今年6月15日,中国科学家潘建伟团队在量子通讯技术研究上,再次获得世界级突破,相关研究结果也登上了最新一期的《Nature》,取得了举世瞩目的骄人成就。不过在国内,似乎关注的人并不太多,反而西方国家对这一突破 表现出了相当高的关注度。
在这次实验中,潘建伟团队从位于地面以上500公里、人类首颗量子通讯卫星“墨子号”,向位于新疆的两个地面站发射光子,全球首次实现千公里级基于纠缠的无中继量子密钥分发。这次试验的距离是此前类似试验距离的10倍,达到1120公里。外媒评论称,这次试验的成功,意味着中国在人类量子科技发展上取得里程碑式的突破。
量子通讯应用研究为何在近年来受到世界各国的高度重视?这源于一种有趣的物理现象。两个粒子不管相距多远,只要他们建立了相互纠缠的状态,这种状态就会始终保持下去。当对其中一个粒子进行测量造成扰动,另一个粒子的状态也会同步发生改变,这就使得远距离安全通讯成为可能。
当通讯的信息以量子纠缠状态发送出来以后,如有人试图破解或盗取信息内容,必然会扰动这一量子纠缠态, 瞬间会造成通讯的中断,信息归零。科学界认为,这种通讯技术在效率和安全性方面,要比目前的光纤通讯高出上亿倍!这样的技术一旦得以应用,我们国防通讯、商业通讯、民用通讯的安全性和便利性将实现数量级的飞跃!
那么,中国在这场通讯技术研发竞赛中处于什么位置?用美国加州量子技术公司总裁厄尔的话说,“北京远远领先于美国。”这句话并非空穴来风。中国科学家不但在全球首发了量子通讯卫星,还在天-地之间建立了量子通讯链路。
我们的相关研发已进入到量子通讯实际应用的验证阶段,毫不夸张地说,中国是绝对意义上的NO.1。
奇怪的是,我们国内有一部分人天天以学术打假的名义高喊抹黑潘建伟,认为量子通信是一场。但仔细一看就会发现,持这种观点的绝大多数人连薛定谔方程都不会写,甚至把量子力学的基本事实都予以否定。千方百计地想凭借抹黑潘建伟而上位,如此看来孰是孰非一眼便知。
其实早在2017年,潘建伟就被世界顶级期刊《Nature》评为年度科学人物,世界各国的量子通信团队都将潘建伟视为学科发展带头人。不知那些抹黑潘建伟的人 看到6月15日这一被国际同行高度认可的重大突破,还会说些什么?
量子力学的发展确实伴随着大量的矛盾与争议,特别是在量子通信开始发展后,有部分“消息灵通”人士已经洞察了量子通信的“伪科技”本质,并且还再三指责科普量子通信的文章为伪科学站台!这些诘问到底是科学的吗?
量子通信的原理是什么?
量子通信的原理还要问么,不就是量子纠缠么,传说中的量子通信就是将纠缠中的两个量子分开,即使相隔在宇宙的两端,当A粒子的状态发生改变时,B粒子也会随之发生改变,这个通讯速度超越光速,距离再遥远也是即时通信!
听起来完美的量子通信确实应该如此,但事实上我们并不能做到在观察处在量子叠加态的不触发坍缩,所以从理论上来看,这种完美的通信方式是不可能存在的,这是不是人类的技术不够,而是量子世界的客观坍缩理论所决定的!
客观坍缩理论
薛定谔方程的线性性质允许粒子自然地处于几个不同量子态的叠加态,当然它也允许宏观物体处在几个不同量子态的叠加态,但在大自然中从来都没有观察到过这种现象!因为宏观物体永远都会占据一个确定的位置,因此将微观物质的尺寸加大时,它的位置和动量将会被同时确定!
但在微观状态下,这个处于量子叠加的状态是允许存在的,但根据哥本哈根诠释的波函数坍缩假说,在观察动作之后,叠加态会坍缩为可观察量的几个本征态之中的一个本征态,而坍缩至任何一个本征态的概率遵循玻恩定则!
所以很抱歉,根据哥本哈根诠释,这种直接利用纠缠态的量子通信是不存在的。
EPR佯谬
量子通信的最早起源是来自爱因斯坦向波尔反驳量子论不完备的EPR佯谬,爱因斯坦在第六届索尔维会议上的光箱实验被波尔击败,此后他与波多尔斯基和罗森花了数年时间,整出了一个《量子力学对物理实在的描述可能是完备的吗?》的论文,发表在《物理评论》上。
这个思想实验很容易明白:一个不稳定的大粒子衰变为两个小粒子,假设这两种粒子有可能的量子自旋,粒子A为左旋,为了保持守恒,那么另一个小粒子B必定是右旋!然后将两个粒子分开很远,比如几万光年,但我们在观察之前,并不知道哪个是左旋,哪个是右旋!
但当我们观察粒子A时,那么它的波函数瞬间坍缩,随机选择了一种状态,比如说是右旋,那么B粒子必定会变成左旋,那么请问它们是如何保持一致的呢?既然没有超光速通信,因此认为在分开的一瞬间,粒子A和B的左右旋就被确定了!
阿斯派克特实验
但量子论并不是这样解释,而是认为无论相隔多远,在观测之前,它们仍然处在量子叠加态,所以根本不存在什么超光速通讯,叠加态的观测时坍缩,一个随机选择左旋,一个右旋以保持守恒!
这就是后来用他们名字首字母命名的ERP佯谬!
这个EPR佯谬提出后,由于设备局限,所以爱因斯坦尽管处在下风,但他并不认输,真正的试验要到1980年代的法国奥赛理论与应用光学研究所的阿斯派克特试验才被证明是哥本哈根诠释是比较正确的!因为此时爱因斯坦只输了5个标准方差!
后来关于EPR佯谬试验的设备越来越先进,到1998年奥地利因斯布鲁克(Innsbruck)大学的实验时,爱因斯坦输得就有点惨了:30个标准方差!
现在的量子通信到底是什么量子通信?
准确的说,现在的量子通信并不是量子纠缠通信,而是量子加密通信,要了解量子加密通信的话,必须要来了解下BB84协议!
这个协议是查尔斯·贝内特和吉勒·布拉萨在1984年发表的论文中提到的量子密码分发协议,后来以两个人的名字第一个字母+年份,作为了这个经典协议的名字,任意两组共轭状态都可以用此协议,它利用的是光子的偏振态来传输信息,详细描述有些不容易理解,请看下图:
BB84协议
在这个过程中,如果有人窃听,那么窃听者为了光子的偏振态,那么必须做测量,那么会导致秘钥的误码率增加,双方可以约定误码率超过多少时该组秘钥就被废弃!
这种量子通信的方式有一个缺点,必须用一个量子秘钥发送通道和传统数据传输通道,两者必须配合才能正常工作,因此当前研究的也是如何更高效以及更远距离和更少的误码率发送与接收秘钥,但数据仍将通过Internet网来完成!
当然通信除了速率外最终要的指标就是不可破译,传统的秘钥中总是存在各种缺陷,并不能做到100%保密,但量子秘钥不一样,可以发现秘钥被窥视,因此这种秘钥分发的安全性超出想象!
为什么有人再三指责量子通信?
除了网上那些有的没有的指责各种量子通信周边工程配套外,其他主要集中在如何制造出取得单光子的光源,2016年1月14日潘建伟、陆朝阳在《物理评论快报》(Physical Review Letters)上发表了题为《On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar》的论文,物理评论快报上的截图如下:
当然种花家也看不懂这种论文,不过随后美国物理学会的《物理》(Physics)网站以“全能的单光子源”为题刊发了介绍文章,《自然》(Nature)期刊也以“可实用化的单光子源”在其研究亮点栏目作了深入报道,英国物理学会的《物理世界》(Physics World)和美国光学学会的《光学与光子学新闻》(Optics & Photonics News)也做了长篇报道。
潘建伟(右)、陆朝阳
有一点是我们是可以了解的,到今年为止已经接近5年,这种突破性的进展同行评议时效性很强,很快就会有各大科学团体跟进,当然《物理评论快报》的审核也不是吃素的,这种经过将近5年时间考验的论文,也不是一个推销交通方面作品的老兄可以随便推翻的。
其实还有很多站不住脚的观点,但人家很有耐心,堆砌各种文字,看上去很有说服力,不过种花家实在不想一一辩驳,最后送句古诗词给这位老兄“两岸猿声啼不住、轻舟已过万重山”,当大家在这里呱噪时,人家早已发表多篇SCI论文了,假如真有料,不妨也发表几篇?
2016年1月,获国家自然科学奖一等奖。作为多光子纠缠及干涉度量项目第一完成人,潘建伟因45岁的年龄优势,刷新了2006年支志明49岁获该奖的年龄记录。此前,华罗庚、钱学森等曾获该奖。 2015年,被评为“2015中国科学年度新闻人物”。 2013年10月30日,香港何梁何利基金科学与技术成就奖。 2012年06月,国际量子通信奖。该奖项于2012年8月1日在第11届量子通信、测量和计算国际学术大会上正式颁发。此会议每两年举办一次,是量子信息科学研究领域水平最高,规模最大的学术盛会。 潘建伟是获得国际量子通信奖这一荣誉的首位华人物理学家。2012年,当选为发展中国家科学院院士。 2011年,当选为中国科学院院士(数学物理学部)。 2010年,全球青年领袖(Young Global Leaders)。 2008年11月,当选为发展中国家科学院的TWAS Young Affiliates(通讯院士)。2008年10月,德国海德堡大学荣誉教授。 2007年,美国物理学会贝勒讲席(Beller Lectureship)。 2006年10月,第六届中国青年科学家奖。 2006年03月,中国科学院杰出科技成就奖。 2005年08月,求是杰出科学家奖。 2005年06月,欧洲物理学会菲涅尔奖(Fresnel Prize)。此奖为欧洲物理学会授予在量子电子学和量子光学领域做出杰出贡献的青年科学家。 2004年,第十五届“中国十大杰出青年”。 2004年,第八届“中国科学院杰出青年”。 2004年,德国洪堡基金索菲亚奖(Sofija Kovalevskaja Award)。 (属于科研基金,研究经费为105万欧元) 2004年,欧盟玛丽·居里杰出研究奖(Marie Curie Excellent Research Award)。(属于科研基金,研究经费为115万欧元) 2004年,德意志研究联合会尼托研究基金诺特尔奖 (Emmy Noether Research Award)。(属于科研基金,经费113万欧元) 2003年,奥地利科学院施密德奖(Erich Schmid Prize)。此奖为奥地利科学院授予四十岁以下的青年物理学家的最高奖,两年一度,每次一人。 2003年-2008年,德国海德堡大学,物理所,玛丽·居里讲座教授。2002年,德国洪堡基金索菲亚奖(Sofija Kovalevskaja Award)。 (属于科研基金)国际5次入选欧洲物理学会评选的“年度物理学重大进展”。(《物理世界》“年度十大突破”自2009年发布以来,在学术界具有重要权威性,入选的科学研究要符合:具有至关重要性;对科学知识有显著推进;理论与实验具有紧密联系;为所有物理学家普遍关注等条件。 )4次入选美国物理学会评选的“年度物理学重大事件”。2015年,欧洲物理学会《物理世界》年度国际物理学领域的十项重大突破(第一名),《多自由度量子隐形传态》。 英国《自然》杂志在报道潘建伟团队量子通信研究成果的新闻特稿《量子太空竞赛》中指出,“在量子通信领域,中国用了不到10年的时间,由一个不起眼的国家发展成为现在的世界劲旅,将领先于欧洲和北美。” 2013年,美国物理学会《物理》杂志年度国际物理学领域的十一项项重大进展,《利用测量器件无关量子密钥分发解决量子黑客隐患》。 2005年潘建伟还荣幸地被综述杂志《现代物理评论》(影响因子高于《自然》)邀请撰写综述文章,这是中国实验物理学家在《现代物理评论》上撰写的第一篇文章。能够被邀请在如此权威的学术杂志上撰写综述文章,意味着作者该领域所享有的声望与权威性。2003年5月22日,英国《自然》杂志日以封面文章的形式发表了题为《任意纠缠态纯化的实验研究》的论文(潘建伟是第一作者)。《自然》杂志审稿人称赞潘建伟等人的论文“构成了量子信息实验领域一个非常重要的进展”,“首次令人信服地在实验上证明了量子信息处理中任意未知的退相干效应是可以被克服的”。为体现对这项研究的重视,《自然》杂志同时以封面及新闻与评论的形式报道了这项研究成果,而全世界每年只有大约3至4篇重要的物理学论文被《自然》杂志以封面形式发表。 1997年,英国《自然》杂志题为《实验量子隐形传态”》的论文(潘建伟是第二作者),该成果不仅被公认为量子信息实验领域的开山之作 ,同时还被欧洲物理学会和美国物理学会评为世界物理学年度重大进展,被美国《科学》杂志评为年度全球十大科技进展。该工作后来还同伦琴发现X射线、爱因斯坦建立相对论等影响世界的重大研究成果被《自然》杂志选为“百年物理学21篇经典论文”之一。 中国其研究成果曾6次入选两院院士评选的“中国年度十大科技进展新闻”3次入选教育部评选的“年度中国高校十大科技进展”。3次入选科技部评选的“年度中国基础研究十大新闻”。2007年1月20日,由547名中国科学院院士、中国工程院院士投票评选出的2007年中国十大科技进展新闻在京揭晓,中国科学技术大学合肥微尺度物质科学国家实验室量子物理与量子信息研究部潘建伟教授领导的科研团队的成果“实现六光子薛定谔猫态”榜上有名。这是科大成果连续第五年入选年度“十大科技进展”,也是潘建伟团队的研究成果最近五年内第四次入选“十大科技进展”。2004年,潘建伟研究组在国际上首次实现五光子纠缠和终端开放的量子态隐形传输,《自然》杂志发表了这一成果。这一成果同时入选欧洲物理学会和美国物理学会评选出的年度国际物理学重大进展,这对中国科学家来说是第一次。
北京时间1月7日凌晨,中国科学技术大学潘建伟团队在《自然》杂志上发表了题为“跨越4600公里的天地一体化量子通信网络”的论文,验证了广域量子保密通信技术在实际应用中的条件已初步成熟。
中国科学技术大学教授潘建伟表示:“我们的工作表明,量子通信技术对于大规模的实际应用已经足够成熟。类似地,如果把来自不同国家的国家量子网络合并在一起,并且如果大学,机构和公司聚集在一起以标准化相关协议、硬件等,则可以建立全球量子通信网络。”
全球首个天地一体化量子通信网络
研究团队在量子保密通信京沪干线与“墨子号”量子卫星成功对接的基础上,构建了世界上首个集成700多条地面光纤量子密钥分发(QKD)链路和两个星地自由空间高速QKD链路的广域量子通信网络,实现了地面跨度4600公里的星地一体的大范围、多用户量子密钥分发,并进行了长达两年多的稳定性和安全性测试、标准化研究以及政务金融电力等不同领域的应用示范。
这项研究成果由潘建伟及其同事陈宇翱、彭承志等与中国科学院上海技术物理研究所王建宇研究组、济南量子技术研究院及中国有线电视网络有限公司合作。
“论文是对上述成果的一个系统性总结,证明了广域量子保密通信技术在实际应用中的条件已初步成熟。我国科研人员通过构建天地一体化广域量子保密通信网络的雏形,为未来实现覆盖全球的量子保密通信网络奠定了科学与技术基础。”中国科学技术大学在官方网站上称。
尽管研究论文是一项总结性的工作,但是意义重大。自“墨子号”量子卫星于2016年8月发射以来,研究团队在优化地面站接收光学系统、提高QKD发射系统时钟频率并应用更高效QKD协议的基础上,实现了卫星对地面站的高速量子密钥分发,生成速率比之前的工作高出约40倍;研究团队还成功地将卫星与地面的安全成码距离从1200公里拓展到2000公里,相应的地面站俯仰角跨度可达170 ,几乎可覆盖整个天空。
与传统的加密不同,量子通信被认为是不可破解的,因此银行,电网和其他部门的安全信息传输的未来。量子通信的核心是量子密钥分发(QKD),它使用粒子的量子状态(例如光子)形成一串加密字符串或者密钥,在发送方和接收方之间进行的任何窃听都会更改此字符串或密钥,并立即引起注意。
目前普遍的QKD技术使用光纤进行数百公里的传输,具有很高的稳定性,但对通信信道损耗很大;而利用卫星和地面站之间的自由空间进行千公里级别的传输,将地面光纤和自由空间结合,可以实现大规模、全覆盖的全球化量子通信网络。
根据中国科学技术大学介绍,按通信信道的不同,量子密钥分发主要有光纤和自由空间两种实现方式。光纤QKD技术的信道稳定性较好,可以实现基本恒定的安全码率,在城域城际范围内可以方便的连接到千家万户;在超远距离、移动目标、岛屿和驻外机构等光纤资源受限的场景,可以通过卫星中转的自由空间信道连接。
量子通信网络已接入多个行业领域
2017年9月底正式开通的量子保密通信京沪干线,总长超过2000公里,覆盖四省三市共32个节点,是目前世界上最远距离的基于可信中继方案的量子安全密钥分发干线。研究团队攻关了高速量子密钥分发、高速高效率单光子探测、可信中继传输和大规模量子网络管控监控等系列工程化实现的关键技术。建成后,开展了长达两年多的相关技术验证和应用示范以及大量的稳定性测试、安全性测试及相关标准化研究,同时京沪干线网络的密钥分发量可以支持1.2万以上用户同时使用。
目前该天地一体化量子通信网络已经接入包括金融、电力、政务等150多家行业用户。2019年初,国家电网有限公司基于该网络,建立了跨越2600公里的量子密钥分发信道,实现了电力通信数据加密传输,首次从工程上检验了星地量子通信开展实际业务的可行性。
“本工作发展的相关技术也为量子通信系统小型化、低成本、国产化奠定了基础。”中国科学技术大学方面表示,“最近团队成功研制了重量约百公斤的小型地面站,实现了与墨子号的星地量子密钥分发实验,和国际多个地面站的进行了星地量子密钥分发实验,未来有望进一步做到可单人搬运;同时,在保证密钥分发速率的前提下已经成功研制几十公斤的小型化空间量子密钥分发载荷,这些成果也为形成卫星量子通信国际技术标准奠定了基础。”
根据《自然》论文,未来该团队将与来自奥地利、意大利、俄罗斯和加拿大的国际合作伙伴进一步扩大在中国的网络。他们还将致力于开发小型、经济高效的QKD卫星和地面接收器,以及中高地球轨道卫星,以实现空前的万公里级QKD传输。
另据中国科学技术大学介绍,在天地一体化量子通信网络大量测试结果及标准化研究的基础上,全球三大标准化组织之一ISO/IEC正在基于京沪干线的实践编制国际标准《QKD安全要求、测试与评估方法》,另一国际组织ITU也正基于京沪干线的建设模式起草可信中继安全要求、QKD网络功能架构等国际标准。
潘建伟是中国量子科技的领军人物,在量子计算及量子通信领域取得了辉煌的成就。尤其是量子通信,在他的带领下,中国的量子通信在全世界处在领跑的位置。
也许是跪久了不习惯处在领先位置;也许是人们更乐意相信阴谋论;也许是有些人唯恐天下不乱,几年前国内刮有一股妖风,说潘建伟的量子通信是。直到今日,仍然有很多人咬定潘建伟的量子通信是。
你可能没有接受过正规的《量子力学》学习,但这不妨碍你判断潘建伟的量子通信是不是。潘建伟团队的研究成果是公开发表的,并且是发表在《Science》《Nature》等顶级期刊上。几年来,尽管有一些人扯着喉咙吆喝潘建伟搞的量子通信是,可从未有谁公开发表论文指出其中的错误,《Science》《Nature》等学术期刊也没有撤掉潘建伟的论文。这就是学术界对其成果的肯定。
而且,近几年来,因在量子通信领域取得了可喜的成就,潘建伟本人及其团队成员获得了兰姆奖、克里夫兰奖、蔡司研究奖等国际大奖。这些奖的评委和《Science》《Nature》等顶级学术期刊的审稿人一样,都是相关领域的最杰出科学家。他们比键盘侠、网络喷子熟识量子力学,他们知道潘建伟所取得成果的价值。
反观那些咬定量子通信是的人,很多没有接受过正规的《量子力学》学习,甚至连量子力学中最基本的薛定谔方程都不会写。他们攻击潘建伟的说辞也是顾头不顾腚,先前说墨子号卫星是一颗普通的激光通信卫星,是潘建伟为了蒙混过关胡乱发射的一颗卫星。可看到墨子号能够发射纠缠光子对后,便不提普通激光通信卫星的事了。还有一些人不知道潘建伟的研究成果是公开发表的,不知道在学术期刊中查看第一手资料,反而在网络上搜索被咀嚼过多少遍的谣言。还有的为了攻击潘建伟,把量子力学都给否定了。也难怪那些人会这么做,毕竟他们连一节课的《量子力学》课程都没有学过。
没有对比就没有伤害。你可以没学过量子力学,但你该清楚在潘建伟的量子通信是真是假这个问题上,是该相信顶级学术期刊还是网络喷子。
光子盒研究院出品
最近, 中国科学技术大学潘建伟、陆朝阳、朱晓波等和西班牙塞维利亚大学Adán Cabello教授合作, 首次实验排除实数形式的标准量子力学。研究人员利用超高精度超导量子线路实现确定性纠缠交换,以超过43个标准差的实验精度证明了实数无法完整描述标准量子力学,确立了复数的客观实在性。
2月3日,西班牙《国家报》[1]报道了对潘建伟院士和Adán Cabello教授的采访。
报道首先回顾了这项中国和西班牙团队合作的研究。去年,一组研究人员在《自然》杂志上[2]提出了一个想法,即基于实数的量子理论的替代方案可以通过实验被证伪。这是量子领域的顶尖科学家潘建伟提出的一项挑战,塞维利亚大学的物理学家Adán Cabello参与了这项挑战。他们的联合研究证明了“复数(例如-1的平方根)在标准量子力学中不可或缺的作用。”这些结果使得使用这种技术的计算机的开发取得了进展,根据Cabello的说法,“在以前无法进入的领域测试量子物理。”
现年51岁的潘建伟1987年毕业于中国科学技术大学,维也纳大学博士研究生,他领导着世界上规模最大、最成功的量子研究团队之一,被诺贝尔物理学奖得主Frank Wilczek称为“自然的力量(a force of nature)”。潘建伟在维也纳大学的论文导师、物理学家Anton Zeilinger补充道:“没有潘建伟,我无法想象量子技术的出现。”
潘建伟在这项研究中的领导地位至关重要。他解释说:“这个实验可以被视为两个玩家之间的 游戏 :实数量子力学和复数量子力学。这个 游戏 是在一个带有四个超导电路的量子计算机平台上进行的。通过发送随机测量基数并测量结果,就可以获得 游戏 分数,该分数是测量基数和测量结果的数学组合。 游戏 规则是,如果 游戏 分数超过7.66分,则排除实数量子力学,我们的工作就是这样。”
这个实验由中国科学技术大学和塞维利亚大学合作进行,并被科学杂志《物理评论快报》[2]报道。它旨在回答一个基本问题:复数对于自然的量子力学描述真的有必要吗?结果排除了标准量子物理中只使用实数的替代方案。
根据潘建伟的说法:“物理学家用数学来描述自然。在经典物理学中,实数似乎可以完整地描述所有经典现象中的物理现实,而复数只是有时被用作一种方便的数学工具。然而,是否需要复数来代表量子力学的理论仍然是个未知数。我们的结果排除了对自然的实数描述,并确立了复数在量子力学中不可或缺的作用。”
Cabello补充道:“这不仅仅是排除一个特定的替代方案,实验的重要性在于,它展示了超导量子比特系统是如何工作的。使我们能够测试量子物理的预测,而这些预测是我们迄今为止进行的实验无法测试的。因为它们需要对几个量子比特进行严格控制。现在我们将能够测试它们。”
中国科学技术大学的陆朝阳教授是这项实验的合著者,他说:“量子计算机最有希望的近期应用是量子力学本身的测试和多体系统的研究。”这一发现不仅为量子计算机的发展提供了一条前进的道路,也为在原子和亚原子水平上理解粒子的行为和相互作用提供了一种接近自然的新途径。
实现拥有拥有数百万量子比特的计算机的目标还有很长的路要走。然而,中国和西班牙团队的研究结果使得扩大现有量子计算机的用途和理解困扰科学家多年的物理现象成为可能。
参考链接:
[1]
[2]
[3]
这里存在着一个关键问题,就是说光有没有子,是不是由子构成的。如果说光是首尾一至性的一个整体,那么就不存在啥纠缠叠加态,原本就是首尾一至性,纠缠个啥呢!所谓的纠缠叠加应该是对立性的两个事物,或根本就是一体两面的事情,发生关系,比如生与死,存在于生命本身中,对立吧!所以说生命本身就是纠缠叠加态的,生本身就具备着死亡的种子,因此人的每一秒钟就是即生有死着的,不活不死,又活又死着的,这才是纠缠。光本身就是光,没有对立面,光的对立面的无光,是黑暗,要说纠缠那只能是光与黑暗纠缠。
我觉得是真的,我们应该相信潘建伟,他是一个很精通量子的人,不能因为这个项目很难就说是假的,要选择相信。
一周内两次登上国际科学期刊,中科大潘建伟团队太“忙”了!
6 月 15 日,《Nature》杂志刊登了潘建伟团队主导的量子通信研究《基于纠缠的千公里级安全量子加密》。
6 月 18 日,《Science》杂志以“First Release”形式刊登了潘建伟、苑震生在超冷原子量子计算和模拟研究的最新进展,题为“Cooling and entangling ultracold atoms in optical lattices”《在光学晶格中冷却和纠缠超低温原子》。
雷锋网注:图片截自 Science
在后者这项研究中,研究人员实验了首次提出的冷却新机制,实验后使系统的熵 降低了 65 倍 ,达到了创纪录的低熵。
在此基础上,研究团队在光晶格中 首次实现了 1250 对原子高保真度纠缠态的同步制备,保真度为 99.3%。
在量子计算领域,量子纠缠被视为核心资源,随纠缠比特数目的增长,量子计算的能力也将呈指数增长。
因此, 大规模纠缠态的制备、测量和相干操控成为了量子计算研究的核心问题。
通常情况下,实现大规模纠缠态要先同步制备大量纠缠粒子对,再通过量子逻辑门操作将其连接形成多粒子纠缠。
由此, 高品质纠缠粒子对的同步制备是实现大规模纠缠态的首要条件。
在实现量子比特的物理体系中,由于具备良好的可升扩展性和高精度的量子操控性,光晶格超冷原子比特和超导比特被视为最可能率先实现规模化量子纠缠的系统。
早在 2010 年,中科大研究团队就与德国海德堡大学展开了合作,对基于超冷原子光晶格的可拓展量子信息处理展开联合攻关。
研究人员开发了具有自旋依赖特性的超晶格系统,形成了一系列并行的双阱势。
不仅如此,每个双阱势用光场产生了有效磁场梯度,结合微波场,实现了对超晶格中左右格点及两种原子自旋等自由度的高保真度量子调控。
据量子物理和量子信息研究部的说法,在早期研究中,研究团队使用 Rb-87 超冷原子制备了 600 多对保真度为 79% 的超冷原子纠缠态并使用该体系调控特殊的环交换相互作用产生四体纠缠态,模拟了拓扑量子计算中的任意子激发模型。
但由于 晶格中原子的温度偏高,使其填充缺陷大于 10%, 不利于形成更大的多原子纠缠态和提升纠缠保真度。
因此,光晶格超冷原子比特系统需要进一步提升。
论文指出,研究团队首次提出了新制冷机制,即利用交错式晶格结构将处在绝缘态的冷原子浸泡到超流态中,通过绝缘态和超流态之间高效率的原子和熵的交换,以超流态低能激发的形式存储系统中的热量,再用精确的调控手段移除超流态,从而获得低熵的填充晶格。
基于此,研究人员在一个具有 10000 个原子的量子模拟器展开了实验。在二维平面上,研究人员将莫脱绝缘体样品浸泡在可移动的超流体储层中使其冷却。
雷锋网注:图为光晶格中原子冷却的示意图
结果显示,制冷后使系统的熵达到了创纪录的低熵, 降低了 65 倍 ,不仅如此, 晶格中原子填充率大幅提高到 99.9% 以上,达到近乎完美的程度。
在这一制冷基础上,研究人员进一步推进研究。
研究人员开发了两原子比特高速纠缠门,最终 获得了纠缠保真度为 99.3% 的 1250 对纠缠原子。
对此,研究人员表示,其研究为 探索 低能量多体相提供了一个环境,使产生大规模的纠缠更具可能性。
另外,对于这一研究结果,《Science》杂志的审稿人给与了正面评价:
超冷原子量子计算和模拟研究之所以能取得新突破,离不开以潘建伟、苑震生为主导的研究团队,而从其过往的研究经历来看,二位来头不小。
潘建伟
潘建伟,有“量子之父”之称,是“墨子号”的首席科学家。主要从事量子物理和量子信息等方面的研究,是国际上量子信息实验研究领域开拓者之一,同时也是该领域具有重要国际影响力的科学家。
虽然一周连登两次国际期刊,但潘建伟的高光,远不止如此;不仅多次登上国际期刊,还屡次创下记录,主要包括:
苑震生
苑震生,中国科学技术大学教授,其研究方向包括超冷原子量子调控、量子光学,以及原子分子物理。
据量子物理与量子信息研究部官方介绍,苑震生教授在国际权威学术期刊上发表研究论文多达 40 余篇,总引用 2000 次。
其中包括:
·······
尽管这些“最可爱的人”已取得了许多成就,但他们仍未停歇,不断用新的研究成果刷新着我国在量子计算和模拟的进步。
期待更多的研究成果的发布,雷锋网也将持续关注。
参考资料:雷锋网
【1】
【2】
【3】
有的人或许是出于妒忌
2018年1月,中科大潘建伟教授及其研究团队与合作者利用“墨子号”量子科学实验卫星,首次实现距离达7600公里的洲际量子密钥分发,并利用共享密钥实现了加密数据传输和视频通信。
2018年,潘建伟教授及其同事彭承志等组成的研究团队,联合中科院上海技术物理所以及微小卫星创新研究院、国家空间科学中心等单位,与奥地利科学院合作,利用“墨子号”量子科学实验卫星,在中国和奥地利之间首次实现距离达7600公里的洲际量子密钥分发。
并利用共享密钥实现加密数据传输和视频通信。该成果标志着“墨子号”已具备实现洲际量子保密通信的能力。相关成果以封面论文的形式发表在1月19日出版的国际权威学术期刊《物理评论快报》上。
扩展资料:
墨子号量子科学实验卫星(简称墨子号),于2016年8月16日1时40分,在酒泉用长征二号丁运载火箭成功发射升空。 2017年1月18日,中国发射的世界首颗量子科学实验卫星“墨子号”圆满完成了4个月的在轨测试任务,正式交付用户单位使用。
2017 年8月12日,墨子号”取得最新成果——国际上首次成功实现千公里级的星地双向量子通信,为构建覆盖全球的量子保密通信网络奠定了坚实的科学和技术基础,至此,“墨子号”量子卫星提前、圆满地完成了预先设定的全部三大科学目标。
2020年6月15日,中国科学院宣布,“墨子号”量子科学实验卫星在国际上首次实现千公里级基于纠缠的量子密钥分发。
该实验成果不仅将以往地面无中继量子密钥分发的空间距离提高了一个数量级,并且通过物理原理确保了即使在卫星被他方控制的极端情况下依然能实现安全的量子密钥分发。国际学术期刊《自然》于北京时间6月15日23时在线发表了这一成果。
参考资料来源:百度百科—墨子号量子科学实验卫星
参考资料来源:新华网—“墨子号”成功实现洲际量子密钥分发
潘建伟及其团队研发了量子计算机技术。
1、科研综述
2022年8月,中国科学技术大学潘建伟及其同事包小辉、张强等,将长寿命冷原子量子存储技术与量子频率转换技术相结合,采用现场光纤在相距直线距离12.5公里的独立量子存储节点间建立纠缠。
2022年,中国科学技术大学潘建伟团队与上海技物所、新疆天文台等单位合作,在国际上首次实现了百公里级的自由空间高精度时间频率传递实验时间传递稳定度达到飞秒(千万亿分之一秒)量级,可满足目前最高精度光钟的时间传递要求。
2、学术论著
根据2022年7月中国科学技术大学官网显示,潘建伟在《Nature》《Science》《PNAS》和《Physical Review Letters》等重要国际学术期刊上发表论文180余篇,并受国际权威综述期刊《Reviews of Modern Physics》邀请先后撰写关于多光子纠缠实验和现实条件下量子通信安全性的综述论文。
3、成果奖励
根据2022年7月中国科学技术大学官网显示,潘建伟曾获国家自然科学一等奖等奖项。
潘建伟及其团队研发了量子计算机技术。
1、科研综述
2022年8月,中国科学技术大学潘建伟及其同事包小辉、张强等,将长寿命冷原子量子存储技术与量子频率转换技术相结合,采用现场光纤在相距直线距离12.5公里的独立量子存储节点间建立纠缠。
2022年,中国科学技术大学潘建伟团队与上海技物所、新疆天文台等单位合作,在国际上首次实现了百公里级的自由空间高精度时间频率传递实验时间传递稳定度达到飞秒(千万亿分之一秒)量级,可满足目前最高精度光钟的时间传递要求。
2、学术论著
根据2022年7月中国科学技术大学官网显示,潘建伟在《Nature》《Science》《PNAS》和《Physical Review Letters》等重要国际学术期刊上发表论文180余篇,并受国际权威综述期刊《Reviews of Modern Physics》邀请先后撰写关于多光子纠缠实验和现实条件下量子通信安全性的综述论文。
3、成果奖励
根据2022年7月中国科学技术大学官网显示,潘建伟曾获国家自然科学一等奖等奖项。
一周内两次登上国际科学期刊,中科大潘建伟团队太“忙”了!
6 月 15 日,《Nature》杂志刊登了潘建伟团队主导的量子通信研究《基于纠缠的千公里级安全量子加密》。
6 月 18 日,《Science》杂志以“First Release”形式刊登了潘建伟、苑震生在超冷原子量子计算和模拟研究的最新进展,题为“Cooling and entangling ultracold atoms in optical lattices”《在光学晶格中冷却和纠缠超低温原子》。
雷锋网注:图片截自 Science
在后者这项研究中,研究人员实验了首次提出的冷却新机制,实验后使系统的熵 降低了 65 倍 ,达到了创纪录的低熵。
在此基础上,研究团队在光晶格中 首次实现了 1250 对原子高保真度纠缠态的同步制备,保真度为 99.3%。
在量子计算领域,量子纠缠被视为核心资源,随纠缠比特数目的增长,量子计算的能力也将呈指数增长。
因此, 大规模纠缠态的制备、测量和相干操控成为了量子计算研究的核心问题。
通常情况下,实现大规模纠缠态要先同步制备大量纠缠粒子对,再通过量子逻辑门操作将其连接形成多粒子纠缠。
由此, 高品质纠缠粒子对的同步制备是实现大规模纠缠态的首要条件。
在实现量子比特的物理体系中,由于具备良好的可升扩展性和高精度的量子操控性,光晶格超冷原子比特和超导比特被视为最可能率先实现规模化量子纠缠的系统。
早在 2010 年,中科大研究团队就与德国海德堡大学展开了合作,对基于超冷原子光晶格的可拓展量子信息处理展开联合攻关。
研究人员开发了具有自旋依赖特性的超晶格系统,形成了一系列并行的双阱势。
不仅如此,每个双阱势用光场产生了有效磁场梯度,结合微波场,实现了对超晶格中左右格点及两种原子自旋等自由度的高保真度量子调控。
据量子物理和量子信息研究部的说法,在早期研究中,研究团队使用 Rb-87 超冷原子制备了 600 多对保真度为 79% 的超冷原子纠缠态并使用该体系调控特殊的环交换相互作用产生四体纠缠态,模拟了拓扑量子计算中的任意子激发模型。
但由于 晶格中原子的温度偏高,使其填充缺陷大于 10%, 不利于形成更大的多原子纠缠态和提升纠缠保真度。
因此,光晶格超冷原子比特系统需要进一步提升。
论文指出,研究团队首次提出了新制冷机制,即利用交错式晶格结构将处在绝缘态的冷原子浸泡到超流态中,通过绝缘态和超流态之间高效率的原子和熵的交换,以超流态低能激发的形式存储系统中的热量,再用精确的调控手段移除超流态,从而获得低熵的填充晶格。
基于此,研究人员在一个具有 10000 个原子的量子模拟器展开了实验。在二维平面上,研究人员将莫脱绝缘体样品浸泡在可移动的超流体储层中使其冷却。
雷锋网注:图为光晶格中原子冷却的示意图
结果显示,制冷后使系统的熵达到了创纪录的低熵, 降低了 65 倍 ,不仅如此, 晶格中原子填充率大幅提高到 99.9% 以上,达到近乎完美的程度。
在这一制冷基础上,研究人员进一步推进研究。
研究人员开发了两原子比特高速纠缠门,最终 获得了纠缠保真度为 99.3% 的 1250 对纠缠原子。
对此,研究人员表示,其研究为 探索 低能量多体相提供了一个环境,使产生大规模的纠缠更具可能性。
另外,对于这一研究结果,《Science》杂志的审稿人给与了正面评价:
超冷原子量子计算和模拟研究之所以能取得新突破,离不开以潘建伟、苑震生为主导的研究团队,而从其过往的研究经历来看,二位来头不小。
潘建伟
潘建伟,有“量子之父”之称,是“墨子号”的首席科学家。主要从事量子物理和量子信息等方面的研究,是国际上量子信息实验研究领域开拓者之一,同时也是该领域具有重要国际影响力的科学家。
虽然一周连登两次国际期刊,但潘建伟的高光,远不止如此;不仅多次登上国际期刊,还屡次创下记录,主要包括:
苑震生
苑震生,中国科学技术大学教授,其研究方向包括超冷原子量子调控、量子光学,以及原子分子物理。
据量子物理与量子信息研究部官方介绍,苑震生教授在国际权威学术期刊上发表研究论文多达 40 余篇,总引用 2000 次。
其中包括:
·······
尽管这些“最可爱的人”已取得了许多成就,但他们仍未停歇,不断用新的研究成果刷新着我国在量子计算和模拟的进步。
期待更多的研究成果的发布,雷锋网也将持续关注。
参考资料:雷锋网
【1】
【2】
【3】
一个人只有成功了才会有人去质疑和摸黑,你一个普通人谁会在意你!
可能是他之前的口碑不是很好。
潘建伟及其团队研发了量子计算机技术。
1、科研综述
2022年8月,中国科学技术大学潘建伟及其同事包小辉、张强等,将长寿命冷原子量子存储技术与量子频率转换技术相结合,采用现场光纤在相距直线距离12.5公里的独立量子存储节点间建立纠缠。
2022年,中国科学技术大学潘建伟团队与上海技物所、新疆天文台等单位合作,在国际上首次实现了百公里级的自由空间高精度时间频率传递实验时间传递稳定度达到飞秒(千万亿分之一秒)量级,可满足目前最高精度光钟的时间传递要求。
2、学术论著
根据2022年7月中国科学技术大学官网显示,潘建伟在《Nature》《Science》《PNAS》和《Physical Review Letters》等重要国际学术期刊上发表论文180余篇,并受国际权威综述期刊《Reviews of Modern Physics》邀请先后撰写关于多光子纠缠实验和现实条件下量子通信安全性的综述论文。
3、成果奖励
根据2022年7月中国科学技术大学官网显示,潘建伟曾获国家自然科学一等奖等奖项。
有的人或许是出于妒忌