首页 > 期刊投稿知识库 > 数学史数学文化方面的研究论文

数学史数学文化方面的研究论文

发布时间:

数学史数学文化方面的研究论文

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!

数学史的教育功能

摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。

关键词数学史教育功能创新思维功能体现

1 数学史的教育功能之一 ——提高学生们学习数学的兴趣

兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。

例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。

2 数学史的教育功能之二——培养学生们的数学应用意识

数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。

例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;

又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。

再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。

从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。

3 数学史的教育功能之三——提高学生们的数学素养

对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。

4 数学史的教育功能之四——培养学生们对世界观的正确认知

从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。

总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。

参考文献

[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.

[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.

[3]李正银.数学史与数学教育[J].海南师范学院学报,2003.16(3):98-10.

[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).

[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).

[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).

数学史在大学数学教学中的意义与价值

摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。

关键词: 数学史 高等数学 教学改革

1.数学史

数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

2.数学史在大学数学教学中的意义与价值

我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。

数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。

(1)数学史是数学文化的最佳载体

传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。

(2)数学史是激发兴趣的有效途径

几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。

纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。

数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。

(3)数学史是理解数学的必由之路

数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。

从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。

(4)数学史是思想教育的良好素材

数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。

欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。

3.结语

数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”

参考文献

[1]靳玉乐.现代教育学[M].四川教育出版社,2006.

[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.

[3]杨泰良.以史为鉴 注重反思[J].数学通报.2004.2.

[4]J.N.Kapur.数学家谈数学本质[M].北京大学出版社,1989.

[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.

哦,这个........

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

数学文化是指人类在数学行为活动的过程所创造的物质产品和精神产品的总和。下文是我为大家整理的关于数学文化论文投稿的范文,欢迎大家阅读参考!数学文化论文投稿篇1 浅谈我国基础数学文化教育的历程 一、何谓数学文化 对于数学文化的界定很多,“数学文化是指,不仅数学自身属于人类社会的一种文化现象,而且数学还拥有广泛的超越数学自身意义的因素以及这些因素对人类的巨大影响,从而应把数学的发生、发展以及数学教育放到整个社会文化背景中去观察和认识。” “由于数学对象并非物质世界中的真实存在,而是人类抽象思维的产物,因此,数学就是一种文化。” 特别是一部数学史可以反映出数学文化的发生发展过程,具体的数学概念、数学方法、数学思想中都有丰富的文化底蕴,都是值得我们在教学中一一展示给大家的素材。 二、数学文化教育提出的背景 1.激发学生学习兴趣,提高数学教育质量。 不管是在哪个国家,数学教育都是基础教育的重点,然而数学一直以来被大部分学生视为比较枯燥单调难学,对数学学习缺乏兴趣甚至畏惧且望而却步。但是数学教育对每位合格的社会公民的培养又有着不可替代的重要作用,兴趣是最好的老师,怎样提高学生的学习数学的兴趣,是所有教育者都很注重的,该怎样激发学生学习数学的兴趣,其中挖掘发挥数学本身的文化内涵并实现在数学教学中成了数学教育中的热点问题,因此,提高数学教育质量是提倡数学教育中重视文化教育的原因之一。 2.素质教育的需要。 中国是数学大国,但是很长一段时间,我们过于重视数学教育的工具价值,而忽略了其作为一种文化陶冶情操的文化审美教育价值。应试教育轰轰烈烈,学生的学业负担过重,中国学生在世界上是最勤奋的学生群体,但是中国学生的创新能力不高,基础教育没有体现它最基本的功能:为社会培养高素质的合格公民。我们不需要只会读死书的书呆子,所以,为了提高国民素质,提高数学素质和数学教育质量,数学教育中的文化教育开始被大家提倡。 3.数学本身是一种文化,本来就具有文化教育的价值和功能。 20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩[3]。近年来,数学文化成了当今探讨数学发展的新视角,人们愈来愈认识到,数学的发展与人类文化息息相关,数学一直是人类文明主要的文化力量,同时人类文化发展又极大地影响了数学的进步。数学本身不仅仅是一门科学,也是一种文化,具有文化教育的价值和功能。“优秀的数学文化,会是美丽动人的数学王后、得心应手的仆人、聪明伶俐的宠物。伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。” 三、我国基础教育中数学文化教育所经历的三个阶段 第一个阶段:基础数学文化教育的被忽视阶段(1949年至20世纪90年代) 我国刚刚成立之时,百废待兴,基础教育还在起步发展,一时连合格的数学老师都难以保证,更何况数学教育中的文化教育的重视了。从解放初期的全盘照搬苏联数学教育,直到1958年的很长一段时间的数学教育目的的对比我们发现,数学教育重视了运用已经学到的知识和技巧去解答算术应用题和日常生活中的简单计算问题,而对知识、能力和思想品德三方面的教学目的提得不够全面、明确。 之后受赶美超英的大跃进运动和十年“”的影响,我国的教育事业受到严重冲击,直到1978年年颁布了《中学数学教学大纲(试行草案)》,使我国的数学科学教育事业重新回到正常的轨道上来。然而,此次修订的大纲,增加了很多高等数学内容,显然与当时基础数学水平较低的现实不符,加重了学生们的学习负担。针对这种情况,于1982年又拟定了《六年制重点中学数学教学大纲(草案)》,对中学数学的内容进行了适当地调整,编写了几套深度和广度不同的教材,以供不同地区根据当地的具体基础选择相应的教材,同时积极稳妥地进行了大量地教材改革试验。1986年颁布了《全日制中学数学教学大纲》,对教育的目标提出了适应当时具体情况和未来发展的新要求[4]。很显然,相对于今天,对于基础教育中的数学文化教育,大家还一时无暇顾及和提及。 第二个阶段:基础数学文化教育被热烈探讨阶段(20世纪90年代至2004年) 随着国力的增强,对教育的足够重视和投入,中国的数学教育,特别是基础教育,也在世界上处于领先地位。然而,应试教育也愈演愈烈,很多学者和教师发现,由于受应试教育的影响,数学课程注重知识传授,忽略了情感态度与价值观的教育,特别是数学这样的理科科目,在学生眼里就是难题,更何况全民奥数热。很大程度上奥数毁坏了中国学生对数学学习的兴趣和热情,增加了他们对数学学习的恐惧,占用了学生们发展其他素质的宝贵时间,浪费了太多人力物力。 1993年2月13日,中共中央、国务院在总结广大教育工作者改革实践经验的基础上制定发布的《中国教育改革和发展纲要》(以下简称《纲要》)中指出:“中小学要从‘应试教育’转向全面提高国民素质的轨道”,为了贯彻和落实《纲要》,中共中央于1994年召开的全国教育工作会议上提出:“基础教育必须从‘应试教育’转到素质教育的轨道上来,全面贯彻教育方针,全面提高教育质量。” 伴随着素质教育观念的广泛深入,大家对怎样提高素质教育的研究越来越广泛。具备学习的愿望、兴趣和方法,比记住一些知识更为重要,这也是素质教育所倡导的。怎样提高数学教育质量,使数学教育也完全符合素质教育的宗旨,成了大家探讨的热点,首先怎样激发学生学习数学的兴趣,还原数学本身的教育价值成了大家深思的问题。在这样的背景下,一直被忽视的数学文化教育被大家发现是贯彻数学素质教育的一个重要手段,很显然我们的数学教育中忽略了数学的文化价值,数学独特的美,数学教育中的文化教育,数学教育独特的素质教育功能,在大力提倡素质教育的同时,数学教育不再是简单的计算证明推理,也要重视数学教育中的文化教育,从而提高素质教育。 对数学教育中怎样开展文化教育的研究成为热点,其中华东师范大学张奠宙教授经过对这一阶段的研究,发表了以下看法,他认为当时的研究“都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分地揭示了数学的文化内涵,肯定数学作为文化存在的价值。这是必要的”。同时,张教授还指出两点不足,其中之一便是,“数学文化的研究,不能只说数学的重要性,强调数学对人类文明的贡献。与此同时,还应观察数学受到社会文化的影响,借助社会文明阐述数学的文化含义。这有助于人们贴近数学。” 在中学老师层面,这种思想也得到了很多人的认同,在他们 发表的教学研究的 论文中,如何恰当地将 文化 教育融入数学教育之中,以此来提高学生的学习兴趣的文章有 很多。但不是所有的领导和教师在实际的教学中都足够重视数学文化的价值和重要性或者以此贯穿于自己的课堂教学之中,也没有官方 的课程标准或者教材给予数学文化相应的地位。 第三个阶段:基础数学文化教育高度被重视并出现在教材中和实际的教学中(2004年至今) “数学是一种文化,数学教育是数学文化的教育。” 2004年开始的新课改中提出“关注数学文化的价值”,“数学文化教育在教学中要有意识的穿插,且数学史以 专题形式出现在选修教材中。”这些观念在2003年颁发的《普通高中数学课程标准(实验)》中有所体现。新的课改指出,数学教育不仅是知识的教育,也是素质的教育。新课程将数学文化作为高中数学课程内容的一个方面,并且给出了一定数量的选题,提出了具体目的和要求,教学中要恰当把握好有关选题的内容和要求。例如,如何结合 统计思想方法的学习去把握“广告中的数据与可靠性”;如何在恰当的地方设计恰当的“黄金分割引出的数学问题”,使学生通过实际问题,认识数学在 建筑、 艺术、美学、优选等方方面面的广泛 应用, 体会数学文化的价值。 新的课改后,以往无意识的数学文化的教学转化为有意识的数学文化的教学,关于数学文化的教学不单再是有关资料的介绍,而是应将资料中蕴涵的文化价值体现出来。数学教育中的文化教育以下面两种形式出现在实际的教学中。 1.数学文化内容的介绍穿插于数学知识的教学中。 “教师在课堂上可以介绍一些重要的基本概念的发生、 发展,使学生认识数学发生、发展的规律,同时也了解人类从数学的角度认识客观世界的过程。例如,关于解析几何与微积分的创立、发展的资料比比皆是,选取和整理成数学素材时应关注那些体现 社会发展和数学发展相互促进的内容,或反映数学家为追求真理表现出来的那种锲而不舍的精神,求真务实、说理、批判、质疑等方面的内容。通过恰当的提示、引导,让学生从对相关资料了解的基础上,上升到对其中蕴涵的数学文化价值的认识”。 “几句话,一个故事,一个片段等,总之,我们在知识教育的同时,以知识为载体使学生体会和认识数学的文化价值,促进学生科学观的形成,全面提高学生的数学素养。” 2.数学史作为数学文化的载体出现在新教材中。 新课程中选修系列之中包括数学史选讲,数学史选讲作为选修课程已经进入高中数学新课程。选讲教材告别了过去那种单一的数学学习内容和方式,跳出数学知识和技能训练的题海,从宏观上审视数学的历史演变,感悟数学发展史的风雨历程,了解各种数学思想方法如何产生、发展和应用。 数学史是数学文化融入数学课程的最好载体,数学史展示了数学产生和发展的过程,它是劳动人民勤劳智慧的集中体现,是数学知识、数学思想和数学方法的宝库。“通过数学发展进程中的主要人物、事件及其背景的介绍,可以使学生掌握数学的脉络,懂得数学发展的客观规律,以及数学于人类社会发展之间的相互作用;通过了解古今中外数学家的生平简介以及基本数学思想方法,从中吸取丰富的营养和 经验教训,有助于学生形成正确的数学思想观念,树立独立思考、勇于探索的进取精神;通过不同文化背景的数学的比较,引入多元文化的数学,可以使学生从更广阔的视野去认识人类文明的数学成就,欣赏丰富多彩的数学 文化。”总之,数学史有助于我们全面认识数学 教育的文化价值,探索数学文化为主导的数学教育,数学史的教育价值在课程改革的实验区已经显现出来。 四、结束语 数学是人类文化的重要组成部分,是人类 社会进步的产物,也是推动社会 发展的动力。作为一种文化,数学文也是公民必备的科学家养。在美国数学教育中,教材也强调数学史知识的介绍,在介绍中注意数学家的闪光点,可教育性的材料,有引起学生学习数学兴趣的材料,也有关于世界各国的重要数学史实, 力图使学生对数学的历史发展有比较完善的认识,以扩大学生的眼界[8]。 在中国这样一个曾经的世界四大文明古国,一度在数学教育中缺失的数学文化教育被重视起来,“数学文化”已是新课程的重要内容之一,数学教育是数学文化的教育。在此思想指导下的中国基础数学教育,才能更好地激发学生的数学学习兴趣,改变他们的数学观,树立学习的自信心,真正了解数学的美、数学的历史,进而促进他们人格的健康成长,扩宽他们的视野,了解多元文化的数学,这样的数学教育才是才是真正的素质教育[9]。 数学文化论文投稿篇2 浅析高中数学教学中的数学文化 摘 要:数学文化是人类知识宝库的重要组成部分,在数学教学中只是传授数学知识,解决数学问题是不够的,还应渗透数学文化,通过数学文化教育,展示数学的美和数学精神的魅力,进而激发学生学习数学的兴趣,培养学生良好的数学精神和意志品质。本文在介绍数学文化主要特征的基础上,对高中数学教学中如何渗透数学文化进行了分析。 关键词:高中数学;数学文化;主要功能;渗透 数学文化是指人类在数学行为活动的过程所创造的物质产品和精神产品的总和,其中物质产品主要指数学语言、数学命题、数学问题以及数学方法等方面,精神产品主要指数学思想、数学意识、数学精神等方面。在高中数学教学中渗透数学文化,是学生数学学习的基本需要,其目的是使学生在学习数学的过程中受到文化感染,领略数学的美,体悟数学文化的价值,进而激发学生学习数学的兴趣,培养学生良好的数学精神和意志品质,促进学生个性的良好发展。 1 数学文化的主要特征 数学是一种文化,数学文化是人类知识宝库的重要组成部分,其特征主要包括以下几个方面: (1)历史性。数学的发展离不开历史的积淀过程,人们对数学本质的认识也是源于数学史的发展,因此,可以说数学文化具有一定的社会历史性。数学学习要讲究数学方法,而数学史是研究数学方法的重要依据,因而从某种意义上说,一切与数学有关的研究,与数学史息息相关。了解数学史,既可以增强全局观念,又可以调动学习热情。 (2)思维性。数学文化的主体是数学知识以及运用这些知识所形成的数学思想和数学方法,它们都是人类通过数学语言总结出来的可应用于现实世界的空间形式及数学关系的思维成果,因此,可以说思维是数学的内在灵魂,数学是思维的基本体现。 (3)审美性。数学是一门科学,也是一门艺术。数学中的简单性、对称性、统一性、协调性等基本特征都是数学美的重要内容。在我国古代,数学是“礼、乐、射、御、书、数”六艺之一,在西方,数学与和谐曾被认为是宇宙的主要根源,因此,可以说数学具有很强的审美性,数学世界充满了美感。而数学的美感正是数学文化对人类意志品质、高尚情操陶冶的一种体现。 2 数学文化在高中数学教学中的渗透 2.1 渗透数学史,培养数学文化意识 在高中数学教学中,教师要有意识地渗透数学史,在了解数学史的过程中,培养学生的数学文化意识。对此,可通过开设数学史选修课渗透数学史。在选修课中可以介绍一些与数学有关的具有深远意义的历史事件,如数学思想逐渐演变的历史事件,数学家逐渐纠错的历史事件等。或通过推荐有价值的与数学息息相关的作品,如张景中院士的《新概念几何》、西奥妮・帕帕斯写的《数学的奇妙》等,抑或引导学生通过网络、报刊等各种资源搜集、查找有关古今中外著名数学家的事迹,了解他们对数学做出的主要贡献,拓宽学生的数学视野,体会数学的文化品位。 2.2 渗透数学思想方法,提高学生的数学素养 数学思想方法是指对数学知识和方法形成的规律性理性认识,为分析、处理和解决数学问题提供了指导方针和解题策略。高中数学教学不能仅满足于单纯的知识传授,而是要帮助学生把握数学知识的本质,引导学生借助数学思想方法解决实际数学问题,提高自身的数学素养。如: 已知当x∈[0,1]时,不等式x2cosa-x(1-x)+(1-x)2sina>0恒成立,求a的取值范围。分析:本题通过构造的思想方法,即可轻易地求出结果。可设f(x)=x2cosa-x(1-x)+(1-x)2sina=(cosa+sina+1)x2-(1+2sina)x+sina,由题意可知:f(0)=sina>0 ①; f(1)=cosa>0 ②,在条件①②下对称轴x=∈[0,1],此时只要△<0,即sin2a> ③, 再联立①②③即可求出a的取值范围。 2.3 发展学生的数学思维,培养数学的理性精神 数学教学的关键在于发展学生的数学思维,培养数学的理性精神。数学思维是理性思维的重要形式,注重学生数学思维的培养对于提高学生的思维能力,增强学生的解题能力有着十分重要的作用。发展学生的数学思维一方面要注意培养学生的数学意识,理清学生的思维脉络。数学的知识点是前后衔接、环环紧扣的, 因此,在教学中对于每一个问题,教师要既要考虑学生原有的知识基础,又要考虑与它相关联的知识内容。只有这样,才能更好地激发学生的思维,并逐步形成知识脉络。另一方面要注意激发学生的思维动机,提高学生思维的水平。动机是人们行为活动的内趋力。激发学生思维的动机,是培养其思维能力的重要因素。在数学教学中,教师可以通过创设合理的问题情景,使学生产生情感上的共鸣,进而引发学生最强烈的思考动机和最佳的思维定向,形成良好的数学思维品质。 2.4 开展数学课题研究性学习,体悟数学文化的真正价值 在实际数学教学过程中,教师可将某些数学定理、公式作为研究性课题开展研究性学习,让学生主动去发现、检验、论证,体验到数学家发现数学的真实过程,了解数学概念、定理、公式、结论形成的过程,获得再创造的快乐,进而把握数学的本质,体悟数学文化的真正价值。同时在进行研究性学习活动的过程中,教师应给予学生适当的指导。如在进行“直线方程的推导”时,教师可以适当地提出一些问题,引导学生思考:a.在我们生活中,常通过什么方法固定一条直线?b.要想确定一条直线的方程,需要给定什么样的条件?如何求出其直线方程的一般式?当学生完成课题研究后,教师可及时展示学生的研究成果,进行合作交流,提出不同的意见,以保持学生学习数学的积极性。 总之,数学文化是数学的精髓,重视学生对数学文化的感悟,能帮助学生加深对数学的认识与理解,从而帮助学生更好地学好数学,进而爱上数学。猜你喜欢: 1. 关于数学文化的论文投稿 2. 数学文化方面的论文发表 3. 关于数学文化的论文优秀范文 4. 关于数学文化的论文免费参考 5. 数学文化的论文范文参考

数学方面论文的研究方法

论文研究方法包括哪些

论文研究方法包括哪些,大学生活的最后一年同学们是要写毕业论文的,而毕业论文对于每位同学来说都有很大的意义,下面大家就跟随我一起来看看论文研究方法包括哪些的相关知识吧,希望对大家能有所帮助。

一、规范研究法

会计理论研究的一般方法,它是根据一定的价值观念或经济理论对经济行为人的行为结果及产生这一结果的制度或政策进行评判,回答经济行为人的行为应该是什么的分析方法。

二、实证研究法

实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的普遍联系,归纳概括现象的本质及其运行规律。

三、案例分析法

案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法,具体说来:

四、比较分析法

是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。

五、思维方法

思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。

六、内容分析法

内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的过程。

七、文献分析法

文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。

八、数学方法

数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的.统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。

信息研究法

信息研究方法是利用信息来研究系统功能的一种科学研究方法。美国数学、通讯工程师、生理学家维纳认为,客观世界有一种普遍的联系,即信息联系。当前,正处在“信息革命”的新时代,有大量的信息资源,可以开发利用。信息方法就是根据信息论、系统论、控制论的原理,通过对信息的收集、传递、加工和整理获得知识,并应用于实践,以实现新的目标。信息方法是一种新的科研方法,它以信息来研究系统功能,揭示事物的更深一层次的规律,帮助人们提高和掌握运用规律的能力。

个案研究法

个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其形成过程的一种研究方法。个案研究有三种基本类型:

(1)个人调查,即对组织中的某一个人进行调查研究;

(2)团体调查,即对某个组织或团体进行调查研究;

(3)问题调查,即对某个现象或问题进行调查研究。

描述性研究法

描述性研究法是一种简单的研究方法,它将已有的现象、规律和理论通过自己的理解和验证,给予叙述并解释出来。它是对各种理论的一般叙述,更多的是解释别人的论证,但在科学研究中是必不可少的。它能定向地提出问题,揭示弊端,描述现象,介绍经验,它有利于普及工作,它的实例很多,有带揭示性的多种情况的调查;有对实际问题的说明;也有对某些现状的看法等。

模拟法(模型方法)

模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种。

定量、定性分析法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。

定性分析法就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。

跨学科研究法

运用多学科的理论、方法和成果从整体上对某一课题进行综合研究的方法,也称“交叉研究法”。科学发展运动的规律表明,科学在高度分化中又高度综合,形成一个统一的整体。据有关专家统计,现在世界上有2000多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言、方法和某些概念方面,有日益统一化的趋势。

毕业论文主要研究方法

毕业论文主要研究方法,论文研究是一个发现新现象、新事物、新理论的过程,论文研究方法需要大量阅读法,找到不足和创新点,来完善自己的论文,下面一起来学习一下毕业论文主要研究方法。

一、规范研究法

会计理论研究的一般方法,它是根据一定的价值观念或经济理论对经济行为人的行为结果及产生这一结果的制度或政策进行评判,回答经济行为人的行为应该是什么的分析方法。

二、实证研究法

实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的.普遍联系,归纳概括现象的本质及其运行规律。

三、案例分析法

案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法,具体说来:

四、比较分析法

是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。

一、思维方法

思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。

二、内容分析法

内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的过程。

三、文献分析法

文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。

四、数学方法

数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。

基础数学研究方向方面的论文

经济数学是属于经济学的一个分支,大一的经济数学是经济学管理专业的基础知识。下面是我为大家推荐的大一经济数学论文,供大家参考。大一经济数学论文 范文 篇一:《经济类高等数学分层教学的实践研究》 摘要:高等数学是经济类本科生一门重要的基础课程,对掌握好其专业课程知识和从事本专业更高层次的研究起着关键作用。为使该专业学生学好这门课程,我校对高等数学的教学试行了分层教学的教学模式。本文从分层的必要性、分层方式以及取得的效果等方面分析阐述了实行分层教学的优势。 关键词:高等数学;分层教学;因材施教 一、分层教学实施的必要性 高等数学是大学本科经济类专业学生的一门重要的基础课程,其重要性体现在学好这门课程不仅是学好其专业课的基本保障,更是提高思维素质的方式和进行更高层次研究的不可缺少的工具。因此,一般的本科院校对经济类的学生从一年级开学就开始开设高等数学课程。然而,高等学校扩大招生后,我国的高等 教育 已经从精英教育发展到大众教育阶段,使得高校各专业入学人数在激增的同时,生源质量下降已是不争的事实。而且学生来自全国各个省市地区,入学的数学成绩、水平参差不齐;不同学生的兴趣、 爱好 及发展方向各不相同。而相同专业所使用的教材、教学计划、教学大纲都是一样的,学生和教师基本没有选择的余地。这种统一的教学模式严重阻碍了高等数学 教学质量的进一步提高。目前,这一课程的教学面临的最大问题是学生的学习兴趣和学习成绩的下降。而造成这一问题的因素是多方面的,其中一个重要的原因是忽视学生对 教学 方法 、教学内容的不同需求。因此,根据学生的数学成绩、 兴趣爱好 、发展志向在适当尊重个人意愿的前提下对学生实施不同要求,不同方式的教学方式,就势在必行。本文以科学理论为基础,结合本校的教学实践,分析论述了分层教学的实施方法和取得的成果。 二、分层教学的理论基础 分层教学的理论基础是美国心理学、教育学家布鲁姆 (B.S.Bloom)“掌握学习”理论。布鲁姆认为:“只要在提供恰当的材料和进行教学的同时,给每个学生提供适度的帮助和充分的时间,几乎所有的学生都能完成学习任务或达到规定的学习目 标。”“掌握学习”理论要求教师的教学“应根据学生的实际发展水平、学习方式和个性特点来进行”。而一般高校的生源来自全国各个省市地区,近年来的高校扩招也造成了生源质量的下降。这就造成了学生的数学水平参差不齐,差异较大,而分层教学可以较好得体现上述思想。分层教学法还以多元智力理论为基础,尊重学生的个性差异,重视个性发展,遵循因材施教的原则,以学生的发展作为教学的出发点和归宿,真正体现“以学生发展为中心,以社会需要为方向,以学科知识为基础”的教育改革要求,也能真正体现素质教育的精神内涵。另外,其实在我国古代,教育家、思想家孔子就已经提出育人要“深其深,浅其浅,益其益,尊其尊”,即主张“因材施教,因人而异”。也就是说,教师的“教”,一定要适合学生的“学”。 三、分层教学的实施 分层教学,就是针对学生不同的学习水平和能力,以及学生自身对数学的兴趣爱好程度和要求有区别地制定学习目标,设计课程内容,创设不同的教学情境和教授方式,从而进行有针对性的因材施教,促进学生得到全面的锻炼和发展,进而实现更高效率,更好效果的教学模式。从2008学年开始,在我校教务处的大力支持下,我们在经济类专业的高等数学教学中试行了分层教学模式,和以往的不分层相比,两年来教学效果取得了显著的提高。具体实施方法是,对于经济类专业的两个学院,经济贸易学院和工商管理学院,我们采取不打乱院系,但是分层也分班的方式。层次分为两层,即A层和B层。A层是基本知识掌握、理论灵活运用、理论联系实际等方面要求较高的层次,教学计划和内容以 考研 和在专业领域进行深入研究为目标;B层相应要求较低,但是以打下扎实基础,使数学成为后继专业课学习的有力工具为基本原则。同时,由于A层班级的较高要求不易把握,由具有多年教学 经验 的教师担任授课工作。分层的依据有客观依据和主观依据。客观依据是学生的数学成绩水平,一方面参考高考成绩,另一方面,在新生入学伊始,进行一次数学“摸底”考试。“摸底”考试的试题由教学经验丰富的教师来出,大部分是一般难度的题目,但有少数较难题,由此可看出学生的数学成绩高下。分层的主观依据即是学生自己对数学课程的兴趣深浅程度和要求高低。比如,有的学生虽然成绩一般,但是对数学很感兴趣,或者有考研等在本专业领域继续研究的意向,我们可以考虑将该生分A层班级听课。反之,有的学生考试成绩虽高,但是对数学兴趣不大,只是当做一门必修基础课程来修,那么,就可以征求该生的意见,将其分在B层班级上课。考虑到班级人数和授课效果,我们采取相当三个“自然班”的人数为一个授课班。分层教学的根本目的是因材施教,因此,第一学期期末考试结束后,一些学生的数学成绩、对数学的兴趣态度等可能已经不再适合原来的班级教学目标,这就需要对班级进行调整,也就是说,分层教学具有一定的流动性。调整时也遵循上述分层依据,因为调整也是再一次分层。一方面是学生的试卷成绩,另外兼顾学生的主观意愿。但是实践证明,波动不宜过大,以不超过5%为宜。 四、分层教学的成效与思考 分层教学取得了一定的成效,较之08级以前不实施分层教学的学生成绩,不及格率有了较大幅度的降低。60-69,70-79分数段的人数有显著增加,而90分以上的优秀率有小幅增加,平均分明显提高。成绩分布呈正态分布。由此可见,分层教学符合大多数学生的愿望和要求,应当坚持和完善。分层教学有的放矢,因材施教,可以提高学生的学习兴趣,降低因学科本身的抽象枯燥造成的负担。使一些对数学没有信心,失去学习兴趣的学生达到了大纲的要求,较好解决了大学生数学学习两级分化太大的矛盾。08级以后的学生对分层次教学的认可度越来越高,适应数学学习的能力和学习数学的信心也大大地增强。实践证明,分层教学保证了面向全体学生,因材施教,做到了“优等生吃得饱,中等生吃得好,差等生吃得了”,同时,减轻了学生的课业负担,是全面提高教学质量和实施素质教育的行之有效的途径。虽然分层教学的实施使高等数学教学各方面有了大的改进,但是还有一些问题亟待解决。比如不同“自然班”的学生在同一个授课班上数学课,这就给课堂和作业管理造成了一定的难度,对教师和辅导员提出了新的要求。另外,考试过后需要将学生成绩按“自然班”排名,也造成了一些麻烦。我们的工作还仅仅是一个开始,今后将在实践中不断完善分层教学的教学方式,比如,在考核学生成绩方面,可以考虑不仅依据笔试的卷面成绩,再兼顾 其它 形式的考核成绩;在教学过程中,可适当借助计算机进行多媒体教学,以提高学生的学习兴趣。 参考文献: [1]阳妮.大学数学分层教学的理性思考[J].高教论坛,2007. (5):87-89. [2]郑兆顺.新课程中学数学教学法的理论与实践[M].北京:国防工业出版社,2006. [3]郭德俊,李原.合作学习的理论与方法[J].高等师范教育研究,1994,(3):43-54. [4]付海峰.在层次教学中培养学生的思维能力[J].中学数学参考,1997,(10). 大一经济数学论文范文篇二:《经济数学课的教改》 摘要:本文从教学内容的改革、教学方法的改革、教学手段的改革、以及 考试方法的改革等几个方面论述了 经济数学课的教学改革思路。其主导思想是:经济数学教学应当以“用数学贯穿于整个教学的始终。”以应用实践为主线,加强知识点的理解、运用和补充,培养学生建立数学模型、解决实际问题的能力。 关键词:经济;数学课;教改 很多人都知道,数学非常重要,但却不知道它重要在哪里,只知道各类考试都要考数学,似乎这是应试 教育的代名词。究竟学了数学有何作用,究竟在数学教学中应当怎样培养适应社会主义市场经济 发展需要的应用型、创新型人才?一直以来,成为我们教学改革所探讨的问题。本文从高职经济数学的教学内容、教学方法、教学手段、以及考试方法等几个方面的改革进行了论述。其主导思想是以“用数学贯穿于整个经济数学教学的始终。”以应用实践为主线,加强知识点的理解、运用和补充,培养学生建立数学模型、解决实际问题的能力。 一、教学理念上以“应用”为目标贯穿整个教学过程 经济数学与一般的高等数学相比有其特殊性,应使学生正确认识经济与数学的关系,在经济学领域,数学分析必须为经济分析服务,而不能本末倒置,应坚持“数学为体,经济为用”的原则。因此,在教学中,将经济融于数学。每章开始,都用当前经济生活中的 热点 问题激发学生学习有关数学知识的兴趣,进入各节内容,尽可能的以经济为例,使数学与经济逐步结合,最后,又以所学有关数学知识,分析每章开始时提出的经济问题。例如:讲函数时,以商品的产量受什么影响、手机话费与什么有关等引入函数的概念,讲完函数概念之后,以数学表达式给出上面提到的函数关系式,最后再给出经济分析中常见的函数(成本函数、收入函数、利润函数、需求函数等)。讲导数与微分时,问学生,在日常生活中见到过某商品突然降价而利润增加的现象吗?当学生举了很多例子、学习兴趣被激发后,引入变化率的问题,也就是将要引入的导数。讲完这一章后,再给出为什么商品降价反而利润增加的答案,就是“富有弹性”。也就是说,适当降价会使需求量较大幅度上升,从而增加收入。这样的教学,既帮助学生理解有关的数学原理和方法,也帮助学生了解它们在经济管理中的应用。 二、教学内容上以“必需、够用”为原则 经济数学课是高职经济管理类专业重要的基础课和工具课,通过对微积分、线性代数、线性规划等内容的学习,使学生初步具有解决经济管理问题的能力,并为今后学习经济管理课程和从事经济管理工作打下必要的数学基础。如何在有限的学时内,完成这么多内容的教学呢?那就要紧紧结合专业培养目标,按“必需、够用”的原则取舍经济数学的内容。教学内容的增删,首要的就是去掉一些抽象的、理论性强的、纯数学语言的概念及定理的证明,代之以定性的、通俗的描述性定义及几何解释。例如,函数极限概念,对高职学生来说,有一种感性认识,确立一种极限概念、思想也就足够了。重点介绍函数极限的概念,然后对整标函数——数列的极限仅仅作为函数极限的一个特例,简而述之。这样处理,凸现了函数极限概念。比以往的先介绍数列极限概念、性质,然后再介绍函数极限,节省了大量时间,教学效果也很好。在教学中,把重点放在幂函数、指数函数、线性函数、矩阵代数、线性方程组等内容上,删除了曲线的凹凸、由参数方程确定的函数的导数、旋转体的体积、行列式的部分内容等等,而把时间花在与他们今后学习和工作中天天都要接触的单利、复利、产量、收益、成本、最小投入、最大利润、弹性函数等内容上,对他们来说更实用,更有价值。这样,有利于我们所培养的人才在今后的工作中能够胜任岗位。 三、积极进行教学方法改革 (一)改革教学方法,让学生成为授课的主角。我们积极贯彻行动导向教学思想,一改传统教学模式中教师讲学生听的教学形式,让学生参与到课堂讲授中来,教师针对某一内容和知识点,灵活运用行动导向多种互动式的教学方法,以此实现学习由“要我学”向“我要学”的方向转变。本课程归纳并可应用多种互动式教学形式和方法,如头脑风暴法、专题演讲法、课堂讨论法、情景模拟法、角色演练法等。这些方法不仅能提升教学质量和效果,而且可以极大地激发学生学习该课程的积极性和热情。 (二)实现课堂教学与具体实践的互动。本课程在教学过程中,采取了课内实践与课外实践相结合,阶段实践和课程实践相结合的实践教学方式,教师针对讲授内容,除进行必要的课堂实践训练外,还积极组织学生进行社会调研,数学建模,以此培养学生运用所学知识分析解决实际问题的能力。 (三)将案例教学贯穿课程始终。本课程在内容设计上精心挑选了大量案例,理论联系实际,学以致用,通过案例的分析和讲解,使学生由单纯地死记硬背知识转变应用知识增长技能。 四、实现教学手段和评价手段的更新 教师在教学中充分利用 现代 教育技术手段,开发制作、使用多媒体课件和课程 网络资源,增强教学的直观性,以利于学生对知识的理解和消化。 考试是教学的指挥棒,对于引导学生端正 学习态度 ,把握学习重点起着有着至关重要的作用。高等职业教育的主要任务是培养高技能人才,这类人才,既要能动脑,又要能动手,所以必须用的职业教育的人才质量观去考核学生,多方位、多角度全面评价学生的学习成绩。为此我们进行了考试改革,改变了一卷定结果的做法。在对学生的评价上,一是以方式方法的灵活性提高评价的全面性。将日常评价拓展到课题活动、 经济数学小 论文、经济数学作业、小组活动、 自我评价 、相互评价、面谈、提问、日常情境观察等内容;二是以“统一”的方式来提高评价的可参照性。以重新组卷的方式实行期末考试,统一阅卷、统一评分。 在这方面我们曾经做过考核能力的试题的征集工作,但还是在摸索之中,一些原则性的意见可以归纳为: 重视基础,突出重点。基础知识掌握情况仍然是考试中不可缺少的内容。 注重思想,淡化技巧。繁难的技巧要淡化,经济数学中有普遍意义的数学思想与方法应是考试的重点。 重视应用,考查能力。要着重测试学生的潜在能力。使素质高、能力强、潜力大的学生在考试中占优势。 形式多样,富有弹性。可以尝试“开放性”试题,测试创造性思维能力,也可以尝试笔试与口试相结合。 五、积极开展第二课堂活动 开展第二课堂活动,重视学生个性 发展和能力的培养。数学建模活动是一项把数学知识直接应用于解决实际问题的最佳快捷、有效途径,是提高学生分析问题解决问题的能力、灵活运用数学知识处理问题的能力、激发学习兴趣、主动查阅资料、增强协作意识、培养创新能力的最佳手段。因此,在学完微积分后,给出与经济专业有关的建模训练题:产品利润问题、连续复利问题、由边际函数求最优化问题、最优批量问题等。在建模训练的过程中,学生就会认真地看书、查资料,经常向老师请教,互相探讨,这样学生的综合素质就会有很大提高。当然,由于高职学生的基础较差,建模作业完成的不会很好,但这需要教师不断在教学中渗透用数学思想可以解决许多经济中的问题,拓展了学生的知识面。 目前我校经济数学课的教学取得了良好的效果,学生对学习经济数学的兴趣提高了,恳于钻研,勤于思考的学生越来越多。总之,我们紧扣培养目标,将基础理论、数学建模有机融合,以必须的数学理论为基础,以丰富的实际问题为背景,以数学建模为突破口,取得了较好的成效。通过以上的教学改革使我们深刻体会到,学生的学习潜力是无限的,关键是教师如何培养和挖掘,为他们提供展示才能和发展的空间,所以我们要树立创新的教育教学理念,要坚信别人能做到的,我们也一定能做到并且会做得更好。 参考 文献: [1]高纪文.高职院校学生高等数学学习现状及对策[J]. 中国职业技术教育,2005,(6). [2]刘建清.石化学院高职数学教学改革与实践[D].西北师范大学,2005:8-11. [3]张拓.高职数学课教学改革探讨[J].教育与职业?理论版,2008,(1). 大一经济数学论文范文篇三:《经济学中数学统计方法的应用》 1 经济学与数学统计方法之间的融合历程 数学统计在经济学研究中的应用已经非常普遍,两者之间的联系也越来越紧密。回顾历史,早在17世纪,经济学与统计学之间的融合就已经表现出了必然的趋势。在当时,英国古典经济学家威廉·配第在《政治算数》一书中第一次利用数学方法来解决经济问题,这是两者的首次融合。不过在那个时期的研究由于受到社会发展的限制,研究方法还是以定性分析为主,并没有对统计学进行充分的运用。到了19世纪20年代以后,经济学与统计学之间的结合得到了进一步的深入。在这一时期,德国经济学家于1854年在其发表的论文中提出了一个结论,指出可以通过数学统计方法推导出“戈森定律”,其中还重点阐述了统计学方法应用于经济学是非常必要且重要的[1]。之后,英国经济学家斯坦利·文杰斯也对经济学与数学统计方法两者之间的关系进行了深入的研究,并在他1871年发表的书籍中提出了一个新的思想,也就是采用统计学的方法建立经济数学模型[2]。此后,经济学中数学统计方法的运用开始得到推广和发展。20世纪40年代之后,由于受到第三次科技革命的影响,经济学与统计学在实践上和理论上都得到了突破性的发展,并且两者之间的融合也得到了创新性的进步,进入了一个新的阶段。1955年,由美国经济学家摩根斯坦和数学家伊诺曼共同创作了《对策论与经济行为》,这本书籍的出版成为经济学与数学开始全新合作的里程碑[3]。自此之后,无论是在微观经济学中,还是在宏观经济学中,统计方法都得到了大量的运用,其重要性变得更加凸显。由此可见,从17世纪开始经济学与统计学出现融合的趋势,经历了长期的发展历程,目前两者之间的融合已经非常的深入和成熟,对于推动经济学的科学化发展起到了非常重要的作用。 2 数学统计方法应用于经济学的作用分析 2.1 数学统计方法可用于解决经济学问题 严谨精密的分析过程以及清晰准确的分析结果是数学统计方法的优势所在,而经济学问题的分析和解决中则对结果精确度和科学性要求非常高。由此可见,数学统计方法应用于经济学中具有重要的实际意义。数学统计方法很早就开始在经济学领域中得到应用,随着两者之间的结合和发展,现在在相关的研究领域已经出现了很多数学专业化理论,例如经济计量学、数理经济学等,这又进一步为两者的融合和共同发展提供了理论基础[4]。在经济学问题的解决中,数学统计方法的应用模式主要是“经济一数学—经济”,这也就是说,首先,以现实经济问题为出发点来建立数学模型,然后,采用数学方法来分析这一数学模型并得到结果,最后,再利用经济学原理和理论来评估所得的结果,得出相应的结论,其结论不仅可以用于指导经济活动,同时还可以用于预测经济发展方向。特别是在现代企业经济决策中,通过数学统计方法可以对经济活动进行从定性到定量的全面分析,可以较为科学、准确地预测决策执行后的结果,并充分利用企业的现有条件来对结果进行控制和优化,通过这种方式可以有效提高经济决策的可靠性与科学性,避免企业财力、物力的损失[5-6]。 2.2 数学统计方法可作为工具展开经济理论分析 从经济学与数学统计方法融合的初期发展到现在,数学统计学已经开始应用于各种重大经济问题的研究和分析中。再加上现代数学与现代经济理论之间的融合也在不断的深入,很多经济现象理论都可以通过数学方法来进行科学、合理的解释。特别是在这几年来,数学统计方法应用于经济现象和经济关系分析中的研究在不断进行,通过这种方式不仅可以从量的角度来确定结果,同时还可以从质的角度来做出判定[7-8]。由此可见,如果没有数学统计方法,就难以有效解决经济学问题。 3 数学统计方法应用于经济学的实例分析 在GDP分析模型中,可以通过数量分析和统计学方法来找出其中的统计指标,设计相应的指标体系,并结合社会现状来研究GDP值的计算方法和影响因素。在下面的研究中我们以某市2001—2012年的GDP纵向分布数据模型为例,采用分析数量经济法中的回归分析来展开统计学研究,并初步预测2014年之后的某个阶段。 表1即为某市的GDP数据统计结果,采用回归分析的方法来处理数据,并建立一个关于GDP与实践序列间关系的F(y)模型,其数据处理结果散点图如下所示。从图中我们可以看出,GDP呈现明显的非平稳增长趋势,通过回归分析和数据处理作出一阶差分,可以看出散点图为二次函数形式,因此可得F(y)=ax2+bx+c,采用回归分析来处理年份可以得到回归统计结果见表2。由此可得回归方程为F(y)=32.35x2-96.40x+1115.40,检验其规定系数可知R=0.9550,与1非常接近,由此可知,该回归方程与实际数据有很好的拟合度,可以采用该方程对未来的某个阶段进行预测。 一般来说,实际的GDP受多因素影响,其变化不稳定,因此预测值都会有一定的偏差,根据某市2013年实际GDP总值为6756.4021亿元,与上述预测的理论误差为: w=(6756.4021-6105.5986)/6756.4021×100%=9.63% 这一误差值较大程度的偏离了回归曲线,分析其原因可能是由于在建设模型的初始条件时消除的政府主观态度、人们的消费亿元以及汇率和进出口关税等部分影响因素有着一定的联系。由于2014年级之后的年份都还没有确切的数据,因此本文仅限于探讨对2013年的预测。就本次模型来说,虽然 没有从整体上来进行考虑和分析,但是其理论与实际的核实可以看出这次预测并不是没有任何依据的,具有可行性。 4 结 论 总的来说,数学统计学对于经济的预测和 总结 起着非常重要的作用,数学统计方法应用于经济学中,对各项经济指标预测与评估以及决策和改革都有着深刻的影响意义。本文选择某市为例来进行数学统计方法分析,在实际的经济预测中,数据的收集并不能仅仅局限于纵向,同时也要注重横向幅度的收集,对数据的收集要全面,筛选要科学,只有这样才能够使理论分析更加有依据,其结果也更加具有理论效应。经济学中数学统计方法的应用,有利于帮助其掌握数据内在的规律性和本质变化,提高数据分析的质量和经济预测的科学性、准确性。 猜你喜欢: 1. 大一经济学论文范文 2. 关于大学经济学论文范文 3. 大一微观经济学论文 4. 大一经济学论文 5. 大学经济数学论文

《论圆周率为什么等于3.1415926、、、而不是其他数字》 重复率不能大于百分之多少,每个学校都不一样 有规定的

一下的这些的选题你看下,你自己参考下,一1.极值的讨论及其应用2.课程改革中未来初中数学教师角色的扮演3.(xx部分)新旧教材的对比与研究4.师范生高等数学课程内容设置的探讨5.浅谈高等数学的类比迁移法6.让生活走进数学,将数学应用于生活7.初中数学新课程教学设计的策略8.数学分析的直观与严密二1.小教大专数学的课程设置和教材建设的建议2.新课改对小学数学教师的能力与素质要求3.小学数学教学中现代化教学手段的使用4.如何评价新形式下的师范学生5.数学学习与创新能力的培养三1.农村小学教师的现状的调查2.农村小学教学的现状的评估4.留守儿童的学习状况5.我对师范现行课程设置的几点思考6.班级管理的探讨7.小学数学课教学的探讨8.在师范学习的几点回顾9.走上“三尺讲台”的体会10.对某个“差生”的转变历程的思考四1.营造积极参与氛围,为自主探索创造条件2.浅谈小学数学作业的批改3.让作业批改“活”起来4.注重数学过程教学,提高学生综合素质5.浅谈中学数学课堂语言的艺术性6.活”用教材,实现数学教育目标7.浅谈数学课的几种导入方法8.初探分类思想在初中数学教学中的渗透9.优化复习教学,提高复习效率10.合理运用教具,提高数学课堂教学效率11.在数学教学中,培养学生的创新意识

数学方面的论文

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

小学数学教学实践活动是小学数学教学过程中的一个重要部分,加强小学数学教学实践水平有助于提高小学数学教学效率,进一步增强学生对数学的学习兴趣。下面是我为大家整理的小学数学方面的论文,供大家参考。

一、趣味性激发学生的学习兴趣

教师在教学过程中要特别注意对学生学习兴趣的培养,力求生动有趣。激发学生学习的兴趣,找准新旧知识的连接点。学生在学习数学中完全陌生的内容是很少见的,对学习的内容总是感到既熟悉又陌生。要让学生在新旧知识的比较中找出共同点与区别点,顺利地完成正迁移,通过类似的探索解决新的问题。教师授课应采用启发自主式,教师学做导演,让学生扮演主角,让学生积极参与课堂教学的全过程,真正体现“以学生为主体的课堂教学模式”。教师应鼓励学生大胆举手踊跃发言,提出质疑,展开讨论。教师要积极评价学生回答的问题,保护学生学习的积极性。在教学中,教师运用多变的教学方法,尽可能创造轻松、愉快、和谐的学习环境,使学生轻松地掌握所学知识。例如,教师可根据所学的内容以故事的形式讲一些相关的人或事,创设情境增加学生的好奇心,营造出一个轻松和谐的氛围。教师还可以根据所学内容以游戏的方式,让学生体会到学习兴趣之乐。如在低年级教学中用开火车、开房门、找朋友、夺红旗、放鞭炮等游戏,使学生“动”起来、“活”起来,真正成为课堂的主体,使学生在轻松、愉快的气氛中学到数学知识。这样,不但吸引了学生的注意力,也更容易让学生理解和接受新知识,学生十分欢迎,兴趣更浓,教学效果也更好。

二、竞争情境激发学生的学习兴趣

好胜心是每个学生的天性,在教学中充分激发学生的好胜心,让学生得到进取之乐。如,在口算时看谁算得又快又准确,在回答时实行抢答,看谁先回答出来。在进行简便运算时,看谁的方法最简便。在解答计算分数百分数应用题难度较大的时,看谁最先解答出来,比一比谁用的方法对,并亲自讲解争当小老师。学生的参与欲望是一个不容忽视的因素,而学生的认知环节是学生学习动机的源泉,也是学生积极参与思维学习的原因。所以,教师在教学中要不断设置认知环节,激发学生的参与竞争的欲望。

三、树立标杆激发学生的学习兴趣

人无论大小,都有自己的理想和目标,只是理想和目标不同而已。所以,一定要给学生树立一个理想和目标,无论是本班的,还是本校的,或是从本校走出去的成功人士,都可成为学生的标杆性人物。俗话说,榜样的力量是无穷的。有了这样一个榜样,就会使学生有一个努力的方向和奋斗的目标。有了这个目标,学生就会为实现这个目标,而更加刻苦和努力。同时,也会激发出学生的学习兴趣。

四、严格管理强促学生的学习兴趣

子不教父之过,教不严师之惰。在学生成长的道路上,教师要经常和学生的家长进行沟通,让家长充分了解自己孩子的学习状况。在教师和家长的共同努力下,对学生进行针对性的管理,从而强促学生的学习兴趣,使学生在不断进步中成长。有成绩要表扬,有错误要及时纠正,让学生永远在正确的轨道上前行。虽然要严格管理,但是要注意严中有松,张弛有度。在教学中努力解放学生的嘴巴,让学生敢说、爱说、喜说。例如,在教学“两位数加法”时,先放一段优美动听的儿歌:“小白兔,白又白……”然后问:“这首歌大家熟悉吗?今天小白兔和小灰兔进行一场拔萝卜比赛,我们一起去看看好吗?”(出示主题画),鼓励学生大胆说出图上内容,说出两只小兔各自的位置,说出它们的表情及内心活动,还有对话内容。在得出算式“28+41”的时候,我不急于教给学生算法,而是通过小组讨论的形式,让人人动口,说出自己的想法,在组内交流后,将合理的算法说给教师和同学听。在学生得出用计算器、口算、竖式算等方法的时候,我又发动学生讨论哪种方法更好些?为什么?学生有的说用计算器方法好,最准,但携带麻烦;有的说,口算最好,速度快,但有可能出现错误;有的说竖式算得好,又快又准确,不过要注意数位对齐,又费稿纸……课堂气氛活跃起来。在课结束时,我让学生总结出本节课学会了什么?学生争先巩后地抢着说,热情很高,不仅说出了这节课所学的全部知识点,还体验到了求得新知的喜悦。

五、巧用游戏激发学习兴趣

游戏是孩子的天性。在低年级数学教学中,艺术性地使用游戏,能大大激发学生的兴趣,满足学生爱玩、好动的心理需要,使他们在欢乐活跃、气氛高涨的氛围中学习知识。例如,教学“面积和面积单位”一课时,在学习了平方厘米这一面积单位后,教师故意让学生用它度量教室地面的面积,学生都非常踊跃地参与到这个活动中,当他们忙着忙着自然会产生“要有一个更大的面积单位”的需要。这时,教师顺势抛疑:“这个更大的面积单位就请你们创造一个,叫什么呢?”诱导学生从平方厘米、平方分米的名称创造出平方米,进而根据三者所具有的共同因素帮助学生类推出平方米的意义。这样的游戏活动,使学生体验到了数学学习的乐趣。总之,教无定法,人各有法,引起兴趣就是最好的方法。兴趣是最好的老师。因此,教师和家长一定要千方百计地从方方面面激发和培养学生的学习兴趣,让他们在快乐中学习,他们会受益无穷。

一、整合练习内容,提高练习的实效性

教材为师生的教与学活动提供了大量生动、有趣的习题,它们是教师传授知识、学生习得技能的重要载体。但在当前的小学数学教学中,很多教师对习题的处理仍然停留在浅尝辄止的层面上,或者是简单机械的重复,缺少对习题本身的思考,甚至是为了练习而练习,以至于不能完全发挥教材习题的功能。叶圣陶先生曾经说过:“教材只能作为教课的依据,要教得好,使学生受益,还得靠老师的善于运用。”因此,教师作为学生学习的指导者,应该在深入钻研课程标准、教材和学生学情的基础上,立足并尊重教材,对教材的习题资源进行深度解读,让教学行为基于教材但又不为教材所束缚,正确领会教材编写的意图,从实际出发,对教材进行适度开发,整合练习的内容,以提高课堂练习的实效性。如教学苏教版四年级下册“乘法运算律”以后,教材在“试一试”、“练一练”的基础上又安排了大量的题组练习,但在实际教学中因受教学课时的划分及一节课教学时间的限制,逐条解决所有习题显然费时费力,也难以完成既定的教学任务。因此笔者在教学时在认真领会编者意图的基础上,根据实际情况,将几个内在联系存在高度一致的习题重新组合,赋予新的题组一个更为清晰的教学方向。例如将几组题型单一的利用乘法运算律进行简便运算的题目放在一起,在小组接力的活动中通过比赛来做,可以使单调乏味的习题解答变得轻松有趣、简单高效。

二、丰富练习形式,激发练习的趣味性

“兴趣是最好的老师。”数学学习兴趣是培养小学生良好学习品质的有效途径,是实现有效教学的前提。在练习中,教师结合学生已有知识设计生动活泼、富有情趣的习题,让学生能感受到数学的趣味性,对数学产生亲切感,这样有助于激发学生数学学习的兴趣,也有利于培养学生的思维能力和创新意识。教师可根据儿童的心理特点,呈现新颖的题型、丰富练习的形式,让学生做练习的主人,充分发挥学生的主体性。如设计改错题,让学生做医生;设计判断题,让学生当法官;设计操作实验题,让学生成为设计师……教学中可根据教材特点,多采用游戏性、趣味性、竞赛性的练习,设置悬念,引起认知冲突,激发学生的求知欲望。如猜谜语、讲故事、做游戏、模拟表演等。这种寓教于乐的练习,既培养了学生做练习的兴趣,又能取得满意的练习效果,使学生在轻松、愉悦的氛围中学习,在具体的情境中理解和认识数学知识。

三、关注个性差异,体现练习的层次性

新课程的基本理念指出:“义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。”学生是有差异的个体,每个学生在认知水平,心理特点等方面都存在着差异。这就要求教师在使所有学生获得共同的数学教育的同时,还要让更多的学生有机会接触、了解或是钻研自己感兴趣的数学问题,最大限度的满足每一个学生的数学需要。教师应该设计不同类型、不同层次的练习题,从模仿性的基础练习到提高性的变式练习,再到拓展性的思考练习,照顾不同层次的学生,让所有学生都能“跳一跳摘到属于自己的果子”,都有体验成功的机会。

四、贴近生活实际,增强练习的应用性

数学史的几何学研究论文

数学的发展史世界数学发展史 数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ? mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关多计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部分为新的数学定理及其证明。”就这些了!O(∩_∩)O~

我可以写,私信

什么是数学?这是任何一个数学教育工作者都应认真思考的问题。只有对数学的本质特征有比较清晰的认识,才能在数学教育研究中把握正确的方向. 1 数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系”的认识,又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的能动创造。 2从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯•诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。 3对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。 4事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。” 5另外,对数学还有一些更加广义的理解。如,有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,……,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,…,另一方面,如果所考虑的领域存在于数学之外,…,数学就起着用科学的作用…•,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动…•,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验…•,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.” 从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供 不少同学对数学总这有一点畏惧感,对数学好的人有一种敬佩感。自己对数学总有一点信心不足,拿到一个新课本,一翻,十分庆幸,好在数学公式不多,如果拿到一本书,中间数学推导公式多,就十分沮丧,甚至想回避。 大家都不是搞数学专业的,为什么非要讲一讲对数学的再认识、反复强调要学好数学?如何提高数学素养呢?我想,作为一个现代大学生,数学是回避不了的。华罗庚在五十年代就说过:“宇宙之大、粒子之微、光箭之速、生物之迷、日用之繁,无处不用数学”。到了今天这个信息时代,可以说每一项高新技术的背后都有着极其抽象的数学,高新技术本质上就是数学技术。我们想有所作为,要想取得突出的成就,必要的数学知识,较好的数学素养,较高的数学思维是必须的,请注意我这里用了三个不同的定语,要求是逐步升高的。而且你们已不再是中学生,不是爸爸妈妈要送你读书了,你们已进入人生悟性期,自觉的理解意识正在升起,有的同学甚至对科研、创造、创新已跃跃欲试了,这很好。从课堂和书本里学来的只能是知识,是外来信息,人们最终需要开发和建立的是自己的意识和悟性,当然知识也可以促进意识和悟性的迅速提高。在这个人生的春天季节里,我来和你们一起对数学整体性地温习一次,鸟瞰一次,相信对你们是大有好处的。 一、 从数学与其它学科的关系来看数学 就从数学的外部来论说这个问题。 1、 数学是一种语言,是一种科学的共同语言,若没有数学语言,宇宙就是不可描述的,因而也就是永远是无法理解的。任何一门科学只有使用了数学,才成其为一门科学,否则就是不完善与不成熟的。社会在进步,它的数学化程度也正在不断提高,数学语言已成为人类社会中交流和贮存信息的重要手段,宇宙和人类社会就是用数学语言写成的一本大书。 2、 培根(Bacon)说:“数学是打开科学大门的钥匙”。忽视数学必将伤害所有的知识,因为忽视数学的人是无法了解任何其他科学乃至世界上任何其他事物的。几千年来,凡是有意义的科学理论与实践成就,无一例外地借助于数学的力量。例如,没有微积分就谈不上力学和现代科学技术,没有麦克斯威尔方程就没有电波理论,伦琴因发现X射线于1901成为诺贝尔的第一位获奖人,记者问他需要什么时,他回答:“第一是数学,第二是数学,第三还是数学。” 3、 数学是一种工具,一种思维的工具。自然哲学认为:任何事物都是量和质的统一体,数学就是研究量的科学,它不断地发现、总结和积累了很多人类对量的方面的规律,这些都是人们认识世界的有力工具。这里举两个例子:一个是自然科学的,一个是社会科学的。我们企图找到一个不经手术就可以准确确定人体内的器官位置、密度和三维形状的方法,可惜借助X射线只能绘出二维信息图。这个问题难倒了工程师很多年,后来遇到数学家的工作,即Radon变换,考尔麦克(Cormack)把X射线从许多不同角度照射人体,再运用计算机进行数学变换,导致CT数据透视仪的诞生,获得了1979年的诺贝尔医学奖。现在这一方法进一步推广到核磁共振领域,使图像分辨率更高。从本质上说,这两项技术只不过是,先大量测量一维的物理量,再用数学技巧来重构三维图像而已。 4、 数学是一门艺术,一门创造性艺术。美是艺术的一种追求,美也是数学中一种公认的评价标准。数学的美体现在和谐性、对称性、简洁性,这三性上。数学家不断地追求美好的新概念、新方法、新结论,因此数学是创造性艺术。人们掌握了数学,可以陶冶人的美感,培养理性的审美能力,一个人数学造诣越深,越是拥有一种直觉力,这种直觉力实际就是理性的洞察力、由美感驱动的选择力,最终成为创造美好新世界的驱动力。 这里突出地谈一谈简洁性。A、数学问题提得简洁。这是因为数学突出了本质的因素,必然是简洁的。例如尺规作图三分角问题。 B、数学语言是精炼的。例如欧拉公式:eix =cosx+isinx.把实数域中看不出有任何联系的指数函数和三角函数在复数域中巧妙地联系在一起。其特例:eiπ+1=0 把0、1、i、e、π五个重要常数简单而巧妙的结合在一起,太神奇了。又如,爱因斯坦把茫茫宇宙中的质能关系,用E=MC2 简单地表达出来,简单得令人拍案叫绝。 C、数学概念是简洁的。数学概念的内涵历经沧桑,千锤百炼,每一次变化都使概念更加清晰和更具一般性。例如函数概念:1673年,莱布尼兹定义:函数就象曲线上的点的坐标那样随点的变化而变动。1821年,柯西定义:对于X的每个值,如果Y有完全确定的值与之对应,则Y叫做X的函数。近代定义:设有A、B是非空的集合,F是A到B的一个对应法则,则A到B的F映射:A→B称为A到B上的函数。一步一步更简洁、更具一般性。 D、数学证明是简洁的。数学的目的就是尽可能用简单而基本的词汇尽可能地解释世界。因此,如果我们积累的经验要一代一代传下去的话,就必须不断地努力把它们加以简化和统一。 二、 从数学自身的研究对象来看数学 就是从数学内部来看数学。 恩格斯说:数学是现实世界中的空间形式与数量关系。数学就是研究数量、形状和他们之间关系的科学,这是数学的三大领域。当前数学还在发展,目前已经发展成为包括一百多个分枝的庞大系统。数学已经不是原来人们头脑中仅仅是数和形,仅仅是陈景润的概念了。随着计算机的发明和技术迅速提高,数学学科也进入了新的黄金时代。数学包括三个方面,模式、结构和模拟现实世界。它不光是理论,也是能力,是文化,是素质。 1、 数学发生图数学可分为五大学科:纯粹(基础)数学、应用数学、计算数学、运筹与控制、概率论与数理统计。 应用数学则以以上数学为综合理论基础,可分为:价值数学、运筹学、数理统计学、系统科学、决策论等。目前又发展出混沌、小波变换、分形几何等。 2、 算术 人类逐步有了数的概念,由自然数开始。由于人有十个手指,所以多数民族建立了十进位制的自然数表示方法。二十个一组的太多太大,不能一目了然,还要用上脚趾,五个一组又太少,使组数太多,十个一组是比较会让人喜爱的折衷方法。有古巴比仑记数法、希腊记数法、罗马记数法、中国记数法,发展进步了5000年后,印度人第一次发明了零,零加自然数称为为整数,传入伊斯兰世界形成目前通用的阿拉伯数字。计算机的出现又需要二进位制,就是近几十年的事了。 算术运算起步只需要有加法的概念,乘是多次加的简化运算,减是加的逆运算,除是乘的逆运算,这就是四则运算。除法很快导致了分数的出现,以十、百等为分母的除法,简化表达就是小数和循环小数。不是拥有钱而是欠人的钱如何表示,这就出现了负数,以上这些数放在一起,就是有理数,可以表示在一个数轴上。 人们曾经很长时间以为数轴上的数都是有理数,后来有人发现,正方形的边是1,它的对角线长度就无法用有理数表示,用园规在数轴上找到那个对应点就是无理数的点,这是第一次数学危机。1761年德国物理学家和数学家兰伯卢格严格证明了π也是一个无理数,这样把无理数包入之后,有理数与无理数统称为实数,数轴也称之为实数轴。后来人们发现,如果在实数轴上随机的抽取,得到有理数的概率几乎是零,得到无理数的概率几乎是1,无理数比有理数多得多。为什么会如此,因为我们生活的这个客观世界,本来就是无理的多过有理的。 为了解决负数的开平方是什么,16世纪出了虚数i,虚轴与实轴垂直交叉形成一个复平面,数也发展成为由虚部和实部组成的复数。数的概念会不会继续发展,我们试目以待。 3、代数 对实数的运算进入代数学阶段,有“加、减、乘、除、乘方、开方、指数、对数”八则,用符号代表数,列出方程,求解方程成了比算术更有力的武器。这个时期称为初等数学,从5世纪一直到17世纪,大约持续了一千多年。初等数学是常数的数学。对一组数群体性质的研究就导致线性代数。 4、几何 以上是研究数的,在研究形方面也平行的发展着,古希腊的欧几里得用公理化的方法,构建了几何学是最辉煌的成就。二千多年前的平面几何成就已经与目前中学几何教科书几乎一样了。他们还了解了众多曲线的性质,在计算复杂图形的面积时,接近了高等数学。还初步了解到三角函数的值。在几何学方面,后来进一步发展出非欧几何,包括罗巴切夫几何、黎曼几何、图论和拓扑学等分支。 直到17世纪,笛卡尔的工作终于把平行发展的代数与几何联系起来,除建立了平面坐标系之外,还完善了目前通行的符号运算系统。 5、变量数学 变化着的量以及它们间的依赖关系,产生了变量与函数的概念,研究函数的领域叫数学分析,其主要内容是微积分,牛顿由物理力学推动了微积分的产生,莱布尼兹从数学中求曲线多边形的面积出发推动了微积分的发现,两人的工作殊途同归,目前的微积分符号的记法,都是莱布尼兹最先采用的。他们都运用了极限的概念和无穷小的分析方法。 有了微积分,一系列分支出现了,如级数理论、微分方程、偏微分方程、微分几何等等。级数是无穷项数列的求和问题,微分方程是另一类方程,它们的解不是数而是函数,多元的情况下就出现了偏微分概念和偏微分方程。微分几何是关于曲线和曲面的一般理论,将实数分析的方法推广到复数域中就产生了复变函数论。 6、概率论和数理统计 前面涉及的数量,无论是常量还是变量都是确定的量,但自然界中存在大量的随机现象,其中存在很多不确定的、不可预测的量、是具有偶然性的量,这就由赌博中产生了概率论及其统计学等相关分枝。 7、模糊数学 前面涉及的数量,无论是常量还是变量都是“准确”的量,但自然界中存在大量的不准确现象,人为地准确化只能使我们对客观世界的描述变得不准确。“乏晰数学”Fuzzy就是以这种思想观点和方法研究问题的数学。 三、什么是数学素养 数学素养属于认识论和方法论的综合性思维形式,它具有概念化、抽象化、模式化的认识特征。具有数学素养的人善于把数学中的概念结论和处理方法推广应用于认识一切客观事物,具有这样的哲学高度和认识特征。具体说,一个具有“数学素养”的人在他的认识世界和改造世界的活动中,常常表现出以下特点: 1、 在讨论问题时,习惯于强调定义(界定概念),强调问题存在的条件; 2、 在观察问题时,习惯于抓住其中的(函数)关系,在微观(局部)认识基础上进一步做出多因素的全局性(全空间)考虑; 3、 在认识问题时,习惯于将已有的严格的数学概念如对偶、相关、随机、泛涵、非线性、周期性、混沌等等概念广义化,用于认识现实中的问题。比如可以看出价格是商品的对偶,效益是公司的泛涵等等。 更通俗地说,数学素养就是数学家的一种职业习惯,“三句话不离本行”,我们希望把我们的专业搞得更好,更精密更严格,有些这种优秀的职业习惯当然是好事。人的所有修养,有意识的修养比无意识地、仅凭自然增长地修养来得快得多。只要有这样强烈的要求、愿望和意识,坚持下去人人都可以形成较高的数学素养。 一位名家说:真正的数学家应能把他的东西讲给任何人听得懂。因为任何数学形式再复杂,总有它简单的思想实质,因而掌握这种数学思想总是容易的,这一点在大家学习数学时一定要明确。在现代科学中数学能力、数学思维十分重要,这种能力不是表现在死记硬背,不光表现在计算能力,在计算机时代特别表现在建模能力,建模能力的基础就是数学素养。思想比公式更重要,建模比计算更重要。学数学,用数学,对它始终有兴趣,是培养数学素养的好条件、好方法、好场所。希望同学们消除对数学的畏惧感,培养对数学的兴趣,增进学好数学的信心,了解更多的现代数学的概念和思想、提高数学悟性和数学意识、培养数学思维的习惯。 请注意,我们往往只注意到数学的思想方法中严格推理的一面,它属于“演绎”的范畴,其实,数学修养中也有对偶的一面――“归纳”,称之为“合情推理”或“常识推理”,它要求我们培养和运用灵活、猜想和活跃的思维习惯。 下面举一个例子,看看数学素养在其中如何发挥作用。18世纪德国哥德堡有一条河,河中有两个岛,两岸于两岛间架有七座桥。问题是:一个人怎样走才可以不重复的走遍七座桥而回到原地。

论文参考题目

1、非10进制记数的利和弊。

2、数的概念的发展与人类认识能力提高的关系。

3、比较古代埃及人和古代巴比伦人解方程的方法,探讨他们各自对后来的数学发展的启迪作用。

4、为什么毕达哥拉斯学派关于不可公度量的发现会在数学中产生危机?

5、欧几里得《原本》中的代数。

6、欧几里德《几何原本》与公理化思想;

7、在几何学中有没有“王者之路”。

8、无所不在的斐波那契数列。

9、文艺复兴时期数学发展的重要因素。

10、达•芬奇与数学。

11、十进制小数的历史。

12、圆周率的历史作用。

13、“圆”中的数学文化。

14、明代中国商业算术处于突出地位的原因。

15、近代中国数学落后的原因。

16、芝诺悖论与微积分的关系。

17、未解决的问题在数学中的重要性。

17、黄金分割引出的数学问题。

18、试论数学悖论对数学发展的影响。

19、第一次数学危机及其克服。

20、第二次数学危机及其克服。

21、第三次数学危机及其克服。

22、数学对当代社会文化的影响。

23、试论数学的发展对人类社会的进步的推动作用。

24、从历史观看数学。

25、数学符号的价值。

26、谈对数学本质的认识。

27、试论数学科学的价值。

28、函数概念的发展。

29、空间概念的发展。

30、曲线概念的发展。

31、数学对天文学的推动。

32、数学中无穷思想的发展。

33、数学中的美。

34、音乐中的数学。

35、艺术中的数学。

36、浅谈数学语言的特点。

37、论数学的抽象性。

38、关于数学的严谨性。

39、关于数学的真理性。

40、数学家的不幸。

41、数学家的幸运。

42、从数学史中扩展的数学知识。

43、从程大位的《算法统宗》“首篇”河图、洛书等看《易经》与珠算之联44、梵语的盛行——十进制的发明之谜 45、中国古代数学发展缓慢的启示

46、从矩阵的萌芽论中国传统数学的文化底蕴

47、《九章算术》刘徽注中的算法分析工作与算法分析思想

48、《费马大定理》读后感 49、黎曼猜想浅谈

50、再论《巧排九方》——一个传统的数字推理趣题之详解及其推广

51.、数学史上的三次危机

52、笛卡儿解析几何思想的文化内涵 53、理性数学的哲学起源

54、中国数学教育史研究进展

希望对你有帮助。

  • 索引序列
  • 数学史数学文化方面的研究论文
  • 数学方面论文的研究方法
  • 基础数学研究方向方面的论文
  • 数学方面的论文
  • 数学史的几何学研究论文
  • 返回顶部