首页 > 期刊投稿知识库 > 毕业论文有没有五级小标题

毕业论文有没有五级小标题

发布时间:

毕业论文有没有五级小标题

对于毕业论文的标题,我们可以从三个要素来入手。想要确定好论文的题目,我们可以从科研设计的三个要素来着手,分别是研究对象、研究方法以及研究成果。一般论文的题目是由三个部分或者是两个部分所构成的。

在决定一个话题时,我们需要注意正确使用词语,以及正确使用术语,尽量流利易懂,避免使用模糊华丽的词语。

类似于这样:一,xxx,一级标题1,ccc,二级标题1.1ddd,三级标题2,uiuu2.2eeee不同院校标记的数字也不尽相同。看你学校要什么样子的数字记号。

据学术堂了解标题,是标明文章、作品等内容的简短语句,一般分为总标题、副标题、分标题。而一级标题和二级标题和以此下去的标题代表的是一个序号,而且字体大小不一样。一级标题指的是序号为【一、】的标题,也是最大的标题,是4号黑体,单独一行,也不加标点符号;二级标题指的是序号为【(一)】的标题,一般和正文字体大小一样,单独一行,也不加标点符号;三级标题指的是序号为【1. 】的标题,一般和正文字体大小一样,字体一样;

一、标题 标题是文章的眉目.各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨.毕业论文的标题一般分为总标题、副标题、分标题几种. (一)总标题 总标题是文章总体内容的体现.常见的写法有: ①揭示课题的实质.这种形式的标题,高度概括全文内容,往往就是文章的中心论点.它具有高度的明确性,便于读者把握全文内容的核心.诸如此类的标题很多,也很普遍.如《关于经济体制的模式问题》、《经济中心论》、《县级行政机构改革之我见》等. ②提问式.这类标题用设问句的方式,隐去要回答的内容,实际上作者的观点是十分明确的,只不过语意婉转,需要读者加以思考罢了.这种形式的标题因其观点含蓄,容易激起读者的注意.如《家庭联产承包制就是单干吗?》、《商品经济等同于资本主义经济吗?》等. ② 交代内容范围.这种形式的标题,从其本身的角度看,看不出作者所指的观点,只是对文章内容的范围做出限定.拟定这种标题,一方面是文章的主要论点难以用一句简短的话加以归纳;另一方面,交代文章内容的范围,可引起同仁读者的注意,以求引起共鸣.这种形式的标题也较普遍.如《试论我国农村的双层经营体制》、《正确处理中央和地方、条条与块块的关系》、《战后西方贸易自由化剖析》等. ④用判断句式.这种形式的标题给予全文内容的限定,可伸可缩,具有很大的灵活性.文章研究对象是具体的,面较小,但引申的思想又须有很强的概括性,面较宽.这种从小处着眼,大处着手的标题,有利于科学思维和科学研究的拓展.如《从乡镇企业的兴起看中国农村的希望之光》、《科技进步与农业经济》、《从“劳动创造了美”看美的本质》等. ⑤用形象化的语句.如《激励人心的管理体制》、《科技史上的曙光》、《普照之光的理论》等. 标题的样式还有多种,作者可以在实践中大胆创新. (二)副标题和分标题 为了点明论文的研究对象、研究内容、研究目的,对总标题加以补充、解说,有的论文还可以加副标题.特别是一些商榷性的论文,一般都有一个副标题,如在总标题下方,添上“与××商榷”之类的副标题. 另外,为了强调论文所研究的某个侧重面,也可以加副标题.如《如何看待现阶段劳动报酬的差别——也谈按劳分配中的资产阶级权利》、《开发蛋白质资源,提高蛋白质利用效率——探讨解决吃饭问题的一种发展战略》等. 设置分标题的主要目的是为了清晰地显示文章的层次.有的用文字,一般都把本层次的中心内容昭然其上;也有的用数码,仅标明“一、二、三”等的顺序,起承上启下的作用.需要注意的是:无论采用哪种形式,都要紧扣所属层次的内容,以及上文与下文的联系紧密性. 对于标题的要求,概括起来有三点:一要明确.要能够揭示论题范围或论点,使人看了标题便知晓文章的大体轮廓、所论述的主要内容以及作者的写作意图,而不能似是而非,藏头露尾,与读者捉迷藏.二要简炼..论文的标题不宜过长,过长了容易使人产生烦琐和累赘的感觉,得不到鲜明的印象,从而影响对文章的总体评价.标题也不能过于抽象、空洞,标题中不能采用非常用的或生造的词汇,以免使读者一见标题就如堕烟海,百思不得其解,待看完全文后才知标题的哗众取宠之意.三要新颖.标题和文章的内容、形式一样,应有自己的独特之处.做到既不标新立异,又不落案臼,使之引人入胜,赏心悦目,从而激起读者的阅读兴趣. 二、目录 一般说来,篇幅较长的毕业论文,都没有分标题.设置分标题的论文,因其内容的层次较多,整个理论体系较庞大、复杂,故通常设目录. 设置目录的目的主要是: 1.使读者能够在阅读该论文之前对全文的内容、结构有一个大致的了解,以便读者决定是读还是不读,是精读还是略读等. 2.为读者选读论文中的某个分论点时提供方便.长篇论文,除中心论点外,还有许多分论点.当读者需要进一步了解某个分论点时,就可以依靠目录而节省时间. 目录一般放置在论文正文的前面,因而是论文的导读图.要使目录真正起到导读图的作用,必须注意: 1.准确.目录必须与全文的纲目相一致.也就是说,本文的标题、分标题与目录存在着一一对应的关系. 2.清楚无误.目录应逐一标注该行目录在正文中的页码.标注页码必须清楚无误. 3.完整.目录既然是论文的导读图,因而必然要求具有完整性.也就是要求文章的各项内容,都应在目录中反映出来,不得遗漏. 目录有两种基本类型: 1.用文字表示的目录. 2.用数码表示的目录.这种目录较少见.但长篇大论,便于读者阅读,也有采用这种方式的. 三、内容提要 内容提要是全文内容的缩影.在这里,作者以极经济的笔墨,勾画出全文的整体面目;提出主要论点、揭示论文的研究成果、简要叙述全文的框架结构. 内容提要是正文的附属部分,一般放置在论文的篇首. 写作内容提要的目的在于: 1.为了使指导老师在未审阅论文全文时,先对文章的主要内容有个大体上的了解,知道研究所取得的主要成果,研究的主要逻辑顺序. 2.为了使其他读者通过阅读内容提要,就能大略了解作者所研究的问题,如果产生共鸣,则再进一步阅读全文.在这里,内容提要成了把论文推荐给众多读者的“广告”. 因此,内容提要应把论文的主要观点提示出来,便于读者一看就能了解论文内容的要点.论文提要要求写得简明而又全面,不要罗哩罗嗦抓不住要点或者只是干巴巴的几条筋,缺乏说明观点的材料. 内容提要可分为报道性提要和指示性提要. 报道性提要,主要介绍研究的主要方法与成果以及成果分析等,对文章内容的提示较全面. 指示性提要,只简要地叙述研究的成果(数据、看法、意见、结论等),对研究手段、方法、过程等均不涉及.毕业论文一般使用指示性提要.举例如下: ●市场经济条件下的政府,固然应服从上级规划部署的全局,但主要的着眼点应放在对下负责,对本地的经济发展,对本地的人民生活水平提高负责,这才是发展全局经济的前提,从而也自然在根本上符合对上负责. ●变部门“齐抓共管”企业为共同服务于企业,应成为部门工作的主要重点.(摘自《政府在市场经济中 如何定位》一文的内容提要) 内容提要的写作要求可以概括为“全、精、简、实、活”.具体说来: 1.内容提要要求具有完整性.即不能把论文中所阐述的主要内容(或观点)遗漏.提要应写成一篇完整的短文,可以独立使用. 2.重点要突出.内容提要须突出论文的研究成果(或中心论点)和结论性意义的内容,其他各项可写得简明扼要. 3.文字要简炼.内容提要的写作必须字斟句酌,用精练、概括的语言表述,每项内容不宜展开论证说明. 4.陈述要客观.内容提要一般只写课题研究的客观情况,对工作过程、工作方法以及研究成果等,不宜作主观评价,也不宜与别人的研究作对比说明.一项研究成果的价值,自有公论,大可不必自我宣扬.因而,实事求是也是写作内容提要的基本原则. 5.语言要生动.提要既要写得简明扼要,又要生动活泼,引人入胜,在词语润色、表达方法和章法结构上要尽可能体现文彩,以求唤起读者阅读正文的欲望. 四、正文 正文包括绪论、本论、结论三部分.这是毕业论文最重要的组成部分,其它章节有专门详细论述,这里不再重复. 五、参考文献 参考文献又叫参考书目,它是指作者在撰写毕业论文过程中所查阅参考过的著作和报刊杂志,它应列在毕业论文的末尾.列出参考文献有三个好处:一是当作者本人发现引文有差错时,便于查找校正.二是可以使毕业论文答辩委员会的教师了解学生阅读资料的广度,作为审查毕业论文的一种参考依据.三是便于研究同类问题的读者查阅相关的观点和材料. 当然,论文所列的参考文献必须是主要的,与本论文密切相关的,对自己写成毕业论文起过重要参考作用的专著、论文及其它资料.不要轻重不分,开列过多. 列出的参考文献一般要写清书名或篇名、作者、出版者和出版年份.

毕业论文没有副标题

一是概括文章的内容,抓住以下几个要点:(1)把握论文的要素,以写事为主的应明确写什么事,写人为主的应明确写什么样的人。(2)把握关键性语句,揣摩作者为什么要写这些人,事。(3)分析层与层之间的关系,理清文章脉络,然后概括。

楼主你好,毕业论文并不一定有副标题,副标题只是为了缩小范围,如果你的毕业论文题目本来范围就不大,就没有必要取副标题

论文题目有没有标点

一级标题:标题序号为“一、”, 4号黑体,独占行,末尾不加标点符号。 二级标题:标题序号为“(一)”与正文字号相同,独占行,末尾不加标点符号。 三级标题:标题序号为“ 1. ”与正文字号、字体相同。 四级标题:标题序号为“(1)”与正文字号、字毕业论文,标题,标点一级标题:标题序号为“一、”, 4号黑体,独占行,末尾不加标点符号。 二级标题:标题序号为“(一)”与正文字号相同,独占行,末尾不加标点符号。 三级标题:标题序号为“ 1. ”与正文字号、字体相同。 四级标题:标题序号为“(1)”与正文字号、字

一般是不允许出现标点符号的,不过中间可以空格。

论文的题目可以有标点符号。

题名应简明、具体、确切,能概括论文的特定内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。

一般题目不要用陈述句,因为题名主要起标示作用,而陈述句容易使题名具有判断式的语义,且不够精炼和醒目。少数情况,如评述性、综述性和驳斥性下可以用疑问句做题名。

扩展资料:

学位申请者为申请学位而提出撰写的学术论文叫学位论文。这种论文是考核申请者能否被授予学位的重要条件。

学位申请者如果能通过规定的课程考试,而论文的审查和答辩合格,那么就给予学位。如果说学位申请者的课程考试通过了,但论文在答辩时被评为不合格,那么就不会授予他学位。

有资格申请学位并为申请学位所写的那篇毕业论文就称为学位论文,学士学位论文。学士学位论文既是学位论文又是毕业论文。

参考资料来源:百度百科-论文

这个题目可以做,很好,很有新意。

毕业论文没有加副标题

可以。不仅仅可以,而且可以多个副标题,一般副标题也是分论点。

楼主你好,毕业论文并不一定有副标题,副标题只是为了缩小范围,如果你的毕业论文题目本来范围就不大,就没有必要取副标题

不可以一样。副标题是针对主标题,是全文主旨的补充说明。小标题是正文中部分内容的统领。副标题是文章的重要组成部分,关系到一篇文章的精神、格调。好的标题能给人新鲜的感觉和深刻的印象。副标题与主标题和引题组成一篇(则)文章(新闻)的标题。

副标题的功能正是对主标题加以解释说明,明确并且完善自己想表达的内容。副标题是主标题的补充,主标题对新闻核心内容概括,副标题进一步揭示本质。是对主标题的辅助和补充。 小标题则是新闻主干个部分的主题,对下列将要叙述的事实予以揭示。

扩展资料:

论文标题的相关要求:

1、准确表达就实避虚:网络新闻标题作为阅读导引,必须做到准确概括新闻主体大意。一些新闻网站片面追求高点击率,沿袭或照搬传统小报的做法对新闻进行低俗的包装,新闻标题故弄玄虚,哗众取宠,取网民的点击。会令网民产生反感,读者群会很快流失。

2、浓缩精华抓住要点:现代生活节奏加快,信息量膨胀迅速,网民获取新闻信息必须有选择性。要想保证网民能够快速、清晰、准确地捕捉到新闻的核心内容,新闻标题就必须要浓缩主体精华,把最重要、最有价值的内容展示给网民。

网络新闻标题不是报纸新闻标题的简单网络化,要根据网络传播的需要重新制作。除了专业的新闻网站,很多平面媒体都在互联网开设了网络版,但往往忽略了网络新闻对标题的特殊要求,将报纸的新闻标题原样做成链接列表放在首页,显得粗制滥造。

3、生动传神抓住视线:新闻标题要呈现出一种动态,要多用动词、活用动词,富于冲击力的动词能使标题简练而传神,牢牢抓住网民的视线。

参考资料来源:百度百科-标题

参考资料来源:百度百科-建筑幕墙

数学小论文五年级有趣

五年级数学小论文【一】

我对两位数乘两位数有一定的看法。其中,并非都需要列竖式计算,两位数乘两位数有许多种,我先说出其中的五种。第一种,个位相加等于10,十位数字相同。第二种,十位数相加等于10,个位数字相同。第三种,十位、个位相加既不不等于10既,也不相同,没有任何规律。第四种,个位相加等于10,但是十位数字不相同。第五种,十位相加等于10,但是个位数字不相同。第六种当然,我并非知道所有种类,但是也略知皮毛,至少是可以写出前三中的简便方法来的。

我列几题来看:第一题,8684=多少。86和84个位相加等于10,十位数字相同,是第一种情况。可以这样计算:8+1=9,89=72,末尾46=24,89的结果是积的百位和千位,46的结果是积的十位和个位。这题的积是7224。第二题,3452,属于第三种,可以将它乘法变加法,三步完成,第一步,24=8,个位相乘,积的末尾为8。第二步用45+32=26,交叉相乘加起来,写6进2。第三步,十位相乘35=15,15加进的2,等于17,这题的积是1768。第三题,6848,属于第二种,十位数相加等于10,个位数字相同。用64=24,24+8=32,积的千位和百位是3和2。最后末尾相乘,88=64,十位和个位是6和4,这题的积是3264。

当然还有一种指算法。我就不多说了,我就不一一介绍了。看了我的方法,你们觉得是我的好,还是数学报上老土的方法好。

五年级数学小论文【二】

今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。

妈妈问我:考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?

我思索了一会儿,不慌不忙地说:可以这样算:

51=5305=150(小时)200小时150小时

还可以这样算:

51=52005=40(小时)30小时40小时

由这几步可得出结论,节能灯泡省钱。

妈妈又问我:很好。再想想看,还有没有别的办法来算?

我又想了一会儿,一个字一个字地说:可以用我这学期才学的百分数来算:

5/200100=0.025100=2.5

1/301000.033100=3.3

3.32.5

或者这样算:

200/5100=40100=4000

30/1100=30100=3000

40003000

因此,也是节能灯泡便宜。。

我和妈妈买了比较划算的节能灯泡回去了。

经过这件事,我明白了:生活处处有数学这个道理。

五年级数学小论文【三】

生活处处有数学,今天我来到超市,验证了这一真理。通过比较,我还发现有的东西套装卖比单个买更贵一点。

我来到有火腿肠的架子上,货架上摆着一包一包的火腿肠,同样品牌,同样重量,里面有10根,每包4.30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要4.30元,多了3毛钱,所以套装比散装更贵。

我来到饮料货台,一瓶250ml的凉茶1.75元,但是货柜上整箱16瓶装的却标价30.4元,如果按1.75元的单价买16瓶,只需28元,显然单瓶购买比整箱购买少用2.4元。310ml王老吉罐装饮料一瓶3.4元,整箱12瓶装的标价42元,如果以3.4元的单价买12瓶则只需40.8元,比整箱购买便宜了1.2元;而同样的该品种,24瓶装一箱标价90.7元,如按3.4元的零售价买24瓶才81.6元,比整箱购买整整少了9.1元。旁边的啤酒每罐单价2.9元,24瓶应收69.6元,但是超市收款76.8元。整整多出7.2元,都可以多买2罐啤酒了。

同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,来解决实际问题的,数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

1、生活中的数学 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。 现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢? 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 …… 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢? 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题. 可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。所以正确答案应该是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米)和452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 大家一定从小就开始奇怪了,0到底是怎么来的呢?关于0的起源,有以下几种观点。①、古巴比伦的0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作1。1②、在古印度数学中,发现0的最早记载是公元876年,欧洲许多数学家都同意这一观点。公元6世纪,印度人就开始用“?”,后来变成了一个圆圈。到了公元九世纪就固定成了今天的“0”。③、0的故乡在中国。我国最早的诗歌总集《诗经》中就有0的记载,只不过当时0的意思是“暴风雨末了的小雨滴”。在我国远古时代的结绳记数法中,0是在对“有”的否定中出现的,意思是“没有”。总之,有关0的起源还没有一个定论。 但是无论如何,0自从一出现就具有非常旺盛的生命力,现在,它广泛应用于社会的各个领域。 在课堂上,常听老师说,0就是没有的意思,你有0元钱,就代表没有钱;你有0支笔,就代表你没有笔。在这样的情况下,温度表上的0度就代表着没有温度吗?答案肯定是否定的。纯净的冰水混合物的温度就是0度。 想一想我们四年级学的素数与合数吧!老师是这样解释的“自然数可以分成3类:1、素数与合数,一个自然数只有一和它本身两个因数的数是素数,因数大于3个就是合数,1单独为一种。”那0也是自然数,它是最小的自然数,0到底是质数还是合数呢?这个谁也说不清楚。 我还有一个关于0的问题,自然数也可以分成奇数与偶数,能被2整除的数就是合数,反之就是奇数。0是奇数还是偶数呢?看上去像偶数,但又说不准,到底是什么数谁也不清楚。 0还有许多奇妙有趣的事就在我们身边呢,大家一起来发现吧! 麻烦采纳,谢谢!

有趣的职业 小赵、小丁、小张分别是教师、医生和律师,只知道:1小赵比教师年纪大;2小张和教师不同岁;3小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗? 根据1小赵比教师年纪大和3小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据2小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。 这道题目很简单,我运用了排除法,比如:根据条件1和3就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。在我们学习数学的过程中,我们只要掌握方法,就可以解决一切难题,想不到从数学中也能得到乐趣。

千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

模糊不过vncjhvb

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 望采纳。

《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不著头脑,我心里琢磨著,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按著这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。

第一页 居中 先写题目 第二行写班级、姓名 换页 找关于论文的主题的例子 写完一个例子写两行左右的说明,例如这题的做法是怎么样的 写三到五个例题即可 一般用WROD两页即可,建议多写,但不要写的题目太难,不符合你的年龄段

写的不错,是不错,很好 ,可是有的地方写错了 ,我就不说出来了, 希望我进步 。

  • 索引序列
  • 毕业论文有没有五级小标题
  • 毕业论文没有副标题
  • 论文题目有没有标点
  • 毕业论文没有加副标题
  • 数学小论文五年级有趣
  • 返回顶部