款证券化;(3)信用卡应收款证券化;(4)贸易应收款证券化;(4)设备租赁费证券化;(5)基础设施收费证券化;(6)门票收入证券化;(7)俱乐部会费收入证券化;(8)保费收入证券化;(9)中小企业贷款支撑证券化;(10)知识产权证券化等等。而且随着资产证券化技术的不断发展,证券化资产的范围在不断扩展。
希望可以帮到你,这个应该是很全面了,记得加分啊!
1.专业定位 准确, 人才培养目标和模式明确 1.1专业定位准确, 办学思路明确 广州市政府已将汽车制造作为本市经济发展的支柱产业,总的年产量确定为 150万辆,并正在建设以珠三角地区为主体的汽车零部件配套基地,每年将给广州市带来3000亿的国内生产总值。在汽车消费中,买车的钱约占汽车消费的1/3,而汽车服务要占到汽车消费的2/3,维修汽车将是今后市民的主要消费对象,汽车服务已经不再是厂家售后服务的概念,它集合了汽车金融、汽车保险、汽车零配件、汽车“4位一体”的售后服务、汽车维修、汽车中介、汽车美容和防护、汽车专业人才的教育和培训、城市规划、交通管理的社会大系统。 广州市每年总共向社会提供约 2000个大专层次专门技术人才,而在广州市,与汽车相关的从业人员将超过100万。我校就是在这样的大环境下建立的汽车检测与维修技术专业,专业定位在培养现代汽车检测与维修的专门技术人才上,使毕业的学生具有一定专业理论知识,具有较强的现代汽车检测与维修的动手能力,同时能够从事汽车销售、汽车营运及汽车企业管理工作。 本专业始终把服务于广东省汽车工业及其经济发展放在第一位,以市场需求及就业为导向,以产学研结合为人才培养的基本途径,在坚持以人为本和全面推进素质教育的基础上,形成并实践了以职业能力培养为核心,职业技能与素质训练相结合,理论与实践并重,紧密与校外企业的合作,培养具有一定理论知识又有较强实践技能的技术应用型专门人才的办学思路。本专业建设的最终目标是办成全国示范性专业。 1.2 专业建设规划目标明确, 实施方案具体,措施得力,效果显著 本专业根据《广州大学科技贸易技术学院“十五”规划》 ,结合汽车服务和汽车产品市场的发展与竞争的趋势,制定了本专业的“十五发展规划” 。到了 2005年将新增汽车技术服务与营销专业、汽车电子技术专业,并计划于2007年成立车辆工程系,届时汽车专业发展到6 ~ 8个 。到2006年,上述的三个汽车专业将 招生200~240人、在校生将达360人,其中 本专业 的在校生将达195人。 建设与完善现有的校内外实践教学基地,形成本专业系列实验室、系列实训室和系列校内外实习基地。 学校现在主要有人才引入机制、青年骨干教师培养制度、年度考核制度、严谨的教学管理制度、教学竞赛制度等,以保证目标规划的顺利进行。 1.3 人才培养模式符合培养目标的要求 本专业培养德、智、体、美全面发展的,即掌握一定专业理论知识,具有较强的现代汽车检测与维修的动手能力,又熟悉汽车销售、汽车营运及其企业管理的高级复合应用型人才。毕业生在工科大专文化、专业基础知识和现代汽车技术专业知识的基础上,将具有一定的通用机械设计与维修能力、现代汽车检测与维修能力、汽车销售能力和汽运企业管理能力,并将获得中级汽车修理工证书。 根据培养目标,毕业生应有的 知识结构是: 1 )掌握工科大专文化基础知识; 2 )掌握本专业知识所需要的基本理论、基本知识和基本技能; 3 )掌握与现代汽车技术相关的专业知识和实践操作。 汽车ABS技术的发展趋势研究 在汽车防抱死制动系统出现之前,汽车所用的都是开环制动系统。其特点是制动器制动力矩的大小仅与驾驶员的操纵力、制动力的分配调节以及制动器的尺寸和型式有关。由于没有车轮运动状态的反馈信号,无法测知制动过程中车轮的速度和抱死情况,汽车就不可能据此调节轮缸或气室制动压力的大小。因此在紧急制动时,不可避免地出现车轮在地面上抱死拖滑的现象。当车轮抱死时,地面的侧向附着性能很差,所能提供的侧向附着力很小,汽车在受到任何微小外力的作用下就会出现方向失稳问题,极易发生交通事故。在潮湿路面或冰雪路面上制动时,这种方向失稳的现象会更加严重。汽车防抱死制动系统(Anti-lock Braking System简称ABS)的出现从根本上解决了汽车在制动过程中的车轮抱死问题。它的基本功能就是通过传感器感知车轮每一瞬时的运动状态,并根据其运动状态相应地调节制动器制动力矩的大小以避免出现车轮的抱死现象,因而是一个闭环制动系统。 它是电子控制技术在汽车上最有成就的应用项目之一,汽车制动防抱死系统可使汽车在制动时维持方向稳定性和缩短制动距离,有效提高行车的安全性。 一、ABS的工作原理 汽车制动时由于车轮速度与汽车速度之间存在着差异,因而会导致车轮与路面之间产生滑移,当车轮以纯滚动方式与路面接触时,其滑移率为零;当车轮抱死时其滑移率为100%。当滑移率在8%~35%之间时,能传递最大的制动力。制动防抱死的基本原理就是依据上述的研究成果,通过控制调节制动力,使制动过程中车轮滑移率控制在合适的范围内,以取得最佳的制动效果。ABS系统硬件构成主要由传感器(包括轮速传感器、减速度传感器和车速传感器)、电子控制装置、制动压力调节器三大部分组成,形成一个以滑移率为目标的自动控制系统。传感器测量车轮转速并将这一数据传送至电子控制装置上,控制装置是一个微处理器,它根据车轮转速传感器信号来计算车速。在制动过程中,车轮转速可与控制装置中预先编制的理想减速度的特性曲线相比较。如果控制装置判断出车轮减速度太快和车轮即将抱死时,它就发出信号给液压调节器,液压调节器可根据来自控制装置的信号对制动器的卡钳或轮泵的油压进行控制(作用、保持、释放、重新作用)。这一动作,每秒钟能出现10次以上。 二、ABS技术的发展及应用现状 基于制动防抱理论的制动系统首先是应用于火车和飞机上。1936年,德国博世公司(BOSCH)申请一项电液控制的ABS装置专利,促进了ABS技术在汽车上的应用。汽车上开始使用ABS始于1950年代中期福特汽车公司,1954年福特汽车公司在林肯车上装用法国航空公司的ABS装置,这种ABS装置控制部分采用机械式,结构复杂,功能相对单一,只有在特定车辆和工况下防抱死才有效,因此制动效果并不理想。机械结构复杂使ABS装置的可靠性差、控制精度低、价格偏高。ABS技术在汽车上的推广应用举步艰难。直到70年代后期,由于电子技术迅猛发展,为ABS技术在汽车上应用提供了可靠的技术支持。ABS控制部分采用了电子控制,其反应速度、控制精度和可靠性都显著提高,制动效果也明显改善,同时其体积逐步变小,质量逐步减轻,控制与诊断功能不断增强,价格也逐渐降低。这段时期许多家公司都相继研制了形式多样的ABS装置。 进入90年代后,ABS技术不断发展成熟,控制精度、控制功能不断完善。现在发达国家已广泛采用ABS技术,ABS装置已成为汽车的必要装备。北美和西欧的各类客车和轻型货车ABS的装备率已达90%以上,轿车ABS的装备率在60%左右,运送危险品的货车ABS的装备率为100%。ABS装置制造商主要有:德国博世公司(BOSCH),欧、美、日、韩国车采用最多;美国德科公司(DELCO),美国通用及韩国大宇汽车采用;美国本迪克斯公司(BENDIX),美国克莱斯勒汽车采用;还有德国戴维斯公司(TEVES)、德国瓦布科(WABCO)、美国凯尔西海斯公(KELSEYHAYES)等,这些公司的ABS产品都在广泛地应用,而且还在不断发展、更新和换代。 近年来,ABS技术在我国也正在推广和应用,1999年我国制定的国家强制性标准GB12676-1999《汽车制动系统结构、性能和试验方法》中已把装用ABS作为强制性法规。此后一汽大众、二汽富康、上海大众、重庆长安、上海通用等均开始采用ABS技术,但这些ABS装置我国均没有自主的知识产权。 国内研究ABS主要有东风汽车公司、交通部重庆公路研究所、济南捷特汽车电子研究所、清华大学、西安交通大学、吉林大学、华南理工大学、合肥工业大学等单位,虽然起步较晚,也取得了一些成果。在气压ABS方面,国内企业包括东风电子科技股份有限公司、重庆聚能、广东科密等都已形成了一定的生产规模。液压ABS由于技术难度大,国外技术封锁严密,国内企业暂时不能独立生产,但在液压ABS方面也在做自主研发,力图突破国外跨国公司的技术壁垒,已经取得了一些新的进展和突破。如清华大学和浙江亚太等承担的汽车液压防抱死制动系统(ABS)“九五”国家科技攻关课题,在ABS控制理论与方法、电子控制单元、液压控制单元、开发装置和匹配方法等关键技术方面均取得了重大成果。采用的耗散功率理论,避免了传统的逻辑门限值研究方法的局限性,取得了理论上的突破,研发ABS成功且进入产业化、批量生产阶段。其试样在南京IVECO轻型客车上匹配使用全面达到了国家标准GB12676-1999和欧洲法规EECR13的要求。这对振兴我国汽车工业与汽车零部件业具有划时代意义,标志着我国汽车液压ABS国产化已迈出坚实的一步。同时合肥工业大学也研制出国内具有自主知识产权的液压制动电子防抱系统,率先在HF6700轻型汽车上匹配使用获得成功。国内液压ABS技术含量与国外虽有一定的差距,但在政府的大力支持和国内丰富的人力资源配合下,相信国内可以在较短的时间内在ABS技术某些领域赶超国际水平
什么毕业啊?写这种题目的论文,太没深度了。
课程设计是什么东东
我在一个论坛发现一些资料,也许对你有用,分要记得给我,1. PLC电镀行车控制系统设计 2. 机械手模型的PLC控制系统设计 3. PLC在自动售货机控制系统中的应用 4. 基于PLC控制的纸皮压缩机 5. 基于松下系列PLC恒压供水系统的设计 6. 基于PLC的自动门电控部分设计 7. 基于PLC的直流电机双闭环调速系统设计 8. 基于PLC的细纱机电控部分设计 9. 燃气锅炉温度的PLC控制系统 10. 交流提升系统PLC操作控制台 11. 基于PLC铝带分切机控制系统的设计 12. 高层建筑电梯控制系统设计 13. 转炉气化冷却控制系统 14. 高炉上料卷扬系统 15. 调速配料自动控制系统 16. 基于PLC的砌块成型机的电气系统设计 17. PLC在停车场智能控制管理系统应用 18. PLC 在冷冻干燥机的应用 19. 基于PLC的过程控制 20. 电器装配线PLC控制系统 21. 基于PLC的过程控制系统的设计 22. 基于PLC的伺服电机试验系统设计 23. 陶瓷压砖机PLC电气控制系统的设计 24. 多工位组合机床的PLC控制系统 25. 基于PLC的车床数字化控制系统设计 26. PLC实现自动重合闸装置的设计 27. 混凝土搅拌站控制系统设计 28. 基于PLC控制的带式输送机自动张紧装置 29. 基于PLC的化学水处理控制系统的设计 30. S7-300 PLC在电梯控制中的应用 31. 模糊算法在线优化PI控制器参数的PLC设计 32. 神经网络在线优化PI参数的PLC及组态设计 33. 模糊算法优化PI参数的PLC实现及组态设计 34. BP算法在线优化PI控制器参数的PLC实现 35. 推钢炉过程控制系统设计 36. 焦炉电机车控制系统的设计 37. 基于PLC的锅炉控制系统设计 38. 热量计的硬件电路设计 39. 高层建筑PLC控制的恒压供水系统的设计 40. 材料分拣PLC控制系统设计 41. 基于PLC控制的调压调速电梯拖动系统设计 42. 基于PLC的七层交流变频电梯控制系统设计 43. 五层交流双速电梯PLC电气控制系统的设计 44. 四层交流双速电梯的PLC电气控制系统的设计 45. 三层楼交流双速电梯的PLC电气控制系统的设计 46. PLC在恒温控制过程中的应用 47. 变频器在恒压供水控制系统中的应用 48. 基于西门子PLC的Z3040型摇臂钻床改造 49. PLC控制的恒压供水系统的设计 50. 油库上位机计量系统设计 51. 三层楼电梯的PLC自控系统的设计 52. 基于PCS-2000B过程实验装置的模糊解耦控制系统设53. 深孔钻机床的PLC电气控制系统设计 54. 基于PLC的多台全自动洗衣机控制系统 55. 多层住宅楼电梯的PLC控制系统的设计 56. 城市主干道十字路口交通灯PLC控制系统 57. PLC在变电所备用电源的应用 58. 基于松下PLC的智能交通灯控制系统设计 59. 基于PLC和组态软件的交通灯监控系统的设计 60. 变频器在中央空调中的应用 61. 变频器在自动配料系统中的应用 62. 变频调速恒压供水系统 变频器plc 毕业论文 63. 自动输送与分拣系统 64. 液体包装机电器系统的PLC控制系统 65. 知识竞赛抢答器PLC设计 66. 基于PLC的给煤机控制系统的设计 67. 基于S7-200和VB高炉上料控制系统设计 68. 基于S7-300PLC的污水处理PH值中和实验系统 69. 基于PLC与组态软件的远程测控系统的设计 70. 基于PLC与组态软件的多泵恒压供水控制系统的设计 71. 基于PLC与人机界面的工业伺服自动控制系统 72. 仓储堆垛机PLC控制系统的实现 73. PLC水压试验控制系统 74. PLC实现十字路信号灯自动控制 75. 基于FXON系列PLC的六层电梯控制设计 76. 基于PLC的教学挖土机的控制研究 77. 基于变频调速在泵站控制系统中应用的研究 78. 基于PLC的异步电机变频器控制研究 79. 西门子S7-300在温度控制中的应用 80. 变频器在卷扬机上的应用 81. 模块化培训系统分类站的设计 82. 模块化培训系统提取站的设计 83. PLC在机床中的应用设计 84. 基于西门子802S系统改造 C6132普通车床 85. 基于PLC的三层电梯控制系统毕业设计 86. 基于MCGS和THPLC-D型PLC实训装置的交通灯模拟控87. 基于PLC控制的火力发电厂输灰系统的设计 88. PLC在火电厂石子煤系统上设计及改造方案 89. 基于废水处理PLC电气控制系统的研究 90. 双面钻孔组合机床的PLC控制系统设计 91. PLC在工业机械手中的应用 92. 基于PLC的电梯系统设计 93. 基于PLC的三相步进电动机控制系统 94. 基于PLC变频器控制的恒压供水系统设计 95. 用PLC对十字路口交通灯进行控制模拟 96. 造纸机电气传动控制系统设计 97. 基于PLC的流量监控系统设计 98. 基于欧姆龙PLC控制的全自动洗衣机设计 99. 纸机传动系统方案选择与程序设计 100. 锅炉输煤PLC控制系统下位机设计 101. 三菱FX2N PLC在冷冻干燥机中的应用 102. 基于西门子PLC的中央空调变频调速系统设计 103. 铜铝管焊机PLC控制程序的设计 104. PLC在自动验瓶机控制系统中的应用 105. PLC在6刀自动刀架系统设计中的应用 106. 基于PLC的摇臂钻床控制系统设计 107. PLC在板式过滤器中的应用 108. 基于PLC的智能交通灯监控系统设计 109. 基于PLC的贮料罐控制系统设计 110. PLC在粮食存储物流控制系统设计中的应用 111. 变频调速式疲劳试验装置控制系统设计 112. 基于PLC的霓虹灯控制系统 113. PLC在砂光机控制系统上的应用 114. 磨石粉生产线控制系统的设计 115. 自动药片装瓶机PLC控制设计 116. 装卸料小车多方式运行的PLC控制系统设计 117. PLC控制的自动罐装机系统 118. 基于CPLD的可控硅中频电源 119. 贮丝生产线PLC控制的系统 120. 景观温室控制系统的设计 121. PLC在电梯自动化控制中的应用 122. 基于PLC的气动机械手控制系统 123. 基于PLC的自动售货机的设计 124. PLC控制的行车自动化控制系统 125. PLC变频调速恒压供水系统 126. 自动铣床PLC控制系统毕业设计 127. 组态控制交通灯 128. 组态控制皮带运输机系统设计 济 129. 组态控制抢答器系统设计 130. 数控技术中进给系统开发设计 131. PLC控制的升降横移式自动化立体车库 132. PLC在电动单梁天车中的应用 133. PLC在液体混合控制系统中的应用 134. 智能组合秤控制系统设计 135. 自动送料装车系统PLC控制设计 136. PLC在数控技术中进给系统的开发中的应用 137. PLC在船用牵引控制系统开发中的应用 138. 基于PLC的组合机床控制系统设计 139. S7-200PLC在数控车床控制系统中的应用 140. PLC在改造z-3040型摇臂钻床中的应用 141. PLC控制自动门设计 142. PLC控制锅炉输煤系统 143. 机械手PLC控制设计 144. 基于西门子PLC控制的全自动洗衣机仿真设计
摘 要 随着科学技术的不断的向前发展,人类社会的不断进步。自动化技术取得了巨大的进步,自动控制技术广泛应用于制造业、农业、交通、航空及航天等众多产业部门,极大的提高了社会劳动生产率,改善了人们的劳动条件,丰富和提高了人民的生活水平。当今的社会生活中,自动化装置无所不在,自动控制系统无所不在。因此我们有必要对一些典型、常见的控制系统进行设计或者是研究分析。一个典型闭环控制系统的组成是很复杂的。通常都由给定系统输入量的给定元件、产生偏差信号的比较元件、对偏差信号进行放大的放大元件、直接对被控对象起作用的执行元件、对系统进行补偿的校正元件及检测被控对象的测量元件等典型环节组成。而控制系统设计则是根据生产工艺的要求确定完成工作的必要的组成控制系统的环节,确定环节的参数、确定控制方式、对所设计的系统进行仿真、校正使其符合设计要求。同时根据生产工艺对系统的稳、快、准等具体指标选择合适的控制元件。原理分析1.1 信号流图信号流图是表示线性代数方程的示图。采用信号流图可以直接对代数方程组求解。在控制工程中,信号流图和结构图一样,可以用来表示系统的结构和变量传递过程中的数学关系。所以,信号流图也是控制系统的一种用图形表示的数学模型。由于它的符号简单,便于绘制,而且可以通过梅森公式直接求得系统的传递函数。因而特别适用于结构复杂的系统的分析。信号流图可以根据微分方程绘制,也可以从系统结构图按照对应的关系得到。任何线性方程都可以用信号流图表示,但含有微分或积分的线性方程,一般应通过拉氏变换,将微分方程或积分方程变换为s的代数方程后再画信号流图。绘制信号流图时,首先要对系统的每个变量指定一个节点,并按照系统中的变量的因果关系,从左到右顺序排列;然后,用表明支路增益的支路,根据数学方程式将各节点变量正确连接,便得到系统的信号流图。在结构图中,由于传递的信号标记在信号线上,方框则是对变量进行变换或运算的算子。因此,从系统结构图绘制信号流图时,只需在结构图的信号线上用小圆圈标志出的传递信号,便得到节点;用标有传递函数的线段代替结构图中的方框,便得到支路,于是,结构图也就变换为相应的信号流图了。1.2 传递函数 线性定常系统的传递函数,定义为零初始条件下,系统输出量的拉氏变换与输入量的拉氏变换之比。 结构图的等效变换和简化由控制系统的结构图通过等效变换(或简化)可以方便地求取闭环系统的传递函数或系统输出量的响应。实际上,这个过程对应于由元部件运动方程消去中间变量求取系统传递函数的过程。一个复杂的系统结构图,其方框间的连接必然是错综复杂的,但方框间的基本连接方式只有串联、并联和反馈连接三种。因此结构图简化的一般方法是移出引出点或比较点,交换比较点,进行方框运算将串联、并联和反馈连接的方框合并。在简化过程中应遵循变换前后关系保持等效的原则,具体而言,就是变换前后前向通路中传递函数的乘积应保持不变,回路中传递函数的乘积应保持不变。 串联方框的简化(等效)传递函数分别为G1(s) 和G2(s) 的两个方框,若G1(s) 的输出量作为G2(s) 的输入量,则G1(s) 与G2(s) 称为串联连接,见图1 – 1 。图1 – 1 串联方框的简化(等效)1.3.2 并联方框的简化(等效)传递函数分别为G1(s) 和G2(s) 的两个方框,如果他们有相同的输入量,而输出量等于两个方框输出量的代数和,则G1(s) 与G2(s) 称为并联连接,见图1 – 2 。图1 – 2 串联方框的简化(等效)1.3.3反馈连接方框的简化(等效)若传递函数分别为G1(s) 和G2(s) 的两个方框,如图1 – 3 形式连接,则称为反馈连接。“ + ”号为正反馈,表示输入信号与反馈信号相加;“ — ”则表示相减,是负反馈。图1-3 反馈连接方框的简化(等效 )Ф(s)表示闭环传递函数,负反馈时, Ф(s)的分母为1+回路传递函数,分子是前向通路传递函数。正反馈时, Ф(s)的分母为1-回路传递函数,分子为前向通路传递函数。单位负反馈时, 1.4稳定裕度控制系统稳定与否是绝对稳定性的问题。而对一个稳定的系统而言,还存在着一个稳定的程度的问题。系统的稳定程度则是相对稳定的概念。相对稳定性与系统的瞬态响应指标有着密切的关系。在设计一个控制系统时,不仅要求它是绝对稳定的,而且还应保证系统具有一定的稳定程度,即具备适当的稳定性。只有这样,才能不致因建立数学模型和系统分析计算中的某些简化处理,或因系统参数变化而导致系统不稳定。对于一个开环传递函数中没有虚轴右侧零、极点的最小相位系统而论,G K ( jω ) 曲线越靠近 (- 1,j 0)点,系统阶跃相应的震荡就越强烈,系统的相对稳定性就越差。因此,可用G K ( jω ) 曲线对(- 1,j 0)点的靠近程度来表示系统的相对稳定程度。通常,这种靠近程度是以相角裕度和幅值裕度来表示的。1.4.1 相角裕度设ωc 为系统的截止频率,A ( ωc ) = | G ( jωc ) H( jω c) | = 1 ,定义相角裕度为γ =180° +∠G ( jωc ) H( jω c)相角裕度γ的含义是,对于闭环稳定系统,如果系统开环相频特性再滞后γ度后,则系统将处于临界稳定状态。1.4.2 幅值裕度设ωx为系统的穿越频率 , φ( ωx ) = ∠ G ( jωx ) H( jω x ) = ( 2k + 1 ) π ; k = 0 , ± 1 , ± 2 ……定义幅值裕度为 h = 1 /|G(jωx)H(jωx)|幅值裕度h的含义是,对于闭环稳定系统,如果系统开环幅频特性再增大h倍,则系统将处于临界稳定状态,复平面中γ和h的表示如图1-4 所示 图1-4 相角裕度和幅值裕度1.5 线性系统的校正方法基于一个控制系统可视为由控制器和被控对象两大部分组成,当被控对象确定后,对系统的设计实际上归结为对控制器的设计,这项工作称为对控制系统的校正。按照校正系统在系统中的连接方式,控制系统校正方式可分为串联校正、反馈校正、前馈校正和复合校正。1.5.1 串联校正串联校正装置一般接在系统误差测量点之后和放大器之间,串接于系统前向通路之中,如图1 – 5 。串联校正装置有源参数可调整。 图1 – 5 串联校正1.5.2 反馈校正反馈校正装着接在系统反馈通路之中。如图1 – 6 。反馈校正不需要放大器,可消除系统原有部分参数波动对系统性能的影响。 图1 – 6 反馈校正1.5.3 前馈校正前馈校正又称顺馈校正,是在系统主反馈回路之外采用的校正方式。前馈校正装置接在系统给定值之后及主反馈作用点之前的前向通路上,如图1 – 7 所示,这种校正方式的作用相当于给定值信号进行整形或滤波后,再送入反馈系统;另一种前馈校正装置接在系统可测扰动作用点与误差测量点之间,对扰动信号进行直接或间接测量,并经变换后接入系统,形成一条附加的对扰动影响进行补偿的通道,如图1 – 8 所示。 图1 – 7 前馈校正1 图1 – 8 前馈校正21.5.4 复合校正复合校正方式是在反馈控制回路中,加入前馈校正通路,形成一个有机整体,如图1 – 9 所示。 图1 – 9 复合校正1.6 期望对数频率特性设计方法期望特性设计方法是在对数频率特性上进行的,设计的关键是根据性能指标绘制出所期望的对数幅频特性。而常用的期望对数频率特性又有二阶期望特性、三阶期望特性及四阶期望特性之分。1.6.1 基本概念系统经串联校正后的结构图如图所示。其中G0(s)是系统固有部分的传递函数,Gc(s)是串联校正装置的传递函数;显然,校正后的系统开环传递函数为G(s) = Gc(s) G0(s)取频率特性,有G(jω) = Gc(jω) G0(jω)对上式两边取对数幅频特性,则L(ω) =Lc(ω) + L0(ω)式中,L0(ω)为系统固有部分的对数幅频特性; Lc(ω)为串联校正装置的对数幅频特性; L(ω)为系统校正后的所期望得到的对数幅频特性,称为期望对数幅频特性。上式表明:一旦绘制出期望对数幅频特性L(ω),将它与固有特性L0(ω)相减,即可获得校正装置的对数幅频特性Lc(ω)。在最小相位系统中,根据Lc(ω)的形状即可写出校正装置的传递函数,进而用适当的网络加以实现,这就是期望频率特性设计法的大致过程。1.6.2 典型的期望对数频率特性通常用到的典型期望对数频率特性有如下几种;1.6.2.1 二阶期望特性校正后系统成为典型的二阶系统,又称为 Ⅰ 型二阶系统,其开环传递函数为G(s) = Gc(s) G0(s) = K /s (Ts +1 ) = ωn2 / s ( s + 2§ωn ) = ( ωn/( 2§))/(s(1/(2§ωn) s+1))式中,T = 1 / 2§ωn , 为时间常数;K = ωn/ 2§ ,为开环传递函数。相应的频率特性表达式是G ( jω ) = ( ωn/( 2§))/(jω(1/(2§ωn) jω+1))按上式给出的二阶期望对数频率特性如图 1 – 10 所示,其截止频率ωc = K =ωn/ 2§转折频率ω2 = 1 / T = 2§ωn 。 两者之比为ω2 /ωc = 4 § 2工程上常以 § = 0.707 时的二阶期望特性作为二阶工程最佳特性。此时,二阶系统的各项性能指标为σ % = 4.3 %ts = 4.144 T由渐进特性 :ωc =ω2 / 2 , γ = 63.4° ;由准确特性 :ω2 = 0.455ω2 ,γ = 65.53° 图 1 – 10 二阶期望对数频率特性1.6.2.2 三阶期望特性校正后系统成为三阶系统,又称为 Ⅱ型三阶系统,其开环传递函数为G(s)= K ( T1 s + 1 ) / s2 (T2 s + 1 )式中,1 / T1 <√K < 1 / T2 。相应的频率特性表达式为G ( jω ) = K ( jT1ω + 1 ) / (jω)2 (jT2ω + 1 )三阶期望对数幅频特性如图 1 – 11 所示。其中 ω 1 = 1 / T1 ,ω2 =1 / T2。由于三阶期望特性为Ⅱ型系统,故稳态速度误差系数Kv = ∞ ,而加速度误差系数Ka = K。三阶期望特性的瞬态性能和截止频率ωc 有关,又和中频段的宽度系数h有关。h = ω2 /ω1 = T1 / T2在h值一定的情况下,一般可按下列关系确定转折频率ω1和ω2:ω1 = 2ωc /h+1 , ω2 = 2hωc /h+1 图 1 – 11 三阶期望对数幅频特性1.6.2.3 四阶期望特性校正后系统成为三阶系统,又称为 Ⅱ型三阶系统,其开环传递函数为G(s)= K ( T2 s + 1 ) / s (T1 s + 1 ) (T3 s + 1 ) (T4 s + 1 )相应的频率特性表达式为G(jω)= K (jT2 ω + 1 ) / jω(jT1 ω + 1 ) (jT3 ω + 1 ) (jT4 ω + 1 )对数幅频特性如图 1 – 12 所示。图 1 – 12 对数幅频特性其中截止频率ωc 、中频段宽度h可由要求的调节时间ts 和最大起调量σ% 确定,即ωc ≥ (6 ~ 8)/ts h ≥ σ+64 / σ- 16近似确定ω2 和ω3 如下:ω2 = 2ωc /h+1 , ω3 = 2hωc /h+1四阶期望对数幅频特性由若干段组成,各段特性的斜率依次为-20dB/dec、-40dB/dec、-20dB/dec、-40dB/dec、-60dB/dec。若以-20dB/dec作为1个斜率单位,则-40dB/dec可用2表示,-60dB/dec可用3表示。于是,各段的斜率依次为1、2、1、2、3,这就是工程上常见的所谓1-2-1-2-3型系统。其中:低频段:斜率为-20dB/dec,其高度由开环传递函数决定。中频段:斜率为-20dB/dec,使系统具有较好的相对稳定性。低中频连接段、中高频连接段和高频段:这些对系统的性能不会产生终于影响。因此,在绘制时,为使校正装置易于实现,应尽可能考虑校正前原系统的特性。也就是说,在绘制期望特性曲线时,应使这些频段尽可能等于或平行于原系统的相应频段,连转折频率也应尽可能取未校正系统相应的数值。具体分析及计算过程2.1 画信号流图信号流图如图2 – 1 所示 G1 (s) = 4 ,G2 (s) = 10 ,G3 (s) = 2.0 / (0.0.25 s+1) , G4 (s) = 2.5 / s(0.1 s+1)图2 – 1 小功率随动系统信号流图2.2 求闭环传递函数系统的开环传递函数为G(s) = G1 (s) G2 (s) G3 (s) G4 (s) = 200 / s (0.025 s + 1 ) (0.1 s + 1)= 200 / ( 0.0025 s3 + 0.125 s2 + s )则系统的闭环传递函数为Ф = 200 / ( 0.0025 s3 + 0.125 s2 + s + 200 ) 求开环系统的截至频率G(s) = 200 / s (0.025 s + 1 ) (0.1 s + 1)相应的频率特性表达式为G(jω) = 200 / jω (0.025 jω + 1 ) (0.1 jω + 1)由|G(jω)|= 1 可得截止频率 ωc = 38 s-1 求相角裕度将ωc = 38 s-1带入G(jω),可得相角裕度γ= 180°+(0°- 90°- arctan1/0.95- arctan1/3.8)=-28.3° 求幅值裕度令G(jω)的虚部等于0.可得穿越频率ωx=20 s-1此时,G(jω)=A(ω)=0.0833,则幅值裕度h=1/ A(ω)=12 设计串联校正装置绘制未校正系统的对数幅频特性,程序如下num=200;den=[0.0025,0.125,1,0];sys=tf(num,den);[mag,phase,w]=bode(num,den);[gm,pm,wcg,wcp]=margin(mag,phase,w);margin(sys)未校正系统的对数幅频特性如图2 – 2 所示,其低频特性已满足期望特性要求 图2 – 2 未校正系统的对数幅频特性计算期望特性中频段的参数:ωc ≥ (6 ~ 8)/ts = (6 ~ 8)/ 0.5 = 12 ~ 16(rad s-1)h ≥ σ+64 / σ- 16 =25 + 64 / 25- 16 = 9.89取ωc = 20 rad s-1 ,h = 10。计算ω2 ,ω3 :ω2 = 2ωc /h+1=≅ 2ωc / h = 2×20 / 10 = 4 ω3 = 2hωc / h + 1 ≅ 2 × 20 = 40由此可画出期望特性的中频段,如图2 – 3所示。根据期望对数频率特性设计方法,可以画出期望对数幅频特性曲线,如图2 – 3。图2 – 3 期望对数幅频特性曲线将L ( ω )减去L 0( ω )(纵坐标相减)即得L c( ω ),L c( ω )即为系统中所串进的校正装置的对数幅频特性,如图2 – 4 所示。图2 – 4 校正装置的对数幅频特性根据其形状特点,可写出校正装置的传递函数为Gc(s) = ( 0.25s + 1 ) ( 0.1s + 1 ) / ( 2.5s + 1 ) ( 0.01s + 1 )要获得上式所描述的传递函数,既可用无源校正网络实现,又可用有源校正网络实现。 采用无源滞后------超前网络无源滞后------超前网络如图2 – 5 图2 – 5 无源滞后------超前网络其传递函数Gc(s)=(( T1 s + 1 ) ( T2 s + 1 ))/(( T1 s / β + 1 ) ( βT2s + 1 ))比较上式与校正装置的传递函数可得T2 s = R2 C2 = 0.25 , βT2 = 2.5T1 s = R1 C1 = 0.1 , T1 / β = 0.01如选C1 =0.33μF,C2=5μF,则可算得R1=0.1/0.33×10-6=3000kΩR2=0.25/5×10-6=50 kΩ系统校正后的结构图如图2 – 6 所示图2 – 6 系统校正后的结构图 采用有源校正网络由于运算放大器组成的有源校正网络同时兼有校正和放大作用,故图2 – 7 中的电压放大和串联校正两个环节可以合并,且由单一的有源网络实现。如图2 – 7 所示的网络中,当R5≫R3时,导出的传递函数为G ( s ) = - Z2 ( Z2 + Z4 ) / Z1 Z4 )式中,Z 1 = R1 ;Z2 = R 5 + R 2 / R 2 C 1 s + R2Z 3 = R3 ;Z4 = R 4 + 1/ C 2 s再经一级倒相后,网络的传递函数可表示成G(s)=(R2+R5)/R1 (R2R5/(R2+R5) C1s+1)/(R2C1s+1) ((R3+R4)C2s+1)/(R4C2s+1) 图2 – 7 有源校正网络电压放大与校正环节合并后的传递函数为10 Gc(s)=10×( 0.25s + 1 ) ( 0.1s + 1 ) / ( 2.5s + 1 ) ( 0.01s + 1 )比较以上两式,并选C1=10μF, C2=20μF,则可求得校正网络的参数如下:R 2 C 1=2.5,故R 2=250kΩR 4 C 2=0.01,故R 4=500kΩ(R 3+ R 4)C2=0.1, 故R 3=4.5kΩR2R5/(R2+R5) C1= 0.25,故R 5=28kΩ(R2+R5)/R1=10,故R 1=28kΩ取R 0=R 1=28kΩ。则系统校正后的结构图如图2 – 8 所示。图2 – 8 系统校正后的结构图3绘制校正前后系统的bode图3.1 绘制未校正系统的对数幅频特性未校正系统的对数幅频特性如图2 – 2。程序如下num=200;den=[0.0025,0.125,1,0];sys=tf(num,den);[mag,phase,w]=bode(num,den);[gm,pm,wcg,wcp]=margin(mag,phase,w);margin(sys)3.2 绘制校正系统的对数幅频特性校正系统的对数幅频特性,如图2 – 3 。程序如下num=[0.025,0.35,1];den=[0.025,2.51,1];sys=tf(num,den);[mag,phase,w]=bode(num,den);[gm,pm,wcg,wcp]=margin(mag,phase,w);margin(sys)3.3 绘制校正后系统的对数幅频特性校正后系统的对数幅频特性如图2 – 4 。程序如下:num=[50,200];den=[0.000625,0.08775,2.535,1,0];sys=tf(num,den);[mag,phase,w]=bode(num,den);[gm,pm,wcg,wcp]=margin(mag,phase,w);margin(sys)总结课程设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。通过这次课程设计使我明白了自己原来知识还比较欠缺。自己要学习的东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低。通过这次课程设计,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。虽然这个设计做的也不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财富,使我终身受益。
电梯控制技术论文篇二 电梯PLC控制系统分析 摘 要:随着城市建设进程的加快,由于高层建筑数量越来越多,高度也越来越高,而高层建筑中的电梯也成为日常出行的重要代步工具。而电梯运行质量的优劣直接影响着人们的出行,所以在电梯质量正常运行的同时也要提高技术含量,其中安全指数和稳定指数是重中之重。 关键词:电梯;PLC控制系统;程逻辑控制器 中图分类号:TU857 文献标识码:A 文章编号:1674-7712 (2013) 16-0000-01 电梯是上下运输代步工具,而且在运行期间频繁的启动和停止,而电梯的负载量也有着显著的变化、在运行期间的转换。在无负载运行时,电梯的电机的负载降低到最少,而且可能出现自发电状态。当电梯在超出负载能力运行的时候,电梯电机的负载提升到最大,这个时候出现电动状态,这时候的电梯电机要求在正、反转,电动、发电运行。 一、电梯发展及控制 电梯作为垂直方向的出行运输设备,在高层建筑和重要机构电梯的作用已经成为不可或缺的部分。随着微机技术、信息化处理技术、电气自动化技术等快速的推进,现在的电梯逐渐变成机电一体化形势下的高效电梯。随着城市建设进程的加快,由于高层建筑数量越来越多,高度也越来越高。建筑开发商在新型楼房建设上加强了各种住宅楼房的硬件设施,而家用电梯也迅速的走入市场。 任何类别的电梯,其运动的充分与必要条件之一是电梯要有确定的运行方向,因此所有用来确定电梯运行方向的控制环节简称为定向环节。在所有电梯的整体控制系统中,与电梯的自动开 关门控制环节一样,定向环节也是一个至关重要的环节。用PLC实现乘客电梯的控制,关键是怎样合理地利用PLC的硬件资源,节约PLC的输入输出端口,降低设计成本;同时充分利用软件资源简化控制程序,缩短PLC的扫描周期,提高电梯的安全可靠性和操作的灵活性;另外控制程序应尽量简单,且具有一定的规律性,适合于开发各种楼层的控制需求。 二、PLC控制系统 Programmable Logic Controller 简称PLC也可称为可编程逻辑控制器,替代了以往继电器控制装置,程逻辑控制器得到了迅速的推广,在全世界范围得到了广泛应用。同时,程逻辑控制器的功能持续更新。随着计算机技术、信号处理技术、控制技术网络技术的不断发展和用户需求的不断提高,程逻辑控制器在开关量处理的基础上增加了模拟量处理和运动控制等功能。现在的程逻辑控制器不再只能逻辑控制,在伺服控制、事后控制等领域也发挥着十分重要的作用。 程逻辑控制器是集成了继电器控制原理演变出现的,早期的程逻辑控制器只有开关量逻辑控制,程逻辑控制器运行时按存储程序的内容逐条执行,以完成工艺流程要求的操作。程逻辑控制器的中央处理器内有指示程序步存储地址的程序计数器,在程序运行过程中,每执行一步该计数器自动加。程序从开始运行基础序号为零起,依次执行到最终步,然后再返回起始步循环运算。程逻辑控制器每完成一次循环操作所需的时间称为一个扫描周期。不同型号的程逻辑控制器,循环扫描周期在1微秒到几十微秒之间。程逻辑控制器用梯形图编程,在解算逻辑方面,表现出快速的优点,在微秒量级,解算1K逻辑程序不到1毫秒。它把所有的输入都当成开关量来处理,16位和32位的为一个模拟量。大型程逻辑控制器使用另外一个中央处理器来完成模拟量的运算。把计算结果送给程逻辑控制器的控制器。 现在电梯的操纵控制方式一般可分为按钮控制(AZ、AS)、信号控制(XH)、集选控制(JX)、并联控制(BL)、梯群控制(QK)、微机控制(W)这几类。那么我们该如何开始着手去判断区分它们呢?笔者觉得可以借鉴C语言算法中的选择结构,即“if(条件表达式)语句1else语句2”的表达方式写个“程序”来分析判断。集选类和非集选类(信号、按钮)的主要区别在于集选能实现无司机操纵,而按钮、信号因为自动化程度不够高,只能在有司机操纵下才能正常运行。因此判断方法就是看能不能实现无司机操纵:在轿内任意登记一个楼层,然后人出轿厢,过一会看电梯是否自动关门去到指定楼层,如果是,就是有司机操纵,可以判断属于集选类,反之属于非集选类。用C语言表达即为if(有司机操纵=1)集选类控制else非集选类控制。 三、电梯PLC控制系统 电梯是的正常运行是依靠外部指示信号以及电梯本身指示来完成的,而且每次指令发出的同时是不固定的, PLC控制系统是人与电机配合式的控制系统,在人发出控制之命令的同时,PLC控制系统会迅速做出存储命令,之后经过控制逻辑进行计算后发出指令。PLC控制系统在得到实际指令后,决定电梯的走向,在通过向变频器下达指令,变频器在得到PLC控制系统的指令后在对速度的快慢进行调节,当电梯电机启动后,速度迅速增至最大,控制可靠的动作,在到达命令临界点的时候,PLC控制系统传递出停止指令,变频器收到指令后已预先的指令把速度降低到慢行状态。 PLC控制系统从出现以及实际应用到至今,改变了以往老式继电器接线逻辑到存储逻辑的推进;实现了逻辑控制到数字控制;其应用领域越来越广,实现了单体设备简单控制到胜任运动控制、过程控制及集散控制等各种任务的跨越。如今的PLC控制系统在处理模拟量、数据计算、人机接口和组网的各方面能力都已大大提高,成为自动化控制领域的主流控制器,在各行各业发挥着巨大的作用,电梯控制系统采用PCL及程逻辑控制主板为基础。电梯的群控技术有集选控制和随机逻辑控制。电梯其运行性能、安全性能、乘坐舒适感、节能方面等均有一定的发展。为了确保电梯正常运行、安全使用,所有的电梯都应该配备具有电梯专业知识的人员。他们必须对电梯工作原理、性能特点、控制运行要全面认识和掌握,才能做到对电梯的正确使用与保养。 具有PLC控制系统的电梯必然是未来电梯也得主流趋势,在制造与实际应用方面充分的展示了这个国家的综合实力的象征。而且在我国一线城市北京、上海、深圳等人口高密度城市,民众对物质文化的需求越来越高,由于高层建筑数量越来越多,高度也越来越高,而高层建筑中的电梯也成为日常出行的重要代步工具。而电梯运行质量的优劣直接影响着人们的出行,所以在电梯质量正常运行的同时也要提高技术含量,其中安全指数和稳定指数是重中之重。 参考文献: [1]王子文,骆建华.电梯PLC控制策略及其程序设计[J].起重运输机械,2006(07). [2]黄轶,王丽莉,张智勇.基于SIMADYND的矿井提升机控制系统的PLC改造[J].微计算机信息,2006(16). [3]叶予光,梁南丁.基于PLC技术的矿井提升机电控系统[J].机电一体化,2004(06). 看了“电梯控制技术论文”的人还看: 1. 电梯控制系统技术论文 2. 电梯技术论文 3. 电梯维修技术论文 4. 电梯职称论文发表 5. 电机及控制技术论文集
1. 乘客电梯的PLC控制(字数:20386,页数:49 价格:¥90.00)2. 西门子S7-300PLC在六层变频调速电梯控制中的应用(字数:24198,页数:68 价格:¥98.00)3. 七层建筑电梯PLC控制系统设计(字数:36753,页数:73 价格:¥168.00)4. 交流变频五层电梯控制系统的设计(字数:32540,页数:57 价格:¥168.00)5. 基于西门子PLC的变频调速电梯控制系统的设计(字数:22309,页数:44 价格:¥128.00)6. 基于MCGS电梯控制系统设计(字数:25318,页数:57 价格:¥168.00)7. 交流变频调速PLC控制电梯系统设计毕业论文(字数:20697,页数:68 价格:¥108.00)8. PLC控制变频调速五层电梯系统设计(字数:17380,页数:51 价格:¥68.00)9. 三菱PLC在五层电梯控制中的应用(字数:12900,页数:43 价格:¥98.00)10. PLC在交流双速电梯控制系统中的应用(字数:24527,页数:47 价格:¥68.00)11. 松下系列PCL五层电梯控制系统(字数:23094,页数:31 价格:¥79.00)12. 松下PLC控制的五层电梯设计(字数:10429,页数:28 价格:¥60.00)13. 基于三菱PLC设计的四层电梯控制系统(字数:14291,页数:35 价格:¥79.00)14. 三菱PLC控制的四层电梯毕业设计论文(字数:13240,页数:42 价格:¥88.00)15. 基于plc的五层电梯控制(字数:20509,页数:59 价格:¥88.00)16. PLC电梯控制毕业论文(字数:15029,页数:44 价格:¥98.00)17. 西门子PLC控制的四层电梯毕业设计论文(字数:9622,页数:34 价格:¥90.00)18. 基于三菱PLC的三层电梯控制系统设计(字数:9596,页数:30 价格:¥98.00)19. PLC在电梯自动化控制中的应用(字数:22033,页数:61 价格:¥108.00)20. 基于FPGA控制的电梯设计与实现(字数:15083,页数:44 价格:¥118.00)21. 基于PLC的三层电梯控制系统毕业设计(字数:10221.页数:31 价格:¥98.00)22. 基于PLC的电梯系统设计(字数:9419,页数:27 价格:¥60.00)23. 基于FXON系列PLC的六层电梯控制设计(字数:15677,页数:33 价格:¥118.00)24. 多层住宅楼电梯的PLC控制系统的设计(字数:21346,页数:62 价格:¥118.00)25. 三层楼电梯的PLC自控系统的设计(字数:19310,页数:45 价格:¥118.00)26. 三层楼交流双速电梯的PLC电气控制系统的设计(字数:23317,页数:54 价格:¥118.00)27. 液压电梯设计(字数:14364.页数:32 价格:¥98.00)28. 西门子PLC控制的四层电梯设计(字数:17725,页数:58 价格:¥118.00)29. PLC电梯控制系统(字数:23085,页数:32 价格:¥60.00)30. 基于单片机的电梯控制系统(字数:13302,页数:45 价格:¥118.00)31. 基于PLC控制的调压调速电梯拖动系统设计(字数:17562,页数:43 价格:¥118.00)32. 高层建筑电梯控制系统设计(字数:20079,页数:47 价格:¥148.00)33. 模拟电梯的制作(字数:18703,页数:49 价格:¥148.00)34. 三层电梯的单片机控制电路(字数:10430,页数:35 价格:¥98.00)35. 单片机控制电梯系统的设计(字数:11302,页数:27 价格:¥90.00)36. S7-300 PLC在电梯控制中的应用(字数:19613,页数:46 价格:¥108.00)37. 基于PLC的七层交流变频电梯控制系统设计(字数:17233,页数:57 价格:¥118.00)38. 五层交流双速电梯PLC电气控制系统的设计(字数:20556,页数:36 价格:¥118.00)39. 四层交流双速电梯的PLC电气控制系统的设计(字数:20750,页数:42 价格:¥118.00)40. 基于PLC控制的交流变频电梯设计(字数:15930,页数:57 价格:¥90.00)41. 基于三菱PLC的四层电梯控制系统的设计(字数:9688,页数:23 价格:¥79.00)42. 基于PLC的双速六层电梯控制系统设计(字数:18705,页数:75 价格:¥118.00)43. 基于PLC和变频器实现电梯的精确控制(字数:20804,页数:45 价格:¥118.00)44. PLC三层楼电梯系统设计与调试(字数:7645,页数:19 价格:¥60.00)45. 电梯控制系统的设计(字数:12486,页数:31 价格:¥79.00)46. 四层电梯的PLC控制及组态(字数:15445,页数:43 价格:¥88.00)47. 单台电梯PLC控制系统的总体设计(字数:19287,页数:49 价格:¥90.00)48. 电梯控制系统设计(字数:15163,页数:69 价格:¥128.00)49. 五层单台电梯PLC控制系统的总体设计方案(字数:15457,页数:43 价格:¥90.00)50. 交流变频电梯控制系统的设计(字数:25520,页数:53 价格:¥148.00)可联&>系Q+.Q:8.9.....后面输入....3..6........接着输入2..8....136Q+Q空间.里有所&有内容。
应自动门机的种类很多,且在选购自动门一篇中已有简单介绍,在此,仅以平移型感应自动门机为例介绍一下自动门机的基本工作原理。 首先,平移式自动门机组由以下部件组成: (1) 主控制器:它是自动门的指挥中心,通过内部编有指令程序的大规模集成块,发出相应指令,指挥马达或电锁类系统工作;同时人们通过主控器调节门扇开启速度、开启幅度等参数。 (2) 感应探测器:负责采集外部信号,如同人们的眼睛,当有移动的物体进入它的工作范围时,它就给主控制器一个脉冲信号; (3) 动力马达:提供开门与关门的主动力,控制门扇加速与减速运行。 (4) 门扇行进轨道:就象火车的铁轨,约束门扇的吊具走轮系统,使其按特定方向行进。 (5) 门扇吊具走轮系统:用于吊挂活动门扇,同时在动力牵引下带动门扇运行。 (6) 同步皮带(有的厂家使用三角皮带):用于传输马达所产动力,牵引门扇吊具走轮系统。 (7) 下部导向系统:是门扇下部的导向与定位装置,防止门扇在运行时出现前后门体摆动。 当门扇要完成一次开门与关门,其工作流程如下: 感应探测器探测到有人进入时,将脉冲信号传给主控器,主控器判断后通知马达运行,同时监控马达转数,以便通知马达在一定时候加力和进入慢行运行。马达得到一定运行电流后做正向运行,将动力传给同步带,再由同步带将动力传给吊具系统使门扇开启;门扇开启后由控制器作出判断,如需关门,通知马达作反向运动,关闭门扇。
《基于单片机技术的自动门智能控制系统》下载地址:
随着社会的不断进步,人们不断去追求享受安全、方便、节能的产品所带来的工作、生活环境。自动门同样也给人们带来这样的效果。从用手推门到自动开门,这种方式越来越多的被人们接受,门的技术、性能也已相当成熟、完美,并广泛应用在政府机关、银行、医院、商业、工业等不同行业,得到广大用户的认可。
目 录 引 言 1 1. 概述 2 1.1 国内外自动门发展现状 2 1.2 本课题研究的内容 2 1.3 本课题研究的目的和意义 3 2. 自动门控制系统总体方案设计 4 2.1 自动门的功能需求分析 4 2.2 系统设计的基本步骤 4 2.3 自动门技术参数的确定 6 2.4 自动门的机械传动机构设计 6 3. 自动门硬件系统的设计 8 3.1 控制系统结构设计 8 3.2 可编程控制器(PLC)的选型 8 3.2.1 PLC概述 8 3.2.2可编程控制器(PLC)的选型 9 3.3 驱动装置的选型 11 3.4 变频器的选型 12 3.4.1 变频器原理 12 3.4.2 变频器的选型 12 3.4.3 变频器的参数设定 13 3.5 感应开关的选型 15 3.6 自动门系统I/O分配表 15 3.7 控制系统的电气接线 16 4. 自动门控制系统软件的设计 17 4.1 PLC梯形图概述 17 4.2 梯形图编程环境 17 4.3 程序流程图 19 4.4 梯形图的设计 20 5. 系统调试 21 5.1 梯形图程序的下载 21 5.2 程序调试记录及结果分析 22 结束语 23 参考文献 24 附录Ⅰ 自动门的硬件连接电路 25 附录Ⅱ PLC的I/O地址分布图 26 附录Ⅲ 自动门梯形图程序 27 致 谢 33
在网络上给你找的。希望对你有点帮助。1. 基于FX2N-48MRPLC的交通灯控制 2. 西门子PLC控制的四层电梯毕业设计论文 3. PLC电梯控制毕业论文 4. 基于plc的五层电梯控制 5. 松下PLC控制的五层电梯设计 6. 基于PLC控制的立体车库系统设计 7. PLC控制的花样喷泉 8. 三菱PLC控制的花样喷泉系统 9. PLC控制的抢答器设计 10. 世纪星组态 PLC控制的交通灯系统 11. X62W型卧式万能铣床设计 12. 四路抢答器PLC控制 13. PLC控制类毕业设计论文 14. 铁路与公路交叉口护栏自动控制系统 15. 基于PLC的机械手自动操作系统 16. 三相异步电动机正反转控制 17. 基于机械手分选大小球的自动控制 18. 基于PLC控制的作息时间控制系统 19. 变频恒压供水控制系统 20. PLC在电网备用自动投入中的应用 21. PLC在变电站变压器自动化中的应用 22. FX2系列PCL五层电梯控制系统 23. PLC控制的自动售货机毕业设计论文 24. 双恒压供水西门子PLC毕业设计 25. 交流变频调速PLC控制电梯系统设计毕业论文 26. 基于PLC的三层电梯控制系统设计 27. PLC控制自动门的课程设计 28. PLC控制锅炉输煤系统 29. PLC控制变频调速五层电梯系统设计 30. 机械手PLC控制设计 31. 基于PLC的组合机床控制系统设计 32. PLC在改造z-3040型摇臂钻床中的应用 33. 超高压水射流机器人切割系统电气控制设计 34. PLC在数控技术中进给系统的开发中的应用 35. PLC在船用牵引控制系统开发中的应用 36. 智能组合秤控制系统设计 37. S7-200PLC在数控车床控制系统中的应用 38. 自动送料装车系统PLC控制设计 39. 三菱PLC在五层电梯控制中的应用 40. PLC在交流双速电梯控制系统中的应用 41. PLC电梯控制毕业论文 42. 基于PLC的电机故障诊断系统设计 43. 欧姆龙PLC控制交通灯系统毕业论文 44. PLC在配料生产线上的应用毕业论文 45. 三菱PLC控制的四层电梯毕业设计论文 46. 全自动洗衣机PLC控制毕业设计论文 47. 工业洗衣机的PLC控制毕业论文 48. 《双恒压无塔供水的PLC电气控制》 49. 基于三菱PLC设计的四层电梯控制系统 50. 西门子PLC交通灯毕业设计 51. 自动铣床PLC控制系统毕业设计 52. PLC变频调速恒压供水系统 53. PLC控制的行车自动化控制系统 54. 基于PLC的自动售货机的设计 55. 基于PLC的气动机械手控制系统 56. PLC在电梯自动化控制中的应用 57. 组态控制交通灯 58. PLC控制的升降横移式自动化立体车库 59. PLC在电动单梁天车中的应用 60. PLC在液体混合控制系统中的应用 61. 基于西门子PLC控制的全自动洗衣机仿真设计 62. 基于三菱PLC控制的全自动洗衣机 63. 基于plc的污水处理系统 64. 恒压供水系统的PLC控制设计 65. 基于欧姆龙PLC的变频恒压供水系统设计 66. 西门子PLC编写的花样喷泉控制程序 67. 欧姆龙PLC编写的全自动洗衣机控制程序 68 景观温室控制系统的设计 69. 贮丝生产线PLC控制的系统 70. 基于PLC的霓虹灯控制系统 71. PLC在砂光机控制系统上的应用 72. 磨石粉生产线控制系统的设计 73. 自动药片装瓶机PLC控制设计 74. 装卸料小车多方式运行的PLC控制系统设计 75. PLC控制的自动罐装机系统 76. 基于CPLD的可控硅中频电源 77. 西门子PLC编写的花样喷泉控制程序 78. 欧姆龙PLC编写的全自动洗衣机控制程序 79. PLC在板式过滤器中的应用 80. PLC在粮食存储物流控制系统设计中的应用 81. 变频调速式疲劳试验装置控制系统设计 82. 基于PLC的贮料罐控制系统 83. 基于PLC的智能交通灯监控系统设计